1
|
Cacciotti A, Beccaccioli M, Reverberi M. The CRZ1 transcription factor in plant fungi: regulation mechanism and impact on pathogenesis. Mol Biol Rep 2024; 51:647. [PMID: 38727981 PMCID: PMC11087348 DOI: 10.1007/s11033-024-09593-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Calcium (Ca2+) is a universal signaling molecule that is tightly regulated, and a fleeting elevation in cytosolic concentration triggers a signal cascade within the cell, which is crucial for several processes such as growth, tolerance to stress conditions, and virulence in fungi. The link between calcium and calcium-dependent gene regulation in cells relies on the transcription factor Calcineurin-Responsive Zinc finger 1 (CRZ1). The direct regulation of approximately 300 genes in different stress pathways makes it a hot topic in host-pathogen interactions. Notably, CRZ1 can modulate several pathways and orchestrate cellular responses to different types of environmental insults such as osmotic stress, oxidative stress, and membrane disruptors. It is our belief that CRZ1 provides the means for tightly modulating and synchronizing several pathways allowing pathogenic fungi to install into the apoplast and eventually penetrate plant cells (i.e., ROS, antimicrobials, and quick pH variation). This review discusses the structure, function, regulation of CRZ1 in fungal physiology and its role in plant pathogen virulence.
Collapse
Affiliation(s)
- A Cacciotti
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - M Beccaccioli
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy.
| | - M Reverberi
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
2
|
Candida albicans Zn Cluster Transcription Factors Tac1 and Znc1 Are Activated by Farnesol To Upregulate a Transcriptional Program Including the Multidrug Efflux Pump CDR1. Antimicrob Agents Chemother 2018; 62:AAC.00968-18. [PMID: 30104273 DOI: 10.1128/aac.00968-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/09/2018] [Indexed: 01/22/2023] Open
Abstract
Farnesol, a quorum-sensing molecule, inhibits Candida albicans hyphal formation, affects its biofilm formation and dispersal, and impacts its stress response. Several aspects of farnesol's mechanism of action remain incompletely uncharacterized. Among these are a thorough accounting of the cellular receptors and transporters for farnesol. This work suggests these processes are linked through the Zn cluster transcription factors Tac1 and Znc1 and their induction of the multidrug efflux pump Cdr1. Specifically, we have demonstrated that Tac1 and Znc1 are functionally activated by farnesol through a mechanism that mimics other means of hyperactivation of Zn cluster transcription factors. This is consistent with our observation that many genes acutely induced by farnesol are dependent on TAC1, ZNC1, or both. A related molecule, 1-dodecanol, invokes a similar TAC1-ZNC1 response, while several other proposed C. albicans quorum-sensing molecules do not. Tac1 and Znc1 both bind to and upregulate the CDR1 promoter in response to farnesol. Differences in inducer and DNA binding specificity lead to Tac1 and Znc1 having overlapping, but nonidentical, regulons. Induction of genes by farnesol via Tac1 and Znc1 was inversely related to the level of CDR1 present in the cell, suggesting a model in which induction of CDR1 by Tac1 and Znc1 leads to an increase in farnesol efflux. Consistent with this premise, our results show that CDR1 expression, and its regulation by TAC1 and ZNC1, facilitates growth in the presence of high farnesol concentrations in C. albicans and in certain strains of its close relative, C. dubliniensis.
