1
|
de Jonge WJ, Brok M, Lijnzaad P, Kemmeren P, Holstege FCP. Genome-wide off-rates reveal how DNA binding dynamics shape transcription factor function. Mol Syst Biol 2020; 16:e9885. [PMID: 33280256 PMCID: PMC7586999 DOI: 10.15252/msb.20209885] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/06/2020] [Accepted: 09/10/2020] [Indexed: 11/25/2022] Open
Abstract
Protein-DNA interactions are dynamic, and these dynamics are an important aspect of chromatin-associated processes such as transcription or replication. Due to a lack of methods to study on- and off-rates across entire genomes, protein-DNA interaction dynamics have not been studied extensively. Here, we determine in vivo off-rates for the Saccharomyces cerevisiae chromatin organizing factor Abf1, at 191 sites simultaneously across the yeast genome. Average Abf1 residence times span a wide range, varying between 4.2 and 33 min. Sites with different off-rates are associated with different functional characteristics. This includes their transcriptional dependency on Abf1, nucleosome positioning and the size of the nucleosome-free region, as well as the ability to roadblock RNA polymerase II for termination. The results show how off-rates contribute to transcription factor function and that DIVORSEQ (Determining In Vivo Off-Rates by SEQuencing) is a meaningful way of investigating protein-DNA binding dynamics genome-wide.
Collapse
Affiliation(s)
- Wim J de Jonge
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | - Mariël Brok
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | - Philip Lijnzaad
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | - Patrick Kemmeren
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | | |
Collapse
|
2
|
Fermi B, Bosio MC, Dieci G. Promoter architecture and transcriptional regulation of Abf1-dependent ribosomal protein genes in Saccharomyces cerevisiae. Nucleic Acids Res 2016; 44:6113-26. [PMID: 27016735 PMCID: PMC5291244 DOI: 10.1093/nar/gkw194] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 03/15/2016] [Indexed: 01/18/2023] Open
Abstract
In Saccharomyces cerevisiae, ribosomal protein gene (RPG) promoters display binding sites for either Rap1 or Abf1 transcription factors. Unlike Rap1-associated promoters, the small cohort of Abf1-dependent RPGs (Abf1-RPGs) has not been extensively investigated. We show that RPL3, RPL4B, RPP1A, RPS22B and RPS28A/B share a common promoter architecture, with an Abf1 site upstream of a conserved element matching the sequence recognized by Fhl1, a transcription factor which together with Ifh1 orchestrates Rap1-associated RPG regulation. Abf1 and Fhl1 promoter association was confirmed by ChIP and/or gel retardation assays. Mutational analysis revealed a more severe requirement of Abf1 than Fhl1 binding sites for RPG transcription. In the case of RPS22B an unusual Tbf1 binding site promoted both RPS22B and intron-hosted SNR44 expression. Abf1-RPG down-regulation upon TOR pathway inhibition was much attenuated at defective mutant promoters unable to bind Abf1. TORC1 inactivation caused the expected reduction of Ifh1 occupancy at RPS22B and RPL3 promoters, but unexpectedly it entailed largely increased Abf1 association with Abf1-RPG promoters. We present evidence that Abf1 recruitment upon nutritional stress, also observed for representative ribosome biogenesis genes, favours RPG transcriptional rescue upon nutrient replenishment, thus pointing to nutrient-regulated Abf1 dynamics at promoters as a novel mechanism in ribosome biogenesis control.
