1
|
Joković N, Pešić S, Vitorović J, Bogdanović A, Sharifi-Rad J, Calina D. Glucosinolates and Their Hydrolytic Derivatives: Promising Phytochemicals With Anticancer Potential. Phytother Res 2025; 39:1035-1089. [PMID: 39726346 DOI: 10.1002/ptr.8419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/29/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
Recent research has increasingly focused on phytochemicals as promising anticancer agents, with glucosinolates (GSLs) and their hydrolytic derivatives playing a central role. These sulfur-containing compounds, found in plants of the Brassicales order, are converted by myrosinase enzymes into biologically active products, primarily isothiocyanates (ITCs) and indoles, which exhibit significant anticancer properties. Indole-3-carbinol, diindolylmethane, sulforaphane (SFN), phenethyl isothiocyanate (PEITC), benzyl isothiocyanate, and allyl isothiocyanate have shown potent anticancer effects in animal models, particularly in breast, prostate, lung, melanoma, bladder, hepatoma, and gastrointestinal cancers. Clinical studies further support the chemopreventive effects of SFN and PEITC, particularly in detoxifying carcinogens and altering biochemical markers in cancer patients. These compounds have demonstrated good bioavailability, low toxicity, and minimal adverse effects, supporting their potential therapeutic application. Their anticancer mechanisms include the modulation of reactive oxygen species, suppression of cancer-related signaling pathways, and direct interaction with tumor cell proteins. Additionally, semi-synthetic derivatives of GSLs have been developed to enhance anticancer efficacy. In conclusion, GSLs and their derivatives offer significant potential as both chemopreventive and therapeutic agents, warranting further clinical investigation to optimize their application in cancer treatment.
Collapse
Affiliation(s)
- Nataša Joković
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - Strahinja Pešić
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - Jelena Vitorović
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - Andrija Bogdanović
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, Ecuador
- Department of Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| |
Collapse
|
2
|
Abstract
Targeted protein degradation (TPD) has emerged as the most promising approach for the specific knockdown of disease-associated proteins and is achieved by exploiting the cellular quality control machinery. TPD technologies are highly advantageous in overcoming drug resistance as they degrade the whole target protein. Microtubules play important roles in many cellular processes and are among the oldest and most well-established targets for tumor chemotherapy. However, the development of drug resistance, risk of hypersensitivity reactions, and intolerable toxicities severely restrict the clinical applications of microtubule-targeting agents (MTAs). Microtubule degradation agents (MDgAs) operate via completely different mechanisms compared with traditional MTAs and are capable of overcoming drug resistance. The emergence of MDgAs has expanded the scope of TPD and provided new avenues for the discovery of tubulin-targeted drugs. Herein, we summarized the development of MDgAs, and discussed their degradation mechanisms, mechanisms of action on the binding sites, potential opportunities, and challenges.
Collapse
Affiliation(s)
- Chufeng Zhang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Min Zhao
- Laboratory of Metabolomics and Drug-Induced Liver Injury, Department of Gastroenterology & Hepatology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Guan Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yong Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
3
|
de Menezes AAPM, Aguiar RPS, Santos JVO, Sarkar C, Islam MT, Braga AL, Hasan MM, da Silva FCC, Sharifi-Rad J, Dey A, Calina D, Melo-Cavalcante AAC, Sousa JMC. Citrinin as a potential anti-cancer therapy: A comprehensive review. Chem Biol Interact 2023:110561. [PMID: 37230156 DOI: 10.1016/j.cbi.2023.110561] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/09/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
Citrinin (CIT) is a polyketide-derived mycotoxin, which is produced by many fungal strains belonging to the gerena Monascus, Aspergillus, and Penicillium. It has been postulated that mycotoxins have several toxic mechanisms and are potentially used as antineoplastic agents. Therefore, the present study carried out a systematic review, including articles from 1978 to 2022, by collecting evidence in experimental studies of CIT antiplorifactive activity in cancer. The Data indicate that CIT intervenes in important mediators and cell signaling pathways, including MAPKs, ERK1/2, JNK, Bcl-2, BAX, caspases 3,6,7 and 9, p53, p21, PARP cleavage, MDA, reactive oxygen species (ROS) and antioxidant defenses (SOD, CAT, GST and GPX). These factors demonstrate the potential antitumor drug CIT in inducing cell death, reducing DNA repair capacity and inducing cytotoxic and genotoxic effects in cancer cells.
Collapse
Affiliation(s)
- Ag-Anne P M de Menezes
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64, 049-550, Brazil.
| | - Raí P S Aguiar
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64, 049-550, Brazil.
| | - José V O Santos
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64, 049-550, Brazil.
| | - Chandan Sarkar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| | - Muhammad T Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| | - Antonio L Braga
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64, 049-550, Brazil.
| | - Mohammad M Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh.
| | - Felipe C C da Silva
- Postgraduate Program in Pharmaceutical Science, Federal University of Piauí, Teresina, PI, Brazil.
| | | | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - Ana A C Melo-Cavalcante
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64, 049-550, Brazil; Postgraduate Program in Pharmaceutical Science, Federal University of Piauí, Teresina, PI, Brazil.
| | - João M C Sousa
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64, 049-550, Brazil; Postgraduate Program in Pharmaceutical Science, Federal University of Piauí, Teresina, PI, Brazil.
| |
Collapse
|
4
|
Del Rosario H, Saavedra E, Brouard I, González-Santana D, García C, Spínola-Lasso E, Tabraue C, Quintana J, Estévez F. Structure-activity relationships reveal a 2-furoyloxychalcone as a potent cytotoxic and apoptosis inducer for human U-937 and HL-60 leukaemia cells. Bioorg Chem 2022; 127:105926. [PMID: 35717804 DOI: 10.1016/j.bioorg.2022.105926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/25/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022]
Abstract
Synthetic flavonoids with new substitution patterns have attracted attention as potential anticancer drugs. Here, twelve chalcones were synthesized and their antiproliferative activities against five human tumour cells were evaluated. This series of chalcone derivatives was characterized by the presence of an additional aromatic or heterocyclic ring linked by an ether, in the case of a benzyl radical, or an ester or amide functional group in the case of a furoyl radical. In addition, the influence on cytotoxicity by the presence of one or three methoxy groups or a 2,4-dimethoxy-3-methyl system on the B ring of the chalcone scaffold was also explored. The results revealed that the most cytotoxic chalcones contain a furoyl substituent linked by an ester or an amide through the 2'-hydroxy or the 2'-amino group of the A ring of the chalcone skeleton, with IC50 values between 0.2 ± 0.1 μM and 1.3 ± 0.1 μM against human leukaemia cells. The synthetic chalcone 2'-furoyloxy-4-methoxychalcone (FMC) was, at least, ten-fold more potent than the antineoplastic agent etoposide against U-937 cells and displayed less cytotoxicity against human peripheral blood mononuclear cells. Treatment of U-937 and HL-60 cells with FMC induced cell cycle arrest at the G2-M phase, an increase in the percentage of sub-G1 and annexin-V positive cells, the release of mitochondrial cytochrome c, activation of caspase and poly(ADP-ribose) polymerase cleavage. In addition, it inhibited tubulin polymerization in vitro in a concentration dependent manner. Cell death triggered by this chalcone was decreased by the pan-caspase inhibitor z-VAD-fmk and was dependent of the generation of reactive oxygen species. We conclude that this furoyloxychalcone may be useful in the development of a potential anti-leukaemia strategy.
Collapse
Affiliation(s)
- Henoc Del Rosario
- Departamento de Bioquímica y Biología Molecular, Fisiología, Genética e Inmunología, Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Grupo de Química Orgánica y Bioquímica, Universidad de Las Palmas de Gran Canaria, Unidad Asociada al Consejo Superior de Investigaciones Científicas (CSIC), 35016 Las Palmas de Gran Canaria, Spain
| | - Ester Saavedra
- Departamento de Bioquímica y Biología Molecular, Fisiología, Genética e Inmunología, Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Grupo de Química Orgánica y Bioquímica, Universidad de Las Palmas de Gran Canaria, Unidad Asociada al Consejo Superior de Investigaciones Científicas (CSIC), 35016 Las Palmas de Gran Canaria, Spain; Instituto Canario de Investigación del Cáncer, 35016 Las Palmas de Gran Canaria, Spain
| | - Ignacio Brouard
- Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas (IPNA-CSIC), 38206 La Laguna, Tenerife, Spain
| | - Daniel González-Santana
- Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas (IPNA-CSIC), 38206 La Laguna, Tenerife, Spain; Facultad de Farmacia. Universidad de La Laguna, Tenerife, Spain
| | - Celina García
- Instituto Universitario de Bio-orgánica AG, Departamento de Química Orgánica, Universidad de La Laguna, Tenerife, Spain
| | - Elena Spínola-Lasso
- Departamento de Bioquímica y Biología Molecular, Fisiología, Genética e Inmunología, Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Grupo de Química Orgánica y Bioquímica, Universidad de Las Palmas de Gran Canaria, Unidad Asociada al Consejo Superior de Investigaciones Científicas (CSIC), 35016 Las Palmas de Gran Canaria, Spain
| | - Carlos Tabraue
- Departamento de Morfología, Grupo de Investigación Medio Ambiente y Salud (GIMAS), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - José Quintana
- Departamento de Bioquímica y Biología Molecular, Fisiología, Genética e Inmunología, Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Grupo de Química Orgánica y Bioquímica, Universidad de Las Palmas de Gran Canaria, Unidad Asociada al Consejo Superior de Investigaciones Científicas (CSIC), 35016 Las Palmas de Gran Canaria, Spain
| | - Francisco Estévez
- Departamento de Bioquímica y Biología Molecular, Fisiología, Genética e Inmunología, Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Grupo de Química Orgánica y Bioquímica, Universidad de Las Palmas de Gran Canaria, Unidad Asociada al Consejo Superior de Investigaciones Científicas (CSIC), 35016 Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
5
|
Liu X, Yang Q, Nakamura Y. Inhibition of Drug Resistance Mechanisms Improves the Benzyl Isothiocyanate–Induced Anti-Proliferation in Human Colorectal Cancer Cells. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s40495-020-00227-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Gong L, Tang H, Luo Z, Sun X, Tan X, Xie L, Lei Y, Cai M, He C, Ma J, Han S. Tamoxifen induces fatty liver disease in breast cancer through the MAPK8/FoxO pathway. Clin Transl Med 2020; 10:137-150. [PMID: 32508033 PMCID: PMC7240857 DOI: 10.1002/ctm2.5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Prevention of metabolic complications of long-term adjuvant endocrine therapy in breast cancers remained a challenge. We aimed to investigate the molecular mechanism in the development of tamoxifen (TAM)-induced fatty liver in both estrogen receptor (ER)-positive and ER-negative breast cancer. METHODS AND RESULTS First, the direct protein targets (DPTs) of TAM were identified using DrugBank5.1.7. We found that mitogen-activated protein kinase 8 (MAPK8) was one DPT of TAM. We identified significant genes in breast cancer and fatty liver disease (FLD) using the MalaCards human disease database. Next, we analyzed the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of those significant genes in breast cancer and FLD using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING). We found that overlapping KEGG pathways in these two diseases were MAPK signaling pathway, Forkhead box O (FoxO) signaling pathway, HIF-1 signaling pathway, AGE-RAGE signaling pathway in diabetic complications, and PI3K-Akt signaling pathway. Furthermore, the KEGG Mapper showed that the MAPK signaling pathway was related to the FoxO signaling pathway. Finally, the functional relevance of breast cancer and TAM-induced FLD was validated by Western blot analysis. We verified that TAM may induce fatty liver in breast cancer through the MAPK8/FoxO signaling pathway. CONCLUSION Bioinformatics analysis combined with conventional experiments may improve our understanding of the molecular mechanisms underlying side effects of cancer drugs, thereby making this method a new paradigm for guiding future studies on this issue.