Collapse
|
3
|
Transcription Factors Controlling Primary and Secondary Metabolism in Filamentous Fungi: The β-Lactam Paradigm. FERMENTATION-BASEL 2018. [DOI: 10.3390/fermentation4020047] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Tebung WA, Choudhury BI, Tebbji F, Morschhäuser J, Whiteway M. Rewiring of the Ppr1 Zinc Cluster Transcription Factor from Purine Catabolism to Pyrimidine Biogenesis in the Saccharomycetaceae. Curr Biol 2016; 26:1677-1687. [PMID: 27321996 DOI: 10.1016/j.cub.2016.04.064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/03/2016] [Accepted: 04/29/2016] [Indexed: 11/16/2022]
Abstract
Metabolic pathways are largely conserved in eukaryotes, but the transcriptional regulation of these pathways can sometimes vary between species; this has been termed "rewiring." Recently, it has been established that in the Saccharomyces lineage starting from Naumovozyma castellii, genes involved in allantoin breakdown have been genomically relocated to form the DAL cluster. The formation of the DAL cluster occurred along with the loss of urate permease (UAP) and urate oxidase (UOX), reducing the requirement for oxygen and bypassing the candidate Ppr1 inducer, uric acid. In Saccharomyces cerevisiae, this allantoin catabolism cluster is regulated by the transcription factor Dal82, which is not present in many of the pre-rearrangement fungal species. We have used ChIP-chip analysis, transcriptional profiling of an activated Ppr1 protein, bioinformatics, and nitrogen utilization studies to establish that in Candida albicans the zinc cluster transcription factor Ppr1 controls this allantoin catabolism regulon. Intriguingly, in S. cerevisiae, the Ppr1 ortholog binds the same DNA motif (CGG(N6)CCG) as in C. albicans but serves as a regulator of pyrimidine biosynthesis. This transcription factor rewiring appears to have taken place at the same phylogenetic step as the formation of the rearranged DAL cluster. This transfer of the control of allantoin degradation from Ppr1 to Dal82, together with the repositioning of Ppr1 to the regulation of pyrimidine biosynthesis, may have resulted from a switch to a metabolism that could exploit hypoxic conditions in the lineage leading to N. castellii and S. cerevisiae.
Collapse
Affiliation(s)
- Walters Aji Tebung
- Chemistry and Biochemistry Department, Concordia University, 7141 Sherbrooke Street West, Montreal, QC H4B 1R6, Canada
| | - Baharul I Choudhury
- Biology Department, Concordia University, 7141 Sherbrooke Street West, Montreal, QC H4B 1R6, Canada
| | - Faiza Tebbji
- Infectious Diseases Research Centre (CRI), CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Joachim Morschhäuser
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, 97070 Würzburg, Germany
| | - Malcolm Whiteway
- Biology Department, Concordia University, 7141 Sherbrooke Street West, Montreal, QC H4B 1R6, Canada.
| |
Collapse
|
5
|
Downes DJ, Davis MA, Kreutzberger SD, Taig BL, Todd RB. Regulation of the NADP-glutamate dehydrogenase gene gdhA in Aspergillus nidulans by the Zn(II)2Cys6 transcription factor LeuB. Microbiology (Reading) 2013; 159:2467-2480. [DOI: 10.1099/mic.0.071514-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Damien J. Downes
- Department of Genetics, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Plant Pathology, Kansas State University, 4024 Throckmorton Plant Sciences Center, Manhattan, KS 66506, USA
| | - Meryl A. Davis
- Department of Genetics, University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Brendan L. Taig
- Department of Genetics, University of Melbourne, Parkville, VIC 3010, Australia
| | - Richard B. Todd
- Department of Genetics, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Plant Pathology, Kansas State University, 4024 Throckmorton Plant Sciences Center, Manhattan, KS 66506, USA
| |
Collapse
|
6
|
|
7
|
Zhu C, Byers KJRP, McCord RP, Shi Z, Berger MF, Newburger DE, Saulrieta K, Smith Z, Shah MV, Radhakrishnan M, Philippakis AA, Hu Y, De Masi F, Pacek M, Rolfs A, Murthy T, Labaer J, Bulyk ML. High-resolution DNA-binding specificity analysis of yeast transcription factors. Genome Res 2009; 19:556-66. [PMID: 19158363 DOI: 10.1101/gr.090233.108] [Citation(s) in RCA: 328] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Transcription factors (TFs) regulate the expression of genes through sequence-specific interactions with DNA-binding sites. However, despite recent progress in identifying in vivo TF binding sites by microarray readout of chromatin immunoprecipitation (ChIP-chip), nearly half of all known yeast TFs are of unknown DNA-binding specificities, and many additional predicted TFs remain uncharacterized. To address these gaps in our knowledge of yeast TFs and their cis regulatory sequences, we have determined high-resolution binding profiles for 89 known and predicted yeast TFs, over more than 2.3 million gapped and ungapped 8-bp sequences ("k-mers"). We report 50 new or significantly different direct DNA-binding site motifs for yeast DNA-binding proteins and motifs for eight proteins for which only a consensus sequence was previously known; in total, this corresponds to over a 50% increase in the number of yeast DNA-binding proteins with experimentally determined DNA-binding specificities. Among other novel regulators, we discovered proteins that bind the PAC (Polymerase A and C) motif (GATGAG) and regulate ribosomal RNA (rRNA) transcription and processing, core cellular processes that are constituent to ribosome biogenesis. In contrast to earlier data types, these comprehensive k-mer binding data permit us to consider the regulatory potential of genomic sequence at the individual word level. These k-mer data allowed us to reannotate in vivo TF binding targets as direct or indirect and to examine TFs' potential effects on gene expression in approximately 1,700 environmental and cellular conditions. These approaches could be adapted to identify TFs and cis regulatory elements in higher eukaryotes.