Collapse
Affiliation(s)
- Beatrice Fermi
- Dipartimento di Bioscienze, Università degli Studi di Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| | - Maria Cristina Bosio
- Dipartimento di Bioscienze, Università degli Studi di Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| | - Giorgio Dieci
- Dipartimento di Bioscienze, Università degli Studi di Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| |
Collapse
|
3
|
Abstract
Previous studies have described a transcriptional "memory effect," whereby transcript levels of many Abf1-regulated genes in the budding yeast Saccharomyces cerevisiae are undiminished even after Abf1 has dissociated from its regulatory sites. Here we provide additional support for this effect and investigate its molecular basis. We show that the effect is observed in a distinct abf1 ts mutant from that used in earlier studies, demonstrating that it is robust, and use chromatin immunoprecipitation to show that Abf1 association is decreased similarly from memory effect and transcriptionally responsive genes at the restrictive temperature. We also demonstrate that the association of TATA-binding protein and Pol II decreases after the loss of Abf1 binding for transcriptionally responsive genes but not for memory effect genes. Examination of genome-wide nucleosome occupancy data reveals that although transcriptionally responsive genes exhibit increased nucleosome occupancy in abf1 ts yeast, the promoter regions of memory effect targets show no change in abf1 ts mutants, maintaining an open chromatin conformation even after Abf1 eviction. This contrasting behavior reflects different inherent propensity for nucleosome formation between the two classes, driven by the presence of A/T-rich sequences upstream of the Abf1 site in memory effect gene promoters. These sequence-based differences show conservation in closely related fungi and also correlate with different gene expression noise, suggesting a physiological basis for greater access to "memory effect" promoter regions. Thus, our results establish a conserved mechanism underlying a transcriptional memory effect whereby sequences surrounding Abf1 binding sequences affect local nucleosome occupancy following loss of Abf1 binding. Furthermore, these findings demonstrate that sequence-based differences in the propensity for nucleosome occupancy can influence the transcriptional response of genes to an altered regulatory signal.
Collapse
|
4
|
Ganapathi M, Palumbo MJ, Ansari SA, He Q, Tsui K, Nislow C, Morse RH. Extensive role of the general regulatory factors, Abf1 and Rap1, in determining genome-wide chromatin structure in budding yeast. Nucleic Acids Res 2010; 39:2032-44. [PMID: 21081559 PMCID: PMC3064788 DOI: 10.1093/nar/gkq1161] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The packaging of eukaryotic DNA into chromatin has profound consequences for gene regulation, as well as for other DNA transactions such as recombination, replication and repair. Understanding how this packaging is determined is consequently a pressing problem in molecular genetics. DNA sequence, chromatin remodelers and transcription factors affect chromatin structure, but the scope of these influences on genome-wide nucleosome occupancy patterns remains uncertain. Here, we use high resolution tiling arrays to examine the contributions of two general regulatory factors, Abf1 and Rap1, to nucleosome occupancy in Saccharomyces cerevisiae. These factors have each been shown to bind to a few hundred promoters, but we find here that thousands of loci show localized regions of altered nucleosome occupancy within 1 h of loss of Abf1 or Rap1 binding, and that altered chromatin structure can occur via binding sites having a wide range of affinities. These results indicate that DNA-binding transcription factors affect chromatin structure, and probably dynamics, throughout the genome to a much greater extent than previously appreciated.
Collapse
Affiliation(s)
- Mythily Ganapathi
- Laboratory of Molecular Genetics, New York State Department of Health, Wadsworth Center, Albany, NY 12201-0509, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Schlecht U, Erb I, Demougin P, Robine N, Borde V, van Nimwegen E, Nicolas A, Primig M. Genome-wide expression profiling, in vivo DNA binding analysis, and probabilistic motif prediction reveal novel Abf1 target genes during fermentation, respiration, and sporulation in yeast. Mol Biol Cell 2008; 19:2193-207. [PMID: 18305101 DOI: 10.1091/mbc.e07-12-1242] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The autonomously replicating sequence binding factor 1 (Abf1) was initially identified as an essential DNA replication factor and later shown to be a component of the regulatory network controlling mitotic and meiotic cell cycle progression in budding yeast. The protein is thought to exert its functions via specific interaction with its target site as part of distinct protein complexes, but its roles during mitotic growth and meiotic development are only partially understood. Here, we report a comprehensive approach aiming at the identification of direct Abf1-target genes expressed during fermentation, respiration, and sporulation. Computational prediction of the protein's target sites was integrated with a genome-wide DNA binding assay in growing and sporulating cells. The resulting data were combined with the output of expression profiling studies using wild-type versus temperature-sensitive alleles. This work identified 434 protein-coding loci as being transcriptionally dependent on Abf1. More than 60% of their putative promoter regions contained a computationally predicted Abf1 binding site and/or were bound by Abf1 in vivo, identifying them as direct targets. The present study revealed numerous loci previously unknown to be under Abf1 control, and it yielded evidence for the protein's variable DNA binding pattern during mitotic growth and meiotic development.