Collapse
Affiliation(s)
- Liuyun Gong
- Department of OncologyThe First Affiliated HospitalXi'an Jiaotong UniversityXi'anPR China
| | - Hanmin Tang
- Department of OncologyThe First Affiliated HospitalXi'an Jiaotong UniversityXi'anPR China
| | - Zhenzhen Luo
- Department of OncologyThe First Affiliated HospitalXi'an Jiaotong UniversityXi'anPR China
| | - Xiao Sun
- Department of OncologyThe First Affiliated HospitalXi'an Jiaotong UniversityXi'anPR China
| | - Xinyue Tan
- Department of OncologyThe First Affiliated HospitalXi'an Jiaotong UniversityXi'anPR China
| | - Lina Xie
- Department of OncologyThe First Affiliated HospitalXi'an Jiaotong UniversityXi'anPR China
| | - Yutiantian Lei
- Department of OncologyThe First Affiliated HospitalXi'an Jiaotong UniversityXi'anPR China
| | - Mengjiao Cai
- Department of OncologyThe First Affiliated HospitalXi'an Jiaotong UniversityXi'anPR China
| | - Chenchen He
- Department of OncologyThe First Affiliated HospitalXi'an Jiaotong UniversityXi'anPR China
| | - Jinlu Ma
- Department of OncologyThe First Affiliated HospitalXi'an Jiaotong UniversityXi'anPR China
| | - Suxia Han
- Department of OncologyThe First Affiliated HospitalXi'an Jiaotong UniversityXi'anPR China
| |
Collapse
|
7
|
Cho SJ, Ryu JH, Surh YJ. Ajoene, a Major Organosulfide Found in Crushed Garlic, Induces NAD(P)H:quinone Oxidoreductase Expression Through Nuclear Factor E2-related Factor-2 Activation in Human Breast Epithelial Cells. J Cancer Prev 2019; 24:112-122. [PMID: 31360690 PMCID: PMC6619855 DOI: 10.15430/jcp.2019.24.2.112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 01/06/2023] Open
Abstract
Background NAD(P)H:quinone oxidoreductase-1 (NQO1) is a widely-distributed flavin adenine dinucleotide-dependent flavoprotein that promotes obligatory 2-electron reductions of quinones, quinoneimines, nitroaromatics, and azo dyes. This reduces quinone levels and thereby minimizes generation of excess reactive oxygen species (ROS) formed by redox cycling, and concurrent depletion of intracellular thiol pools. Ajoene is derived from crushed garlic. It is formed by a reaction involving two allicin molecules, and is composed of allyl sulfide and vinyl disulfide. Ajoene is present in two isomers, E- and Z-form. Methods Expression of antioxidant enzymes and nuclear factor E2-related factor-2 (Nrf2) was measured by Western blot analysis. NQO1 promoter activity was assessed by the luciferase reporter gene assay. ROS accumulation was monitored by using the fluorescence-generating probe 2',7'-dichlorofluorescein diacetate. The intracellular glutathione levels were measured by using a commercially available kit. Results Z-ajoene significantly up-regulated the expression of representative antioxidant enzyme NQO1 in non-tumorigenic breast epithelial MCF-10A cells at non-toxic concentrations. Z-ajoene enhanced up-regulation and nuclear translocation of Nrf2, which plays a pivotal role in the induction of many genes encoding antioxidant enzymes and other cytoprotective proteins. Z-ajoene treatment also increased the activity of nqo1-promoter harboring antioxidant response element consensus sequences in MCF-10A cells. Silencing of Nrf2 by small interfering RNA abrogated ajoene-induced expression of NQO1. Z-ajoene activated extracellular signal-regulated kinase (ERK). Inhibition of ERK activation by U0126 abrogated ability of Z-ajoene to activate Nrf2 and to induce NQO1 expression. Intracellular ROS accumulation was observed after treatment with Z-ajoene, whereas the E-isoform was not effective. The inhibition of ROS by treatment with N-acetylcysteine, a radical scavenger, abrogated Z-ajoene-induced expression of NQO1 as well as activation of ERK and Nrf2, suggesting that Z-ajoene augments the Nrf2-dependent antioxidant defense via ROS generation and ERK activation. Conclusions Z-ajoene induces NQO1 expression in MCF-10A cells through ROS-mediated activation of Nrf2.
Collapse
Affiliation(s)
- Seung-Ju Cho
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Jae-Ha Ryu
- College of Pharmacy, Sookmyung Women's University, Seoul, Korea
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul, Korea.,Cancer Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
8
|
Dayalan Naidu S, Suzuki T, Yamamoto M, Fahey JW, Dinkova‐Kostova AT. Phenethyl Isothiocyanate, a Dual Activator of Transcription Factors NRF2 and HSF1. Mol Nutr Food Res 2018; 62:e1700908. [PMID: 29710398 PMCID: PMC6175120 DOI: 10.1002/mnfr.201700908] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/30/2018] [Indexed: 12/19/2022]
Abstract
Cruciferous vegetables are rich sources of glucosinolates which are the biogenic precursor molecules of isothiocyanates (ITCs). The relationship between the consumption of cruciferous vegetables and chemoprotection has been widely documented in epidemiological studies. Phenethyl isothiocyanate (PEITC) occurs as its glucosinolate precursor gluconasturtiin in the cruciferous vegetable watercress (Nasturtium officinale). PEITC has multiple biological effects, including activation of cytoprotective pathways, such as those mediated by the transcription factor nuclear factor erythroid 2 p45-related factor 2 (NRF2) and the transcription factor heat shock factor 1 (HSF1), and can cause changes in the epigenome. However, at high concentrations, PEITC leads to accumulation of reactive oxygen species and cytoskeletal changes, resulting in cytotoxicity. Underlying these activities is the sulfhydryl reactivity of PEITC with cysteine residues in its protein targets. This chemical reactivity highlights the critical importance of the dose of PEITC for achieving on-target selectivity, which should be carefully considered in the design of future clinical trials.
Collapse
Affiliation(s)
- Sharadha Dayalan Naidu
- Cullman Chemoprotection CenterJohns Hopkins UniversityBaltimoreMD21205USA
- Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Takafumi Suzuki
- Department of Medical BiochemistryTohoku University Graduate School of MedicineSendai980‐8575Japan
| | - Masayuki Yamamoto
- Department of Medical BiochemistryTohoku University Graduate School of MedicineSendai980‐8575Japan
| | - Jed W. Fahey
- Cullman Chemoprotection CenterJohns Hopkins UniversityBaltimoreMD21205USA
- Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreMD21205USA
- Department of MedicineDivision of Clinical PharmacologyJohns Hopkins University School of MedicineBaltimoreMD21205USA
- Department of International HealthCenter for Human NutritionJohns Hopkins University Bloomberg School of Public HealthBaltimoreMD21205USA
| | - Albena T. Dinkova‐Kostova
- Cullman Chemoprotection CenterJohns Hopkins UniversityBaltimoreMD21205USA
- Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreMD21205USA
- Department of MedicineDivision of Clinical PharmacologyJohns Hopkins University School of MedicineBaltimoreMD21205USA
- Jacqui Wood Cancer CentreDivision of Cancer ResearchSchool of MedicineUniversity of DundeeDundeeDD1 9SYScotlandUK
| |
Collapse
|
9
|
Arumugam A, Abdull Razis AF. Apoptosis as a Mechanism of the Cancer Chemopreventive Activity of Glucosinolates: a Review. Asian Pac J Cancer Prev 2018; 19:1439-1448. [PMID: 29936713 PMCID: PMC6103590 DOI: 10.22034/apjcp.2018.19.6.1439] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 05/29/2018] [Indexed: 01/27/2023] Open
Abstract
Cruciferous vegetables are a rich source of glucosinolates that have established anti-carcinogenic activity. Naturally-occurring glucosinolates and their derivative isothiocyanates (ITCs), generated as a result of their enzymatic degradation catalysed by myrosinase, have been linked to low cancer incidence in epidemiological studies, and in animal models isothiocyanates suppressed chemically-induced tumorigenesis. The prospective effect of isothiocyanates as anti-carcinogenic agent has been much explored as cytotoxic against wide array of cancer cell lines and being explored for the development of new anticancer drugs. However, the mechanisms of isothiocyanates in inducing apoptosis against tumor cell lines are still largely disregarded. A number of mechanisms are believed to be involved in the glucosinolate-induced suppression of carcinogenesis, including the induction of apoptosis, biotransformation of xenobiotic metabolism, oxidative stress, alteration of caspase activity, angiogenesis, histone deacytylation and cell cycle arrest. The molecular mechanisms through which isothiocyanates stimulate apoptosis in cancer cell lines have not so far been clearly defined. This review summarizes the underlying mechanisms through which isothiocyanates modify the apoptotic pathway leading to cell death.