Collapse
Affiliation(s)
- Cong Zhu
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
MacPherson S, Larochelle M, Turcotte B. A fungal family of transcriptional regulators: the zinc cluster proteins. Microbiol Mol Biol Rev 2006; 70:583-604. [PMID: 16959962 PMCID: PMC1594591 DOI: 10.1128/mmbr.00015-06] [Citation(s) in RCA: 436] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The trace element zinc is required for proper functioning of a large number of proteins, including various enzymes. However, most zinc-containing proteins are transcription factors capable of binding DNA and are named zinc finger proteins. They form one of the largest families of transcriptional regulators and are categorized into various classes according to zinc-binding motifs. This review focuses on one class of zinc finger proteins called zinc cluster (or binuclear) proteins. Members of this family are exclusively fungal and possess the well-conserved motif CysX(2)CysX(6)CysX(5-12)CysX(2)CysX(6-8)Cys. The cysteine residues bind to two zinc atoms, which coordinate folding of the domain involved in DNA recognition. The first- and best-studied zinc cluster protein is Gal4p, a transcriptional activator of genes involved in the catabolism of galactose in the budding yeast Saccharomyces cerevisiae. Since the discovery of Gal4p, many other zinc cluster proteins have been characterized; they function in a wide range of processes, including primary and secondary metabolism and meiosis. Other roles include regulation of genes involved in the stress response as well as pleiotropic drug resistance, as demonstrated in budding yeast and in human fungal pathogens. With the number of characterized zinc cluster proteins growing rapidly, it is becoming more and more apparent that they are important regulators of fungal physiology.
Collapse
Affiliation(s)
- Sarah MacPherson
- Department of Microbiology and Immunology, Royal Victoria Hospital, McGill University, Montréal, Québec, Canada H3A 1A
| | | | | |
Collapse
|
9
|
Larochelle M, Drouin S, Robert F, Turcotte B. Oxidative stress-activated zinc cluster protein Stb5 has dual activator/repressor functions required for pentose phosphate pathway regulation and NADPH production. Mol Cell Biol 2006; 26:6690-701. [PMID: 16914749 PMCID: PMC1592823 DOI: 10.1128/mcb.02450-05] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, zinc cluster protein Pdr1 can form homodimers as well as heterodimers with Pdr3 and Stb5, suggesting that different combinations of these proteins may regulate the expression of different genes. To gain insight into the interplay among these regulators, we performed genome-wide location analysis (chromatin immunoprecipitation with hybridization to DNA microarrays) and gene expression profiling. Unexpectedly, we observed that Stb5 shares only a few target genes with Pdr1 or Pdr3 in rich medium. Interestingly, upon oxidative stress, Stb5 binds and regulates the expression of most genes of the pentose phosphate pathway as well as of genes involved in the production of NADPH, a metabolite required for oxidative stress resistance. Importantly, deletion of STB5 results in sensitivity to diamide and hydrogen peroxide. Our data suggest that Stb5 acts both as an activator and as a repressor in the presence of oxidative stress. Furthermore, we show that Stb5 activation is not mediated by known regulators of the oxidative stress response. Integrity of the pentose phosphate pathway is required for the activation of Stb5 target genes but is not necessary for the increased DNA binding of Stb5 in the presence of diamide. These data suggest that Stb5 is a key player in the control of NADPH production for resistance to oxidative stress.