Collapse
Affiliation(s)
- Ulrich Schlecht
- Biozentrum and Swiss Institute of Bioinformatics, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
6
|
A systematic approach to detecting transcription factors in response to environmental stresses. BMC Bioinformatics 2007; 8:473. [PMID: 18067669 PMCID: PMC2257980 DOI: 10.1186/1471-2105-8-473] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2007] [Accepted: 12/08/2007] [Indexed: 11/15/2022] Open
Abstract
Background Eukaryotic cells have developed mechanisms to respond to external environmental or physiological changes (stresses). In order to increase the activities of stress-protection functions in response to an environmental change, the internal cell mechanisms need to induce certain specific gene expression patterns and pathways by changing the expression levels of specific transcription factors (TFs). The conventional methods to find these specific TFs and their interactivities are slow and laborious. In this study, a novel efficient method is proposed to detect the TFs and their interactivities that regulate yeast genes that respond to any specific environment change. Results For each gene expressed in a specific environmental condition, a dynamic regulatory model is constructed in which the coefficients of the model represent the transcriptional activities and interactivities of the corresponding TFs. The proposed method requires only microarray data and information of all TFs that bind to the gene but it has superior resolution than the current methods. Our method not only can find stress-specific TFs but also can predict their regulatory strengths and interactivities. Moreover, TFs can be ranked, so that we can identify the major TFs to a stress. Similarly, it can rank the interactions between TFs and identify the major cooperative TF pairs. In addition, the cross-talks and interactivities among different stress-induced pathways are specified by the proposed scheme to gain much insight into protective mechanisms of yeast under different environmental stresses. Conclusion In this study, we find significant stress-specific and cell cycle-controlled TFs via constructing a transcriptional dynamic model to regulate the expression profiles of genes under different environmental conditions through microarray data. We have applied this TF activity and interactivity detection method to many stress conditions, including hyper- and hypo- osmotic shock, heat shock, hydrogen peroxide and cell cycle, because the available expression time profiles for these conditions are long enough. Especially, we find significant TFs and cooperative TFs responding to environmental changes. Our method may also be applicable to other stresses if the gene expression profiles have been examined for a sufficiently long time.
Collapse
|
7
|
Yarragudi A, Parfrey LW, Morse RH. Genome-wide analysis of transcriptional dependence and probable target sites for Abf1 and Rap1 in Saccharomyces cerevisiae. Nucleic Acids Res 2006; 35:193-202. [PMID: 17158163 PMCID: PMC1802568 DOI: 10.1093/nar/gkl1059] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Abf1 and Rap1 are general regulatory factors (GRFs) that contribute to transcriptional activation of a large number of genes, as well as to replication, silencing and telomere structure in yeast. In spite of their widespread roles in transcription, the scope of their functional targets genome-wide has not been previously determined. Here, we use microarrays to examine the contribution of these essential GRFs to transcription genome-wide, by using ts mutants that dissociate from their binding sites at 37°C. We then combine this data with published ChIP-chip studies and motif analysis to identify probable direct targets for Abf1 and Rap1. We also identify a substantial number of genes likely to bind Rap1 or Abf1, but not affected by loss of GRF binding. Interestingly, the results strongly suggest that Rap1 can contribute to gene activation from farther upstream than can Abf1. Also, consistent with previous work, more genes that bind Abf1 are unaffected by loss of binding than those that bind Rap1. Finally, we show for several such genes that the Abf1 C-terminal region, which contains the putative activation domain, is not needed to confer this peculiar ‘memory effect’ that allows continued transcription after loss of Abf1 binding.