Collapse
Affiliation(s)
- Asvinidevi Arumugam
- Laboratory of UPM-MAKNA Cancer Research, Institute of Bioscience, University Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| | | |
Collapse
|
10
|
Novel phyto-derivative BRM270 inhibits hepatocellular carcinoma cells proliferation by inducing G2/M phase cell cycle arrest and apoptosis in xenograft mice model. Biomed Pharmacother 2017; 87:741-754. [DOI: 10.1016/j.biopha.2017.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/19/2016] [Accepted: 01/01/2017] [Indexed: 01/06/2023] Open
|
11
|
Kasukabe T, Honma Y, Okabe-Kado J, Higuchi Y, Kato N, Kumakura S. Combined treatment with cotylenin A and phenethyl isothiocyanate induces strong antitumor activity mainly through the induction of ferroptotic cell death in human pancreatic cancer cells. Oncol Rep 2016; 36:968-76. [PMID: 27375275 DOI: 10.3892/or.2016.4867] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/02/2016] [Indexed: 01/30/2023] Open
Abstract
The treatment of pancreatic cancer, one of the most aggressive gastrointestinal tract malignancies, with current chemotherapeutic drugs has had limited success due to its chemoresistance and poor prognosis. Therefore, the development of new drugs or effective combination therapies is urgently needed. Cotylenin A (CN-A) (a plant growth regulator) is a potent inducer of differentiation in myeloid leukemia cells and exhibits potent antitumor activities in several cancer cell lines. In the present study, we demonstrated that CN-A and phenethyl isothiocyanate (PEITC), an inducer of reactive oxygen species (ROS) and a dietary anticarcinogenic compound, synergistically inhibited the proliferation of MIAPaCa-2, PANC-1 and gemcitabine-resistant PANC-1 cells. A combined treatment with CN-A and PEITC also effectively inhibited the anchorage-independent growth of these cancer cells. The combined treatment with CN-A and PEITC strongly induced cell death within 1 day at concentrations at which CN-A or PEITC alone did not affect cell viability. A combined treatment with synthetic CN-A derivatives (ISIR-005 and ISIR-042) or fusicoccin J (CN-A-related natural product) and PEITC did not have synergistic effects on cell death. The combined treatment with CN-A and PEITC synergistically induced the generation of ROS. Antioxidants (N-acetylcysteine and trolox), ferroptosis inhibitors (ferrostatin-1 and liproxstatin), and the lysosomal iron chelator deferoxamine canceled the synergistic cell death. Apoptosis inhibitors (Z-VAD-FMK and Q-VD-OPH) and the necrosis inhibitor necrostatin-1s did not inhibit synergistic cell death. Autophagy inhibitors (3-metyladenine and chloroquine) partially prevented cell death. These results show that synergistic cell death induced by the combined treatment with CN-A and PEITC is mainly due to the induction of ferroptosis. Therefore, the combination of CN-A and PEITC has potential as a novel therapeutic strategy against pancreatic cancer.
Collapse
Affiliation(s)
- Takashi Kasukabe
- Department of Medical Education and Research, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan
| | - Yoshio Honma
- Cancer Center, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan
| | - Junko Okabe-Kado
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama 362-0806, Japan
| | - Yusuke Higuchi
- The Institute of Scientific and Industrial Research, Osaka University, Osaka 567-0047, Japan
| | - Nobuo Kato
- The Institute of Scientific and Industrial Research, Osaka University, Osaka 567-0047, Japan
| | - Shunichi Kumakura
- Department of Medical Education and Research, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan
| |
Collapse
|
12
|
Rajan TS, De Nicola GR, Iori R, Rollin P, Bramanti P, Mazzon E. Anticancer activity of glucomoringin isothiocyanate in human malignant astrocytoma cells. Fitoterapia 2016; 110:1-7. [PMID: 26882972 DOI: 10.1016/j.fitote.2016.02.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 01/05/2023]
Abstract
Isothiocyanates (ITCs) released from their glucosinolate precursors have been shown to inhibit tumorigenesis and they have received significant attention as potential chemotherapeutic agents against cancer. Astrocytoma grade IV is the most frequent and most malignant primary brain tumor in adults without any curative treatment. New therapeutic drugs are therefore urgently required. In the present study, we investigated the in vitro antitumor activity of the glycosylated isothiocyanate moringin [4-(α-l-rhamnopyranosyloxy)benzyl isothiocyanate] produced from quantitative myrosinase-induced hydrolysis of glucomoringin (GMG) under neutral pH value. We have evaluated the potency of moringin on apoptosis induction and cell death in human astrocytoma grade IV CCF-STTG1 cells. Moringin showed to be effective in inducing apoptosis through p53 and Bax activation and Bcl-2 inhibition. In addition, oxidative stress related Nrf2 transcription factor and its upstream regulator CK2 alpha expressions were modulated at higher doses, which indicated the involvement of oxidative stress-mediated apoptosis induced by moringin. Moreover, significant reduction in 5S rRNA was noticed with moringin treatment. Our in vitro results demonstrated the antitumor efficacy of moringin derived from myrosinase-hydrolysis of GMG in human malignant astrocytoma cells.
Collapse
Affiliation(s)
- Thangavelu Soundara Rajan
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, contrada Casazza, 98124 Messina, Italy
| | - Gina Rosalinda De Nicola
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di Ricerca per le Colture Industriali (CREA-CIN), Via Di Corticella 133, Bologna 40128, Italy
| | - Renato Iori
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di Ricerca per le Colture Industriali (CREA-CIN), Via Di Corticella 133, Bologna 40128, Italy
| | - Patrick Rollin
- Université d'Orléans et CNRS, ICOA, UMR 7311, BP 6759, F-45067 Orléans, France
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, contrada Casazza, 98124 Messina, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, contrada Casazza, 98124 Messina, Italy.
| |
Collapse
|
13
|
La Colla A, Boland R, Vasconsuelo A. 17β-Estradiol Abrogates Apoptosis Inhibiting PKCδ, JNK, and p66Shc Activation in C2C12 Cells. J Cell Biochem 2016; 116:1454-65. [PMID: 25649128 DOI: 10.1002/jcb.25107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/26/2015] [Indexed: 12/17/2022]
Abstract
17β-Estradiol (E2) protects several non-reproductive tissues from apoptosis, including skeletal muscle. Previously, we showed that E2 at physiological concentrations prevented apoptosis induced by H2O2 in skeletal myoblasts. As we have also demonstrated a clear beneficial action of this hormone on skeletal muscle mitochondria, the present work further characterizes the signaling mechanisms modulated by E2 that are involved in mitochondria protection, which ultimately result in antiapoptosis. Here, we report that E2 through estrogen receptors (ERs) inhibited the H2O2-induced PKCδ and JNK activation, which results in the inhibition of phosphorylation and translocation to mitochondria of the adaptor protein p66Shc. In conjunction, the inhibition by the hormone of this H2O2-triggered signaling pathway results in protection of mitochondrial potential membrane. Our results provide basis for a putative mechanism by which E2 exerts beneficial effects on mitochondria, against oxidative stress, in skeletal muscle cells.
Collapse
|
14
|
Yeh CC, Ko HH, Hsieh YP, Wu KJ, Kuo MYP, Deng YT. Phenethyl isothiocyanate enhances TRAIL-induced apoptosis in oral cancer cells and xenografts. Clin Oral Investig 2016; 20:2343-2352. [DOI: 10.1007/s00784-016-1736-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 01/21/2016] [Indexed: 11/29/2022]
|
15
|
Qi S, Kou X, Lv J, Qi Z, Yan L. Ampelopsin induces apoptosis in HepG2 human hepatoma cell line through extrinsic and intrinsic pathways: Involvement of P38 and ERK. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:847-854. [PMID: 26476886 DOI: 10.1016/j.etap.2015.09.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 09/21/2015] [Accepted: 09/26/2015] [Indexed: 06/05/2023]
Abstract
Our results showed that ampelopsin significantly inhibited cell viability of hepatoma HepG2 cells using MTT assay. We further investigated the mechanism of anticancer activity by ampelopsin, it showed that ampelopsin induced apoptosis of HepG2 cells using DAPI assay and flow cytometry, which was confirmed by activation of PARP. Next, activation of the caspase cascades were demonstrated, including caspase-8, -9 and -3. We also found that ampelopsin increased the levels of death receptor 4 (DR4), death receptor 5 (DR5) and decreased the expression of Bcl-2 protein, which led to an increase of the Bax/Bcl-2 ratio. Meanwhile, the release of cytochrome c from mitochondria was observed. Ampelopsin decreased the levels of iNOS and COX-2 but had no impact on the level of reactive oxygen species (ROS). In addition, ampelopsin activated ERK1/2 and P38, but little JNK1/2 activation was detected. Further investigation showed that suppression of P38 activation by SB203580 increased the cell viability and also prevented cleavage of caspase-3 and PARP, inhibition of ERK1/2 with U0126 had the opposite action. In conclusion, our results indicated that ampelopsin mainly elicited apoptosis through extrinsic and intrinsic pathway and that ERK1/2 and P38 had opponent effects on the apoptosis.