Collapse
Affiliation(s)
- Marc Larochelle
- Department of Medicine, Room H7.83, Royal Victoria Hospital, McGill University, 687 Pine Ave. West, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
10
|
Coste AT, Karababa M, Ischer F, Bille J, Sanglard D. TAC1, transcriptional activator of CDR genes, is a new transcription factor involved in the regulation of Candida albicans ABC transporters CDR1 and CDR2. EUKARYOTIC CELL 2005; 3:1639-52. [PMID: 15590837 PMCID: PMC539021 DOI: 10.1128/ec.3.6.1639-1652.2004] [Citation(s) in RCA: 307] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ABC transporter genes CDR1 and CDR2 can be upregulated in Candida albicans developing resistance to azoles or can be upregulated by exposing cells transiently to drugs such as fluphenazine. The cis-acting drug-responsive element (DRE) present in the promoters of both genes and necessary for their upregulation contains 5'-CGG-3' triplets that are often recognized by transcriptional activators with Zn(2)-Cys(6) fingers. In order to isolate regulators of CDR1 and CDR2, the C. albicans genome was searched for genes encoding proteins with Zn(2)-Cys(6) fingers. Interestingly, three of these genes were tandemly arranged near the mating locus. Their involvement in CDR1 and CDR2 upregulation was addressed because a previous study demonstrated a link between mating locus homozygosity and azole resistance. The deletion of only one of these genes (orf19.3188) was sufficient to result in a loss of transient CDR1 and CDR2 upregulation by fluphenazine and was therefore named TAC1 (transcriptional activator of CDR genes). Tac1p has a nuclear localization, and a fusion of Tac1p with glutathione S-transferase could bind the cis-acting regulatory DRE in both the CDR1 and the CDR2 promoters. TAC1 is also relevant for azole resistance, since a TAC1 allele (TAC1-2) recovered from an azole-resistant strain could trigger constitutive upregulation of CDR1 and CDR2 in an azole-susceptible laboratory strain. Transcript profiling experiments performed with a TAC1 mutant and a revertant containing TAC1-2 revealed not only CDR1 and CDR2 as targets of TAC1 regulation but also other genes (RTA3, IFU5, and HSP12) that interestingly contained a DRE-like element in their promoters. In conclusion, TAC1 appears to be the first C. albicans transcription factor involved in the control of genes mediating antifungal resistance.
Collapse
Affiliation(s)
- Alix T Coste
- Institute of Microbiology, University Hospital Lausanne, Rue du Bugnon 48, CH-1011 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
11
|
Rerngsamran P, Murphy MB, Doyle SA, Ebbole DJ. Fluffy, the major regulator of conidiation in Neurospora crassa, directly activates a developmentally regulated hydrophobin gene. Mol Microbiol 2005; 56:282-97. [PMID: 15773996 DOI: 10.1111/j.1365-2958.2005.04544.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The fluffy (fl) gene of Neurospora crassa is required for asexual sporulation and encodes an 88 kDa polypeptide containing a typical fungal Zn2Cys6 DNA-binding motif. Identification of genes regulated by fl will provide insight into how fungi regulate growth during morphogenesis. As a step towards identifying the target genes on which FL may act, we sought to define target sequences to which the FL protein binds. The DNA binding domain of FL was expressed in Escherichia coli as a fusion with glutathione S-transferase (GST) and purified using glutathione-sepharose affinity chromatography. The DNA binding sites were selected and amplified by means of a polymerase chain reaction (PCR)-mediated random-site selection method involving affinity bead-binding and gel mobility shift analysis. Sequencing and comparison of the selected clones suggested that FL binds to the motif 5'-CGG(N)9CCG-3'. A potential binding site was found in the promoter region of the eas (ccg-2) gene, which encodes a fungal hydrophobin. In vitro competitive binding assays revealed a preferred binding site for FL in the eas promoter, 5'-CGGAAGTTTC CTCCG-3', which is located 1498 bp upstream of the eas translation initiation codon. In vivo experiments using a foreign DNA sequence tag also confirmed that this sequence resides in a region required for FL regulation. In addition, yeast one hybrid experiments demonstrated that the C-terminal portion of FL functions in transcriptional activation. Transcriptional profiling was used to identify additional potential targets for regulation by fl.