Collapse
Affiliation(s)
- Arunadevi Yarragudi
- Laboratory of Developmental Genetics, Wadsworth Center, New York State Department of HealthAlbany, NY 12201-2002, USA
| | - Laura Wegener Parfrey
- Laboratory of Developmental Genetics, Wadsworth Center, New York State Department of HealthAlbany, NY 12201-2002, USA
| | - Randall H. Morse
- Laboratory of Developmental Genetics, Wadsworth Center, New York State Department of HealthAlbany, NY 12201-2002, USA
- Department of Biomedical Sciences, State University of New York at Albany School of Public HealthAlbany, NY 12201-2002, USA
- To whom correspondence should be addressed. Tel: +1 518 486 3116; Fax: +1 518 474 3181;
| |
Collapse
|
8
|
Yarragudi A, Miyake T, Li R, Morse RH. Comparison of ABF1 and RAP1 in chromatin opening and transactivator potentiation in the budding yeast Saccharomyces cerevisiae. Mol Cell Biol 2004; 24:9152-64. [PMID: 15456886 PMCID: PMC517901 DOI: 10.1128/mcb.24.20.9152-9164.2004] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Autonomously replicating sequence binding factor 1 (ABF1) and repressor/activator protein 1 (RAP1) from budding yeast are multifunctional, site-specific DNA-binding proteins, with roles in gene activation and repression, replication, and telomere structure and function. Previously we have shown that RAP1 can prevent nucleosome positioning in the vicinity of its binding site and have provided evidence that this ability to create a local region of "open" chromatin contributes to RAP1 function at the HIS4 promoter by facilitating binding and activation by GCN4. Here we examine and directly compare to that of RAP1 the ability of ABF1 to create a region of open chromatin near its binding site and to contribute to activated transcription at the HIS4, ADE5,7, and HIS7 promoters. ABF1 behaves similarly to RAP1 in these assays, but it shows some subtle differences from RAP1 in the character of the open chromatin region near its binding site. Furthermore, although the two factors can similarly enhance activated transcription at the promoters tested, RAP1 binding is continuously required for this enhancement, but ABF1 binding is not. These results indicate that ABF1 and RAP1 achieve functional similarity in part via mechanistically distinct pathways.
Collapse
|
9
|
Miyake T, Reese J, Loch CM, Auble DT, Li R. Genome-wide Analysis of ARS (Autonomously Replicating Sequence) Binding Factor 1 (Abf1p)-mediated Transcriptional Regulation in Saccharomyces cerevisiae. J Biol Chem 2004; 279:34865-72. [PMID: 15192094 DOI: 10.1074/jbc.m405156200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Autonomously replicating sequence-binding factor-1 (Abf1p) is an essential sequence-specific transcription factor in Saccharomyces cerevisiae that participates in multiple nuclear events including DNA replication, transcription activation, and gene silencing. Numerous gene-specific analyses have implicated Abf1p in the transcriptional control of genes involved in a diverse range of cellular functions, leading to the notion that Abf1p acts as a global transcriptional regulator. Here we report findings from a genome-wide comparison of the gene expression profiles in the wild-type and abf1-1 temperature-sensitive mutant. The study identifies a total of 86 Abf1p-regulated genes (1.4% of the genome) of which 50 are activated and 36 are repressed by Abf1p. Interestingly, Abf1p binds to its own promoter in vivo and strongly represses its own transcription, suggesting a potential negative regulatory loop in Abf1p-mediated gene regulation. A comparison of our microarray data with the available databases reveals a significant overlap of genes regulated by Abf1p and those by several general transcription factors such as Mot1p and TAFs (TATA-binding protein-associated factors). Different mutant alleles of abf1 affect Abf1p-mediated transcription in a gene-dependent manner. Furthermore, Abf1p in vivo is associated with the promoter region of most Abf1p-activated but not with that of most Abf1p-repressed genes. Taken together, these results strongly suggest distinct underlying mechanisms by which Abf1p regulates gene expression.