Collapse
Affiliation(s)
- Shimei Qi
- Department of Biochemistry, Wannan Medical College, Wuhu 241002, China.
| | - Xianjuan Kou
- Health Science of College, Wuhan Institute of Physical Education, Wuhan 430000, China
| | - Jun Lv
- Department of Biochemistry, Wannan Medical College, Wuhu 241002, China
| | - Zhilin Qi
- Department of Biochemistry, Wannan Medical College, Wuhu 241002, China
| | - Liang Yan
- Department of Biochemistry, Wannan Medical College, Wuhu 241002, China
| |
Collapse
|
16
|
Abstract
Cancer results from aberrant signaling pathways that result in uncontrolled cellular proliferation. The epidemiological studies have shown a strong inverse correlation between dietary consumption of cruciferous vegetables and incidences of cancer. Isothiocyanates (ITCs) are present in cruciferous vegetables like broccoli, cabbage, watercress, etc. and are identified as the major active constituents. Several mechanistic studies have demonstrated chemopreventive and chemotherapeutic activity of ITCs against various tumor types. ITCs exert anticancer activity by suppressing various critical hallmarks of cancer like cellular proliferation, angiogenesis, apoptosis, metastasis, etc., in vitro as well as in preclinical animal model. ITCs also generate reactive oxygen species to induce apoptosis in cancer cells. Due to promising preclinical results, few ITCs have also advanced to clinical trials. This chapter provides a candid review on the chemopreventive and chemotherapeutic activity of various major ITCs.
Collapse
Affiliation(s)
- Neel M Fofaria
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, Texas, USA
| | - Alok Ranjan
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, Texas, USA
| | - Sung-Hoon Kim
- Cancer Preventive Material Development Research Center, College of Korean Medicine, Department of Pathology, Kyung Hee University, Seoul, South Korea.
| | - Sanjay K Srivastava
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, Texas, USA; Cancer Preventive Material Development Research Center, College of Korean Medicine, Department of Pathology, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
17
|
Isothiocyanates: a class of bioactive metabolites with chemopreventive potential. Tumour Biol 2015; 36:4005-16. [DOI: 10.1007/s13277-015-3391-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/25/2015] [Indexed: 12/21/2022] Open
|
18
|
Gupta P, Wright SE, Kim SH, Srivastava SK. Phenethyl isothiocyanate: a comprehensive review of anti-cancer mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1846:405-424. [PMID: 25152445 PMCID: PMC4260992 DOI: 10.1016/j.bbcan.2014.08.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 08/11/2014] [Accepted: 08/13/2014] [Indexed: 01/22/2023]
Abstract
The epidemiological evidence suggests a strong inverse relationship between dietary intake of cruciferous vegetables and the incidence of cancer. Among other constituents of cruciferous vegetables, isothiocyanates (ITC) are the main bioactive chemicals present. Phenethyl isothiocyanate (PEITC) is present as gluconasturtiin in many cruciferous vegetables with remarkable anti-cancer effects. PEITC is known to not only prevent the initiation phase of carcinogenesis process but also to inhibit the progression of tumorigenesis. PEITC targets multiple proteins to suppress various cancer-promoting mechanisms such as cell proliferation, progression and metastasis. Pre-clinical evidence suggests that combination of PEITC with conventional anti-cancer agents is also highly effective in improving overall efficacy. Based on accumulating evidence, PEITC appears to be a promising agent for cancer therapy and is already under clinical trials for leukemia and lung cancer. This is the first review which provides a comprehensive analysis of known targets and mechanisms along with a critical evaluation of PEITC as a future anti-cancer agent.
Collapse
Affiliation(s)
- Parul Gupta
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Stephen E Wright
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Department of Internal Medicine, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Sung-Hoon Kim
- Cancer Preventive Material Development Research Center, College of Korean Medicine, Department of Pathology, Kyunghee University, 1 Hoegi-dong, Dongdaemun-ku, Seoul 131-701, South Korea.
| | - Sanjay K Srivastava
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Cancer Preventive Material Development Research Center, College of Korean Medicine, Department of Pathology, Kyunghee University, 1 Hoegi-dong, Dongdaemun-ku, Seoul 131-701, South Korea.
| |
Collapse
|
19
|
Nuclear factor-kappaB sensitizes to benzyl isothiocyanate-induced antiproliferation in p53-deficient colorectal cancer cells. Cell Death Dis 2014; 5:e1534. [PMID: 25412312 PMCID: PMC4260753 DOI: 10.1038/cddis.2014.495] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 11/29/2022]
Abstract
Benzyl isothiocyanate (BITC), a dietary isothiocyanate derived from cruciferous vegetables, inhibits the proliferation of colorectal cancer cells, most of which overexpress β-catenin as a result of mutations in the genes for adenomatous polyposis coli or mutations in β-catenin itself. Because nuclear factor-κB (NF-κB) is a plausible target of BITC signaling in inflammatory cell models, we hypothesized that it is also involved in BITC-inhibited proliferation of colorectal cancer cells. siRNA-mediated knockdown of the NF-κB p65 subunit significantly decreased the BITC sensitivity of human colorectal cancer HT-29 cells with mutated p53 tumor suppressor protein. Treating HT-29 cells with BITC induced the phosphorylation of IκB kinase, IκB-α and p65, the degradation of IκB-α, the translocation of p65 to the nucleus and the upregulation of NF-κB transcriptional activity. BITC also decreased β-catenin binding to a positive cis element of the cyclin D1 promoter and thus inhibited β-catenin-dependent cyclin D1 transcription, possibly through a direct interaction between p65 and β-catenin. siRNA-mediated knockdown of p65 confirmed that p65 negatively affects cyclin D1 expression. On the other hand, when human colorectal cancer HCT-116 cells with wild-type p53 were treated with BITC, translocation of p65 to the nucleus was inhibited rather than enhanced. p53 knockout increased the BITC sensitivity of HCT-116 cells in a p65-dependent manner, suggesting that p53 negatively regulates p65-dependent effects. Together, these results identify BITC as a novel type of antiproliferative agent that regulates the NF-κB pathway in p53-deficient colorectal cancer cells.
Collapse
|
20
|
Kasi RAP, Moi CS, Kien YW, Yian KR, Chin NW, Yen NK, Ponnudurai G, Fong SH. Para-phenylenediamine-induces apoptosis via a pathway dependent on PTK-Ras-Raf-JNK activation but independent of the PI3K/Akt pathway in NRK-52E cells. Mol Med Rep 2014; 11:2262-8. [PMID: 25411820 DOI: 10.3892/mmr.2014.2979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 08/08/2014] [Indexed: 11/06/2022] Open
Abstract
para‑Phenylenediamine (p‑PD) is a potential carcinogen, and widely used in marketed hair dye formulations. In the present study, the role of the protein tyrosine kinase (PTK)/Ras/Raf/c‑Jun N‑terminal kinase (JNK) and phosphoinositide 3‑kinase (PI3k)/protein kinase B (Akt) pathways on the growth of NRK‑52E cells was investigated. The results demonstrated that p‑PD reduced cell viability in a dose‑dependent manner. The cell death due to apoptosis was confirmed by cell cycle analysis and an Annexin‑V‑fluorescein isothiocyanate binding assay. Subsequent to staining with 2',7'‑dichlorofluorescin diacetate, the treated cells demonstrated a significant increase in reactive oxygen species (ROS) generation compared with the controls. The effects of p‑PD on the signalling pathways were analysed by western blotting. p‑PD‑treated cells exhibited an upregulated phospho‑stress‑activated protein kinase/JNK protein expression level and downregulated Ras and Raf protein expression levels; however, Akt, Bcl‑2, Bcl‑XL and Bad protein expression levels were not significantly altered compared with the control. In conclusion, p‑PD induced apoptosis by a PTK/Ras/Raf/JNK‑dependent pathway and was independent of the PI3K/Akt pathway in NRK‑52E cells.
Collapse
Affiliation(s)
- Reena A P Kasi
- Department of Human Biology, Cells and Molecules, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Chye Soi Moi
- Department of Human Biology, Cells and Molecules, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Yip Wai Kien
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Koh Rhun Yian
- Department of Human Biology, Cells and Molecules, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Ng Wei Chin
- Department of Human Biology, Cells and Molecules, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Ng Khuen Yen
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Sunway Campus, Bandar Sunway, Selangor 47500, Malaysia
| | - Gnanajothy Ponnudurai
- Department of Human Biology, Cells and Molecules, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Seow Heng Fong
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| |
Collapse
|
21
|
Zhang X, Wang J, Qian W, Zhao J, Sun L, Qian Y, Xiao H. Dexmedetomidine inhibits inducible nitric oxide synthase in lipopolysaccharide-stimulated microglia by suppression of extracellular signal-regulated kinase. Neurol Res 2014; 37:238-45. [DOI: 10.1179/1743132814y.0000000426] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
22
|
Zhang X, Wang J, Qian W, Zhao J, Sun L, Qian Y, Xiao H. Dexmedetomidine inhibits tumor necrosis factor-alpha and interleukin 6 in lipopolysaccharide-stimulated astrocytes by suppression of c-Jun N-terminal kinases. Inflammation 2014; 37:942-9. [PMID: 24429914 DOI: 10.1007/s10753-014-9814-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Astrocytes play an important role in immune regulation in the central nervous system (CNS). Dexmedetomidine (DEX) has been reported to exert anti-inflammatory effects on astrocytes stimulated by lipopolysaccharide (LPS) both in vitro and in vivo studies. However, the underlying molecular mechanisms remain poorly understood. This study was designed to evaluate the effects of DEX on tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6) gene expressions in LPS-challenged astrocytes. Moreover, c-Jun N-terminal kinases (JNKs) and p38 mitogen-activated protein kinase (MAPK) pathways in LPS-challenged astrocytes were also investigated. In the present study, astrocytes were stimulated with LPS in the absence and presence of various concentrations of DEX. With real-time PCR assay, we found that LPS significantly increased expressions of TNF-α and IL-6 in mRNA level; however, these effects could be attenuated by DEX. Furthermore, JNK pathway might be involved in LPS-induced astrocyte activation because JNK phosphorylation was significantly increased, and the inhibition of this pathway mediated by DEX as well as SP600125 (JNK inhibitor) decreased TNF-α and IL-6 expressions. Moreover, p38 MAPK was also activated by LPS; however, this pathway seemed to have not participated in DEX-mediated LPS-induced inflammation. These results, taken together, suggest that JNK rather than p38 MAPK signal pathway, provides the potential target for the therapeutic effects of DEX for neuronal inflammatory reactions.