Collapse
Affiliation(s)
- Panan Rerngsamran
- Program for the Biology of Filamentous Fungi, Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | | | | | | |
Collapse
|
12
|
Polotnianka R, Monahan BJ, Hynes MJ, Davis MA. TamA interacts with LeuB, the homologue of Saccharomyces cerevisiae Leu3p, to regulate gdhA expression in Aspergillus nidulans. Mol Genet Genomics 2004; 272:452-9. [PMID: 15517391 DOI: 10.1007/s00438-004-1073-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2004] [Accepted: 09/24/2004] [Indexed: 10/26/2022]
Abstract
Previous studies have shown that expression of the gdhA gene, encoding NADP-linked glutamate dehydrogenase (NADP-GDH), in Aspergillus nidulans is regulated by the major nitrogen regulatory protein AreA and its co-activator TamA. We show here that loss of TamA function has a more severe effect on the levels of gdhA expression than loss of AreA function. Using TamA as the bait in a yeast two-hybrid screen, we have identified a second protein that interacts with TamA. Sequencing analysis and functional studies have shown that this protein, designated LeuB, is a transcriptional activator with similar function to the homologous Leu3p of Saccharomyces cerevisiae. Inactivation of leuB revealed that this gene is involved in the regulation of gdhA, and an areA; leuB double mutant was shown to have similar NADP-GDH levels to a tamA single mutant. The requirement for TamA function to promote gdhA expression is likely to be due to its dual interaction with AreA and LeuB.
Collapse
Affiliation(s)
- R Polotnianka
- Department of Genetics, The University of Melbourne, 3010 Parkville, Australia
| | | | | | | |
Collapse
|
13
|
Idicula AM, Blatch GL, Cooper TG, Dorrington RA. Binding and activation by the zinc cluster transcription factors of Saccharomyces cerevisiae. Redefining the UASGABA and its interaction with Uga3p. J Biol Chem 2002; 277:45977-83. [PMID: 12235130 PMCID: PMC4384467 DOI: 10.1074/jbc.m201789200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Uga3p, a member of zinc binuclear cluster transcription factor family, is required for gamma-aminobutyric acid-dependent transcription of the UGA genes in Saccharomyces cerevisiae. Members of this family bind to CGG triplets with the spacer region between the triplets being an important specificity determinant. A conserved 19-nucleotide activation element in certain UGA gene promoter regions contains a CCGN(4)CGG-everted repeat proposed to be the binding site of Uga3p, UAS(GABA). The function of conserved nucleotides flanking the everted repeat has not been rigorously investigated. The interaction of Uga3p with UAS(GABA) was characterized in terms of binding in vitro and transcriptional activation of lacZ reporter genes in vivo. Electromobility shift assays using mutant UAS(GABA) sequences and heterologously produced full-length Uga3p demonstrated that UAS(GABA) consists of two independent Uga3p binding sites. Simultaneous occupation of both Uga3p binding sites of UAS(GABA) with high affinity is essential for GABA-dependent transcriptional activation in vivo. We present evidence that the two Uga3p molecules bound to UAS(GABA) probably interact with each other and show that Uga3p((1-124)), previously used for binding studies, is not functionally equivalent to the full-length protein with respect to binding in vitro. We propose that the Uga3p binding site is an asymmetric site of 5'-SGCGGNWTTT-3' (S = G or C, W = A, or T and n = no nucleotide or G). However, UAS(GABA), is a palindrome containing two asymmetric Uga3p binding sites.
Collapse
Affiliation(s)
| | | | - Terrance G. Cooper
- Department of Molecular Sciences, University Of Tennessee, Memphis, Tennessee 38163
| | | |
Collapse
|