Collapse
Affiliation(s)
- Xiaobao Zhang
- Department of Toxicology, School of Public Health, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Gupta P, Kim B, Kim SH, Srivastava SK. Molecular targets of isothiocyanates in cancer: recent advances. Mol Nutr Food Res 2014; 58:1685-707. [PMID: 24510468 DOI: 10.1002/mnfr.201300684] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 12/16/2013] [Accepted: 12/17/2013] [Indexed: 12/14/2022]
Abstract
Cancer is a multistep process resulting in uncontrolled cell division. It results from aberrant signaling pathways that lead to uninhibited cell division and growth. Various recent epidemiological studies have indicated that consumption of cruciferous vegetables, such as garden cress, broccoli, etc., reduces the risk of cancer. Isothiocyanates (ITCs) have been identified as major active constituents of cruciferous vegetables. ITCs occur in plants as glucosinolate and can readily be derived by hydrolysis. Numerous mechanistic studies have demonstrated the anticancer effects of ITCs in various cancer types. ITCs suppress tumor growth by generating reactive oxygen species or by inducing cycle arrest leading to apoptosis. Based on the exciting outcomes of preclinical studies, few ITCs have advanced to the clinical phase. Available data from preclinical as well as available clinical studies suggest ITCs to be one of the promising anticancer agents available from natural sources. This is an up-to-date exhaustive review on the preventive and therapeutic effects of ITCs in cancer.
Collapse
Affiliation(s)
- Parul Gupta
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | | | | | | |
Collapse
|
24
|
Li M, Xu X, Lu F, Guo S. Primaryin vitroandin vivoevaluation of norcantharidin-chitosan/poly (vinyl alcohol) for cancer treatment. Drug Deliv 2013; 21:293-301. [DOI: 10.3109/10717544.2013.840692] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
25
|
Nguyen NM, Gonda S, Vasas G. A Review on the Phytochemical Composition and Potential Medicinal Uses of Horseradish (Armoracia rusticana) Root. FOOD REVIEWS INTERNATIONAL 2013. [DOI: 10.1080/87559129.2013.790047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Irwin ME, Rivera-Del Valle N, Chandra J. Redox control of leukemia: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2013; 18:1349-83. [PMID: 22900756 PMCID: PMC3584825 DOI: 10.1089/ars.2011.4258] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Reactive oxygen species (ROS) play both positive and negative roles in the proliferation and survival of a cell. This dual nature has been exploited by leukemia cells to promote growth, survival, and genomic instability-some of the hallmarks of the cancer phenotype. In addition to altered ROS levels, many antioxidants are dysregulated in leukemia cells. Together, the production of ROS and the expression and activity of antioxidant enzymes make up the primary redox control of leukemia cells. By manipulating this system, leukemia cells gain proliferative and survival advantages, even in the face of therapeutic insults. Standard treatment options have improved leukemia patient survival rates in recent years, although relapse and the development of resistance are persistent challenges. Therapies targeting the redox environment show promise for these cases. This review highlights the molecular mechanisms that control the redox milieu of leukemia cells. In particular, ROS production by the mitochondrial electron transport chain, NADPH oxidase, xanthine oxidoreductase, and cytochrome P450 will be addressed. Expression and activation of antioxidant enzymes such as superoxide dismutase, catalase, heme oxygenase, glutathione, thioredoxin, and peroxiredoxin are perturbed in leukemia cells, and the functional consequences of these molecular alterations will be described. Lastly, we delve into how these pathways can be potentially exploited therapeutically to improve treatment regimens and promote better outcomes for leukemia patients.
Collapse
Affiliation(s)
- Mary E Irwin
- Department of Pediatrics Research, Children's Cancer Hospital, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | |
Collapse
|
27
|
Abstract
Selenium is an essential trace element for humans and other animals that is required in very small amounts for proper growth and functioning. Several selenium compounds have shown promise as cancer chemopreventive and chemotherapeutic agents. However, the negative outcome of the SELECT trial to some extent dampened the enthusiasm of selenium-related drug development. A look at the selenium compounds, their diverse mechanism of action, bioavailability and efficacy based on chemical structure, however, suggests that failure of SELECT that used selenomethionine supplement to prevent prostate cancer was not a failure of selenium compounds as a whole. This is certainly true in regard to therapeutic applications of selenium compounds. This article puts these arguments in perspective, and based on the literature reports, especially several newly developed selenium compounds, emphasizes the importance of selenium in the development of chemopreventive and particularly chemotherapeutic drugs for cancer in near future.
Collapse
|
28
|
Collins-Burow BM, Antoon JW, Frigo DE, Elliott S, Weldon CB, Boue SM, Beckman BS, Curiel TJ, Alam J, McLachlan JA, Burow ME. Antiestrogenic activity of flavonoid phytochemicals mediated via the c-Jun N-terminal protein kinase pathway. Cell-type specific regulation of estrogen receptor alpha. J Steroid Biochem Mol Biol 2012; 132:186-93. [PMID: 22634477 PMCID: PMC4083692 DOI: 10.1016/j.jsbmb.2012.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/12/2012] [Accepted: 05/14/2012] [Indexed: 12/14/2022]
Abstract
Flavonoid phytochemicals act as both agonists and antagonists of the human estrogen receptors (ERs). While a number of these compounds act by directly binding to the ER, certain phytochemicals, such as the flavonoid compounds chalcone and flavone, elicit antagonistic effects on estrogen signaling independent of direct receptor binding. Here we demonstrate both chalcone and flavone function as cell type-specific selective ER modulators. In MCF-7 breast carcinoma cells chalcone and flavone suppress ERα activity through stimulation of the stress-activated members of the mitogen-activated protein kinase (MAPK) family: c-Jun N-terminal kinase (JNK)1 and JNK2. The use of dominant-negative mutants of JNK1 or JNK2 in stable transfected cells established that the antiestrogenic effects of chalcone and flavone required intact JNK signaling. We further show that constitutive activation of the JNK pathway partially suppresses estrogen (E2)-mediated gene expression in breast, but not endometrial carcinoma cells. Our results demonstrate a role for stress-activated MAPKs in the cell type-specific regulation of ERα function.
Collapse
Affiliation(s)
- Bridgette M. Collins-Burow
- Tulane University Medical Center, New Orleans, Louisiana 70112
- Center for Bioenvironmental Research at Tulane and Xavier Universities, New Orleans, Louisiana 70112
- Department of Medicine, Section of Hematology & Medical Oncology, New Orleans, Louisiana 70112
| | - James W. Antoon
- Tulane University Medical Center, New Orleans, Louisiana 70112
- Department of Medicine, Section of Hematology & Medical Oncology, New Orleans, Louisiana 70112
- Department of Pharmacology, New Orleans, Louisiana 70112
| | - Daniel E. Frigo
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX
| | - Steven Elliott
- Tulane University Medical Center, New Orleans, Louisiana 70112
- Department of Medicine, Section of Hematology & Medical Oncology, New Orleans, Louisiana 70112
| | - Christopher B. Weldon
- Tulane University Medical Center, New Orleans, Louisiana 70112
- Department of Medicine, Section of Hematology & Medical Oncology, New Orleans, Louisiana 70112
| | - Stephen M. Boue
- U. S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA 70179
| | - Barbara S. Beckman
- Center for Bioenvironmental Research at Tulane and Xavier Universities, New Orleans, Louisiana 70112
- Department of Medicine, Section of Hematology & Medical Oncology, New Orleans, Louisiana 70112
| | - Tyler J. Curiel
- Cancer Therapy & Research Center, University of Texas Health Science Center, San Antonio
| | - Jawed Alam
- Alton Ochsner Medical Foundation, Department of Molecular Genetics, New Orleans, Louisiana 70121
| | - John A. McLachlan
- Tulane University Medical Center, New Orleans, Louisiana 70112
- Center for Bioenvironmental Research at Tulane and Xavier Universities, New Orleans, Louisiana 70112
| | - Matthew E. Burow
- Tulane University Medical Center, New Orleans, Louisiana 70112
- Center for Bioenvironmental Research at Tulane and Xavier Universities, New Orleans, Louisiana 70112
- Department of Medicine, Section of Hematology & Medical Oncology, New Orleans, Louisiana 70112
- To whom correspondence and requests for reprints should be addressed: Matthew E. Burow, Tulane University Health Sciences Center, Department of Medicine, Section of Hematology & Medical Oncology, 1430 Tulane Ave. SL-78, New Orleans, LA 70112, Phone: 504-988-6688, Fax: 504-988-5483,
| |
Collapse
|
29
|
Benzyl isothiocyanate disturbs lipid metabolism in rats in a way independent of its thyroid impact following in vivo long-term treatment and in vitro adipocytes studies. J Physiol Biochem 2012; 69:75-84. [DOI: 10.1007/s13105-012-0189-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 06/06/2012] [Indexed: 01/05/2023]
|
30
|
Abstract
SIGNIFICANCE An abundance of experimental evidence suggests that hydrogen sulfide (H(2)S) plays a prominent role in physiology and pathophysiology. Many targets exist for H(2)S therapy. The molecular targets of H(2)S include proteins, enzymes, transcription factors, and membrane ion channels. RECENT ADVANCES Novel H(2)S precursors are being synthesized and discovered that are capable of releasing H(2)S in a slow and sustained manner. This presents a novel and advantageous approach to H(2)S therapy for treatment of chronic conditions associated with a decline in endogenous H(2)S, such as diabetes and cardiovascular disease. CRITICAL ISSUES While H(2)S is cytoprotective at physiological concentrations, it is not universally cytoprotective, as it appears to have pro-apoptotic actions in cancer cells and is well known to be toxic at supraphysiological concentrations. Many of the pleiotropic effects of H(2)S on health are associated with the inhibition of inflammation and upregulation of prosurvival pathways. The powerful anti-inflammatory, cytoprotective, immunomodulating, and trophic effects of H(2)S on the vast majority of normal cells seem to be mediated mainly by its actions as an extremely versatile direct and indirect antioxidant and free radical scavenger. While the overall effects of H(2)S on transformed (i.e., malignant) cells can be characterized as pro-oxidant and pro-apoptotic, they contrast sharply with the cytoprotective effects on most normal cells. FUTURE DIRECTIONS H(2)S has become a molecule of great interest, and several slow-releasing H(2)S prodrugs are currently under development. We believe that additional agents regulating H(2)S bioavailability will be developed during the next 10 years.
Collapse
Affiliation(s)
- Benjamin Lee Predmore
- Department of Surgery-Cardiothoracic Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | |
Collapse
|
31
|
Hahm ER, Singh SV. Bim contributes to phenethyl isothiocyanate-induced apoptosis in breast cancer cells. Mol Carcinog 2012; 51:465-74. [PMID: 21739479 PMCID: PMC3193881 DOI: 10.1002/mc.20811] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 04/29/2011] [Accepted: 05/12/2011] [Indexed: 11/09/2022]
Abstract
Phenethyl isothiocyanate (PEITC) is a highly promising cancer chemopreventive constituent of cruciferous vegetables (e.g., watercress) with in vivo efficacy in experimental rodent cancer models. Research thus far implicates apoptosis induction in cancer chemopreventive response to PEITC, but the mechanism of proapoptotic effect is not fully understood. The present study demonstrates that p53 upregulated modulator of apoptosis (PUMA)-independent apoptosis by PEITC is mediated by B-cell lymphoma 2 interacting mediator of cell death (Bim). Exposure of a cell line (BRI-JM04) derived from spontaneously developing mammary tumor of a MMTV-neu transgenic mouse to pharmacological concentrations of PEITC resulted in decreased cell viability coupled with apoptosis induction, characterized by release of histone-associated DNA fragments into the cytosol and cleavage of poly-(ADP-ribose)-polymerase and procaspase-3. The PEITC-induced apoptosis in BRI-JM04 cells was associated with up-regulation of Bak, PUMA, and Bim (long and short forms of Bim), increased S65 phosphorylation of BimEL (extra-long form), and down-regulation of Bcl-xL and Bcl-2. On the other hand, a non-tumorigenic human mammary epithelial cell line (MCF-10A) was significantly more resistant to PEITC-induced apoptosis compared with BRI-JM04 despite induction of Bax and PUMA due to concomitant overexpression of anti-apoptotic proteins, including Bcl-xL, Bcl-2, and Mcl-1. Wild-type HCT-116 cells and its isogenic PUMA knockout variant exhibited comparable sensitivity to PEITC-induced apoptosis. On the other hand, small interfering RNA knockdown of Bim protein imparted partial but statistically significant protection against PEITC-induced apoptosis in BRI-JM04, MCF-7, and MDA-MB-231 cells. In conclusion, the present study provides novel insight into the mechanism of PEITC-induced apoptosis involving Bim.
Collapse
Affiliation(s)
- Eun-Ryeong Hahm
- Department of Pharmacology & Chemical Biology, and University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Shivendra V. Singh
- Department of Pharmacology & Chemical Biology, and University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
32
|
Li H, Tian ML, Yu G, Liu YC, Wang X, Zhang J, Ji SQ, Zhu J, Wan YL, Tang JQ. Hyperthermia synergizes with tissue factor knockdown to suppress the growth and hepatic metastasis of colorectal cancer in orthotopic tumor model. J Surg Oncol 2012; 106:689-95. [PMID: 22532129 DOI: 10.1002/jso.23136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 04/02/2012] [Indexed: 12/29/2022]
Abstract
BACKGROUND Tissue factor (TF) is a significant risk factor for tumor growth and hepatic metastasis in patients with colorectal cancer (CRC). This study aimed to investigate whether hyperthermia has synergistic anti-tumor effects with TF knockdown in suppressing CRC progression and metastasis in vitro and in vivo. METHODS Human colorectal cancer LOVO cells were treated by hyperthermia at 44°C for 2 hr or/and TF siRNA. Then the cells were subjected to colony formation assay. Apoptosis was analyzed by flow cytometry, confocal microscopy, and transmission electron microscopy. The cell migration and invasion abilities were analyzed by wound healing and matrigel assay. In addition, orthotopic nude mice model of CRC was established. RESULTS Hyperthermia synergized with TF knockdown to reduce colony formation ability, induce apoptosis, and suppress the migration and invasion of LOVO cells in vitro. Moreover, hyperthermia in combination with TF depletion inhibited the growth and hepatic metastasis of CRC in orthotopic nude mice model. Mechanistically, the synergistic effects were at least partly mediated by inducing JNK mediated apoptosis and suppressing matrix metalloproteinases (MMPs) mediated invasion. CONCLUSIONS Hyperthermia in combination with TF-targeted therapy could be a potential approach for CRC treatment.
Collapse
Affiliation(s)
- Hui Li
- Department of General Surgery, First Hospital of Peking University, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Li ZY, Wang Y, Shen WT, Zhou P. Content determination of benzyl glucosinolate and anti–cancer activity of its hydrolysis product in Carica papaya L. ASIAN PAC J TROP MED 2012; 5:231-3. [DOI: 10.1016/s1995-7645(12)60030-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 12/15/2011] [Accepted: 01/15/2012] [Indexed: 11/30/2022] Open
|
34
|
|
35
|
Mi L, Hood BL, Stewart NA, Xiao Z, Govind S, Wang X, Conrads TP, Veenstra TD, Chung FL. Identification of potential protein targets of isothiocyanates by proteomics. Chem Res Toxicol 2011; 24:1735-43. [PMID: 21838287 PMCID: PMC3493163 DOI: 10.1021/tx2002806] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Isothiocyanates (ITCs), such as phenethyl isothiocyanate (PEITC) and sulforaphane (SFN), are effective cancer chemopreventive compounds. It is believed that the major mechanism for the cancer preventive activity of ITCs is through the induction of cell cycle arrest and apoptosis. However, the upstream molecular targets of ITCs have been underexplored until recently. To identify proteins that are covalently modified by ITCs, human non-small cell lung cancer A549 cells were treated with (14)C-PEITC and (14)C-SFN, and the cell lysates were extracted for analysis by 2-D gel electrophoresis and mass spectrometry. After superimposing the colloidal Coomassie blue protein staining pattern with the pattern of radioactivity obtained from X-ray films, it was clear that only a small fraction of cellular proteins contained radioactivity, presumably resulting from selective binding with PEITC or SFN via thiocarbamation. More than 30 proteins with a variety of biological functions were identified with high confidence. Here, we report the identities of these potential ITC target proteins and discuss their biological relevance. The discovery of the protein targets may facilitate studies of the mechanisms by which ITCs exert their cancer preventive activity and provide the molecular basis for designing more efficacious ITC compounds.
Collapse
Affiliation(s)
- Lixin Mi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057
| | - Brian L. Hood
- Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick Inc, NCI-Frederick, Frederick, Maryland 21702
| | - Nicolas A. Stewart
- Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick Inc, NCI-Frederick, Frederick, Maryland 21702
| | - Zhen Xiao
- Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick Inc, NCI-Frederick, Frederick, Maryland 21702
| | - Sudha Govind
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057
| | - Xiantao Wang
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057
| | - Thomas P. Conrads
- Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick Inc, NCI-Frederick, Frederick, Maryland 21702
| | - Timothy D. Veenstra
- Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick Inc, NCI-Frederick, Frederick, Maryland 21702
| | - Fung-Lung Chung
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057
| |
Collapse
|
36
|
Krishnegowda G, Prakasha Gowda AS, Tagaram HRS, Carroll KFSO, Irby RB, Sharma AK, Amin S. Synthesis and biological evaluation of a novel class of isatin analogs as dual inhibitors of tubulin polymerization and Akt pathway. Bioorg Med Chem 2011; 19:6006-14. [PMID: 21920762 PMCID: PMC3235409 DOI: 10.1016/j.bmc.2011.08.044] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 08/15/2011] [Accepted: 08/20/2011] [Indexed: 11/17/2022]
Abstract
A novel series of 5,7-dibromoisatin analogs were synthesized and evaluated for their cytotoxicities against four human cancer cell lines including colon HT29, breast MCF-7, lung A549 and melanoma UACC903. Analogs 6, 11 and 13 displayed good in vitro anticancer activity on the HT29 human colon cancer cell line in the 1 μM range. Analogs 5, 9 and 12, containing a selenocyanate group in the alkyl chain were the most promising compounds on the breast cancer MCF-7 cell line. Biological assays relating to apoptosis were performed to understand the mechanism of action of these analogs. Compounds 5 and 6 were found to inhibit tubulin polymerization to the same extent as the anticancer drug vinblastine sulfate, but compounds 11 and 13 inhibited significantly better than vinblastine. Further western blot analysis suggested that compound 6 at 2 μM reduced both levels and phosphorylation state of Akt. Compounds 11 and 13 at 1 μM caused reduced Akt protein levels and strongly suppressed the phosphorylation of Akt. Therefore, 11 and 13 were demonstrated as efficient dual inhibitors of both tubulin polymerization and the Akt pathway and good candidates for further study. More importantly, the strategy of microtubule and Akt dual inhibitors might be a promising direction for developing novel drugs for cancer.
Collapse
Affiliation(s)
- Gowdahalli Krishnegowda
- Department of Pharmacology, Penn State Hershey College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Huong LD, Shim JH, Choi KH, Shin JA, Choi ES, Kim HS, Lee SJ, Kim SJ, Cho NP, Cho SD. Effect of β-phenylethyl isothiocyanate from cruciferous vegetables on growth inhibition and apoptosis of cervical cancer cells through the induction of death receptors 4 and 5. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:8124-8131. [PMID: 21702500 DOI: 10.1021/jf2006358] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Cruciferous vegetables have been shown to have the possibility to protect against multistep carcinogenesis. β-Phenylethyl isothiocyanate (PEITC) is one component of these vegetables demonstrated to help fight many types of cancer. The present study examined the apoptotic effects of PEITC and its molecular mechanism in human cervical cancer cell lines (HEp-2 and KB). PEITC induced apoptosis to inhibit cell proliferation. According to the protein chip assay, PEITC increased the expression of the death receptors (DR4 and DR5) and cleaved caspase-3 compared to the DMSO treatment group. PEITC also induced caspase-8 and truncated BID. PEITC down-regulated the phosphorylation of extracellular-related kinase (ERK)1/2, whereas neither phospho-c-Jun NH(2)-terminal kinases (JNK) nor phospho-p38 MAPK was changed. The role of ERK in PEITC-induced apoptosis was also investigated using MEK inhibitor (PD98059). PD98059 increased the expression of DR4 and DR5, activated caspase-3, and cleaved PARP. In addition, PEITC decreased the phosphorylation of MEK. Therefore, the apoptotic mechanism of PEITC in cervical cancer cells involves the induction of DR4 and DR5 through the inactivation of ERK and MEK.
Collapse
Affiliation(s)
- Le Diem Huong
- Department of Oral Pathology, School of Dentistry, Institute of Oral Bioscience, Brain Korea 21, Chonbuk National University, Jeonju, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Sk UH, Prakasha Gowda A, Crampsie MA, Yun JK, Spratt TE, Amin S, Sharma AK. Development of novel naphthalimide derivatives and their evaluation as potential melanoma therapeutics. Eur J Med Chem 2011; 46:3331-8. [DOI: 10.1016/j.ejmech.2011.04.058] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 04/21/2011] [Accepted: 04/26/2011] [Indexed: 12/11/2022]
|
39
|
Wang X, Govind S, Sajankila SP, Mi L, Roy R, Chung FL. Phenethyl isothiocyanate sensitizes human cervical cancer cells to apoptosis induced by cisplatin. Mol Nutr Food Res 2011; 55:1572-81. [PMID: 21595016 DOI: 10.1002/mnfr.201000560] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 02/11/2011] [Accepted: 03/10/2011] [Indexed: 01/16/2023]
Abstract
SCOPE Naturally-occurring chemopreventive agent phenethyl isothiocyanate (PEITC), derived primarily from watercress, has been shown to inhibit cell growth and induce apoptosis in cancer cells. In this study, we examined the potential of PEITC in enhancing cisplatin-induced apoptosis in cervical cancer cells and its mechanisms. METHODS AND RESULTS HeLa cells were exposed to PEITC, cisplatin or both. Pretreatment of cells with PEITC strongly enhanced cisplatin-induced cytotoxicity. PEITC activated the mitogen-activated protein kinases, including c-Jun N-terminal kinase (JNK), extracellular signal-related kinase (ERK), and p38. Caspase-3 activity assay demonstrated that the synergistic induction of apoptosis was significantly attenuated by MEK1/2 inhibitor U0126, but not by JNK or p38 inhibitor, suggesting that ERK activation is responsible for the synergistic effect. We found that NF-κB signaling pathway is not involved in the synergistic effect. Sulforaphane and benzyl isothiocyanate, two other members of the isothiocyanate family, also sensitize HeLa cells to apoptosis induced by cisplatin. Furthermore, we found that the synergistic effect was also observed in cervical cancer C33A and breast cancer MCF-7 cells but not in normal mammary epithelial MCF-10A cells. Finally, we demonstrated that Noxa induction was associated with apoptosis induced by PEITC plus cisplatin. CONCLUSION Taken together, this study shows that PEITC can sensitize cancer cells to apoptosis induced by cisplatin and this effect is mediated through ERK activation, suggesting the potential of PEITC to be used as an adjuvant with cisplatin in combination therapeutic treatments.
Collapse
Affiliation(s)
- Xiantao Wang
- Lombardi Comprehensive Cancer Center, Georgetown University, 3800Reservoir Road NW, Washington, DC 20057, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Phenethyl isothiocyanate exhibits antileukemic activity in vitro and in vivo by inactivation of Akt and activation of JNK pathways. Cell Death Dis 2011; 2:e140. [PMID: 21472003 PMCID: PMC3122055 DOI: 10.1038/cddis.2011.22] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Effects of phenethyl isothiocyanate (PEITC) have been investigated in human leukemia cells (U937, Jurkat, and HL-60) as well as in primary human acute myeloid leukemia (AML) cells in relation to apoptosis and cell signaling events. Exposure of cells to PEITC resulted in pronounced increase in the activation of caspase-3, -8, -9, cleavage/degradation of PARP, and apoptosis in dose- and time-dependent manners. These events were accompanied by the caspase-independent downregulation of Mcl-1, inactivation of Akt, as well as activation of Jun N-terminal kinase (JNK). Inhibition of PI3K/Akt by LY294002 significantly enhanced PEITC-induced apoptosis. Conversely, enforced activation of Akt by a constitutively active Akt construct markedly abrogated PEITC-mediated JNK activation, Mcl-1 downregulation, caspase activation, and apoptosis, and also interruption of the JNK pathway by pharmacological or genetically (e.g., siRNA) attenuated PEITC-induced apoptosis. Finally, administration of PEITC markedly inhibited tumor growth and induced apoptosis in U937 xenograft model in association with inactivation of Akt, activation of JNK, as well as downregulation of Mcl-1. Taken together, these findings represent a novel mechanism by which agents targeting Akt/JNK/Mcl-1 pathway potentiate PEITC lethality in transformed and primary human leukemia cells and inhibitory activity of tumor growth of U937 xenograft model.
Collapse
|
41
|
Dietary phenethyl isothiocyanate alters gene expression in human breast cancer cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2010; 2011. [PMID: 20953429 PMCID: PMC2952307 DOI: 10.1155/2011/462525] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 11/05/2009] [Accepted: 08/31/2010] [Indexed: 11/18/2022]
Abstract
Phenethyl isothiocyanate (PEITC), a component in cruciferous vegetables, can block chemical carcinogenesis in animal models. Our objective was to determine the effect of treatment with PEITC on gene expression changes in MCF-7 human breast cancer cells in order to evaluate potential mechanisms involved in its chemopreventive effects. MCF-7 cells were treated for 48 hours with either PEITC (3 μM) or the vehicle. Total RNA was extracted from cell membrane preparations, and labeled cDNA's representing the mRNA pool were reverse-transcribed directly from total RNA isolated for use in the microarray hybridizations. Two specific human GE Array Kits (Superarray Inc.) that both contain 23 marker genes, related to signal transduction pathways or cancer/tumor suppression, plus 2 housekeeping genes (β-actin and GAPDH), were utilized. Arrays from treated and control cells (n = 4 per group) were evaluated using a Student's t-test. Gene expression was significantly induced for tumor protein p53 (p53), cyclin-dependent kinase inhibitor 1C (p57 Kip2), breast cancer Type 2 early onset (BRCA2), cAMP responsive element binding protein 2 (ATF-2), interleukin 2 (IL-2), heat shock 27 KD protein (hsp27), and CYP19 (aromatase). Induction of p57 Kip2, p53, BRCA2, IL-2, and ATF-2 would be expected to decrease cellular proliferation and increase tumor suppression and/or apoptosis. PEITC treatment produced significant alterations in some genes involved in tumor suppression and cellular proliferation/apoptosis that may be important in explaining the chemopreventive effects of PEITC.
Collapse
|
42
|
Alcala MA, Park K, Yoo J, Lee DH, Park BH, Lee BC, Bartlett DL, Lee YJ. Effect of hyperthermia in combination with TRAIL on the JNK-Bim signal transduction pathway and growth of xenograft tumors. J Cell Biochem 2010; 110:1073-81. [PMID: 20544795 PMCID: PMC2967443 DOI: 10.1002/jcb.22619] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Approximately 25% of patients with colorectal cancer develop metastases to the liver, and surgery is currently the best treatment available. But there are several patients who are unresectable, and isolated hepatic perfusion (IHP) offers a different approach in helping to treat these patients. IHP is a method used for isolating the liver and delivering high doses of chemotherapeutic agents. The efficacy of IHP has been improved by combining hyperthermia not only with chemotherapeutics but with other deliverable agents such as tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). In this study, we used human colorectal cancer CX-1 cells and treated them with hyperthermia and TRAIL, causing cytotoxicity. We were able to demonstrate that the numbers of live cells were significantly reduced with hyperthermia and 10 ng/ml of TRAIL combined. We also showed that the effect of hyperthermia on TRAIL in our studies was enhancement of the apoptotic pathway by the promotion of JNK and Bim(EL) activity as well as PARP cleavage. We have also used our CX-1 cells to generate tumors in Balb/c nude mice. With intratumoral injections of TRAIL combined with hyperthermia at 42 degrees C, we were able to show a delayed onset of tumor growth in our xenograft model.
Collapse
Affiliation(s)
- Marco A. Alcala
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Kyungsoo Park
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Jinsang Yoo
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Dae-Hee Lee
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Bae-hang Park
- Department of Hematology & Oncology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Byeong-Chel Lee
- Department of Hematology & Oncology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - David L. Bartlett
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Yong J. Lee
- Department of Pharmacology & Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
43
|
Negrín G, Eiroa JL, Morales M, Triana J, Quintana J, Estévez F. Naturally occurring asteriscunolide A induces apoptosis and activation of mitogen-activated protein kinase pathway in human tumor cell lines. Mol Carcinog 2010; 49:488-99. [PMID: 20232365 DOI: 10.1002/mc.20629] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Sesquiterpene lactones have attracted much attention because they display a wide range of biological activities, including antitumor properties. Here, we show the effects of the naturally occurring sesquiterpene lactone asteriscunolide A (AS) on viability of human melanoma, leukemia and cells that overexpress antiapoptotic proteins, namely Bcl-2 and Bcl-x(L). All cell lines were sensitive to this compound, with IC(50) values of approximately 5 microM. The cytotoxic effects of AS were accompanied by a G(2)-M phase arrest of the cell cycle and a concentration- and time-dependent appearance of apoptosis as determined by DNA fragmentation, translocation of phosphatidylserine to the cell surface and sub-G(1) ratio. Apoptosis was associated with caspase-3 activity and poly(ADP-ribose) polymerase cleavage and was prevented by the nonspecific caspase inhibitor z-VAD-fmk, indicating that caspases are essential components in this pathway. The apoptotic effect of AS was also associated with (i) the release of cytochrome c from mitochondria which was accompanied by dissipation of the mitochondrial membrane potential (Delta Psi(m)) and (ii) the activation of the mitogen-activated protein kinases (MAPKs) pathway. AS-induced cell death was potentiated by inhibition of extracellular signal-regulated kinases (ERK) 1/2 signaling with U0126 and PD98059. Intracellular reactive oxygen species (ROS) seem to play a pivotal role in this process since high levels of ROS were produced early (1 h) and apoptosis was completely blocked by the free radical scavenger N-acetyl-L-cysteine (NAC). The present study demonstrates that AS-induced cell death is mediated by an intrinsic-dependent apoptotic event involving mitochondria and MAPKs, and through a mechanism dependent on ROS generation.
Collapse
Affiliation(s)
- Gledy Negrín
- Department of Biochemistry and Molecular Biology, Instituto Canario de Investigación del Cáncer (ICIC), University of Las Palmas de Gran Canaria, Plaza Dr. Pasteur s/n, Las Palmas de Gran Canaria, Spain
| | | | | | | | | | | |
Collapse
|
44
|
Zhang Y, Zhou L, Bao YL, Wu Y, Yu CL, Huang YX, Sun Y, Zheng LH, Li YX. Butyrate induces cell apoptosis through activation of JNK MAP kinase pathway in human colon cancer RKO cells. Chem Biol Interact 2010; 185:174-81. [PMID: 20346929 DOI: 10.1016/j.cbi.2010.03.035] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 03/17/2010] [Accepted: 03/18/2010] [Indexed: 02/07/2023]
Abstract
Butyrate has been shown to display anti-cancer activity through the induction of apoptosis in various cancer cells. However, the underlying mechanism involved in butyrate-induced apoptosis is still not fully understood. Here, we investigated the cytotoxicity mechanism of butyrate in human colon cancer RKO cells. The results showed that butyrate induced a strong growth inhibitory effect against RKO cells. Butyrate also effectively induced apoptosis in RKO cells, which was characterized by DNA fragmentation, nuclear staining of DAPI, and the activation of caspase-9 and caspase-3. The expression of anti-apoptotic protein Bcl-2 decreased, whereas the apoptotic protein Bax increased in a dose-dependent manner during butyrate-induced apoptosis. Moreover, treatment of RKO cells with butyrate induced a sustained activation of the phosphorylation of c-jun N-terminal kinase (JNK) in a dose- and time-dependent manner, and the pharmacological inhibition of JNK MAPK by SP600125 significantly abolished the butyrate-induced apoptosis in RKO cells. These results suggest that butyrate acts on RKO cells via the JNK but not the p38 pathway. Butyrate triggered the caspase apoptotic pathway, indicated by an enhanced Bax-to-Bcl-2 expression ratio and caspase cascade reaction, which was blocked by SP600125. Taken together, our data indicate that butyrate induces apoptosis through JNK MAPK activation in colon cancer RKO cells.
Collapse
Affiliation(s)
- Yu Zhang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130024, China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Salah-Abbès JB, Abbès S, Abdel-Wahhab MA, Oueslati R. In-vitro free radical scavenging, antiproliferative and anti-zearalenone cytotoxic effects of 4-(methylthio)-3-butenyl isothiocyanate from Tunisian Raphanus sativus. J Pharm Pharmacol 2010; 62:231-239. [PMID: 20487203 DOI: 10.1211/jpp.62.02.0011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the antiradical and antioxidant properties of 4-(methylthio)-3-butenyl isothiocyanate (MTBITC) extracted from Raphanus sativus and to assess the effects of MTBITC on tumour cell growth, cytotoxicity induced by zearalenone, an oestrogenic mycotoxin, and modulation of the expression of the genes involved in these aspects of cell behaviour. METHODS A murine leukaemia cell line (L1210) was grown in vitro and supplemented with MTBITC (2, 4, 8, 16 and 32 microm) for 48 h. Cell growth was evaluated by the MTT assay. The chemopreventive role of MTBITC on the cytotoxic effect of zearalenone in a Balb/c mice keratinocyte cell line (C5-O) was also evaluated. Apoptosis and lipid peroxidation were assessed, as well as the expression of genes involved following zearalenone treatment alone or in combination with MTBITC. KEY FINDINGS MTBITC showed a significant ability to inhibit nitroblue tetrazolium reduction by superoxide radicals in a non-enzymatic superoxide generating system, to scavenge free radicals and to cause a decrease in L1210 cell growth. The C5-O cells treated with zearalenone alone showed a high frequency of apoptotic cells and lipid peroxidation, typical of oxidative stress generated by zearalenone. The cotreatment with MTBITC reduced the cytotoxicity of zearalenone and the subsequent gene expression analysis demonstrated that MTBITC decreased the expression of caspase 8, implicated in the physiological mechanism to eliminate injured or abnormal cells. CONCLUSIONS The results suggest that MTBITC was able to inhibit L1210 cell growth and counteract the zearalenone oxidative stress to C5-O cells through caspase 8 inhibition of apoptosis.
Collapse
Affiliation(s)
- Jalila Ben Salah-Abbès
- Laboratory of Immunology, Environmental Microbiology and Cancerology, Faculty of Sciences Bizerte, Zarzouna, Tunisia.
| | | | | | | |
Collapse
|
46
|
Telang U, Ji Y, Morris ME. ABC transporters and isothiocyanates: potential for pharmacokinetic diet-drug interactions. Biopharm Drug Dispos 2010; 30:335-44. [PMID: 19623673 DOI: 10.1002/bdd.668] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Isothiocyanates, a class of anti-cancer agents, are derived from cruciferous vegetables such as broccoli, cabbage and watercress, and have demonstrated chemopreventive activity in a number of cancer models and epidemiologic studies. Due to public interest in cancer prevention and alternative therapies in cancer, the consumption of herbal supplements and vegetables containing these compounds is widespread and increasing. Isothiocyanates interact with ATP-binding cassette (ABC) efflux transporters such as P-glycoprotein, MRP1, MRP2 and BCRP, and may influence the pharmacokinetics of substrates of these transporters. This review discusses the pharmacokinetic properties of isothiocyanates, their interactions with ABC transporters, and presents some data describing the potential for isothiocyanate-mediated diet-drug interactions.
Collapse
Affiliation(s)
- Urvi Telang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Amherst, NY 14260-1200, USA
| | | | | |
Collapse
|
47
|
Rubio S, Quintana J, Eiroa JL, Triana J, Estévez F. Betuletol 3-methyl ether induces G2-M phase arrest and activates the sphingomyelin and MAPK pathways in human leukemia cells. Mol Carcinog 2009; 49:32-43. [DOI: 10.1002/mc.20574] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
48
|
Harada H, Sugimoto R, Watanabe A, Taketani S, Okada K, Warabi E, Siow R, Itoh K, Yamamoto M, Harada H, Sugimoto R, Watanabe A, Taketani S, Okada K, Warabi E, Siow R, Itoh K, Yamamoto M, Ishii T. Differential roles for Nrf2 and AP-1 in upregulation of HO-1 expression by arsenite in murine embryonic fibroblasts. Free Radic Res 2009; 42:297-304. [DOI: 10.1080/10715760801975735] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
49
|
Gong A, He M, Vanaja DK, Yin P, Young CYF. Phenethyl isothiocyanate inhibits STAT3 activation in prostate cancer cells. Mol Nutr Food Res 2009; 53:878-86. [PMID: 19437484 PMCID: PMC3964815 DOI: 10.1002/mnfr.200800253] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This study was undertaken to investigate the mechanism by which phenethyl isothiocyanate (PEITC), a natural compound from cruciferous vegetables, exhibits antitumor effect on prostate cancer cells. Cell proliferation, cell cycle, Western blot, gene transfer, and reporter assays were used to test the effects of PEITC on the growth and IL6/JAK/STAT3 pathway in prostate cancer. The result showed that PEITC significantly inhibited DU145 cell proliferation in a dose-dependent manner and induced the cell arrest at G2-M phase. PEITC inhibited both constitutive and IL-6-induced STAT3 activity in DU145 cells. IL-6-stimulated phosphorylation of JAK2, an STAT3 upstream kinase, was also attenuated by PEITC. Moreover, an antioxidant reagent, N-acetyl-L-cysteine (NAC) which suppresses reactive oxygen species (ROS) generation, reversed the early inhibitory effects of PEITC on cell proliferation, constitutive or IL-6-mediated JAK-STAT3 phosphorylation in PCa cells. Taken together, our data demonstrated that PEITC can inhibit the activation of the JAK-STAT3 signal-cascade in prostate cancer cells and the underlying mechanism may be partially involved with blocking cellular ROS production during the early stage of the signaling activation by IL-6.
Collapse
Affiliation(s)
- Aiyu Gong
- Department of Urology, and Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN 55905 USA
| | - Meilan He
- Department of Urology, and Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN 55905 USA
| | - Donkena Krishna Vanaja
- Department of Urology, and Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN 55905 USA
| | - Ping Yin
- Department of Urology, and Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN 55905 USA
| | - Charles Y. F. Young
- Department of Urology, and Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN 55905 USA
| |
Collapse
|
50
|
Isothiocyanates sensitize the effect of chemotherapeutic drugs via modulation of protein kinase C and telomerase in cervical cancer cells. Mol Cell Biochem 2009; 330:9-22. [DOI: 10.1007/s11010-009-0095-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Accepted: 03/30/2009] [Indexed: 10/20/2022]
|