Collapse
Affiliation(s)
- Tsuyoshi Miyake
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908-0733, USA
| | | | | | | | | |
Collapse
|
10
|
Yu L, Sabet N, Chambers A, Morse RH. The N-terminal and C-terminal domains of RAP1 are dispensable for chromatin opening and GCN4-mediated HIS4 activation in budding yeast. J Biol Chem 2001; 276:33257-64. [PMID: 11413146 DOI: 10.1074/jbc.m104354200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Repressor activator protein 1 (RAP1) assists GCN4-mediated HIS4 activation by overcoming some repressive aspect of chromatin structure to facilitate GCN4 binding. RAP1 also participates in other nuclear processes, and discrete domains of RAP1 have been shown to have specific properties including DNA binding, DNA bending, transcriptional activation, and silencing and telomere functions. To investigate whether specific domains of RAP1 are required to "open" chromatin and help GCN4 to activate the HIS4 gene, we examined the abilities of different truncated RAP1 proteins to perturb positioned nucleosomes via a nucleosomal RAP1 site in a yeast episome in vivo, and we tested HIS4 activation in yeast strains harboring truncated RAP1 mutants. We found that neither the DNA bending domain nor the putative activation domain of RAP1 is required for its ability to perturb the chromatin structure of a plasmid containing a RAP1 site. Similarly, neither the putative activation domain nor the N-terminal DNA-bending domain was required for GCN4-mediated activation of HIS4. We also used a rap1(ts) mutant to show that continuous occupancy of the HIS4 promoter by RAP1 is required for GCN4-mediated gene activation.
Collapse
Affiliation(s)
- L Yu
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, New York 12201-2002, USA
| | | | | | | |
Collapse
|
11
|
Forsberg H, Ljungdahl PO. Genetic and biochemical analysis of the yeast plasma membrane Ssy1p-Ptr3p-Ssy5p sensor of extracellular amino acids. Mol Cell Biol 2001; 21:814-26. [PMID: 11154269 PMCID: PMC86673 DOI: 10.1128/mcb.21.3.814-826.2001] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ssy1p and Ptr3p are known components of a yeast plasma membrane system that functions to sense the presence of amino acids in the extracellular environment. In response to amino acids, this sensing system initiates metabolic signals that ultimately regulate the functional expression of several amino acid-metabolizing enzymes and transport proteins, including multiple, genetically distinct amino acid permeases. We have found that SSY5 encodes a third component of this amino acid sensing system. Mutations in SSY5 manifest phenotypes that are indistinguishable from those resulting from either single ssy1 and ptr3 mutations or ssy5 ssy1 and ssy5 ptr3 double mutations. Although Ssy5p is predicted to be a soluble protein, it exhibits properties indicating that it is a peripherally associated plasma membrane protein. Each of the three sensor components, Ssy1p, Ptr3p, and Ssy5p, adopts conformations and modifications that are dependent upon the availability of amino acids and on the presence of the other two components. These results suggest that these components function as part of a sensor complex localized to the plasma membrane. Consistent with a sensor complex, the overexpression of SSY1 or the unique N-terminal extension of this amino acid permease homologue inactivates the amino acid sensor in a dominant-negative manner. Each of the components of the Ssy1p-Ptr3p-Ssy5p (SPS) signaling system undergoes rapid physical changes, reflected in altered electrophoretic mobility, when leucine is added to cells grown in media lacking amino acids. Furthermore, the levels of each SPS sensor component present in whole-cell extracts diminish upon leucine addition. The rapid physical alterations and reduced levels of sensor components are consistent with their being downregulated in response to amino acid availability. These results reveal the dynamic nature of the amino acid-initiated signals transduced by the SPS sensor.
Collapse
Affiliation(s)
- H Forsberg
- Ludwig Institute for Cancer Research, S-171 77 Stockholm, Sweden
| | | |
Collapse
|
12
|
Yu L, Morse RH. Chromatin opening and transactivator potentiation by RAP1 in Saccharomyces cerevisiae. Mol Cell Biol 1999; 19:5279-88. [PMID: 10409719 PMCID: PMC84371 DOI: 10.1128/mcb.19.8.5279] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Transcriptional activators function in vivo via binding sites that may be packaged into chromatin. Here we show that whereas the transcriptional activator GAL4 is strongly able to perturb chromatin structure via a nucleosomal binding site in yeast, GCN4 does so poorly. Correspondingly, GCN4 requires assistance from an accessory protein, RAP1, for activation of the HIS4 promoter, whereas GAL4 does not. The requirement for RAP1 for GCN4-mediated HIS4 activation is dictated by the DNA-binding domain of GCN4 and not the activation domain, suggesting that RAP1 assists GCN4 in gaining access to its binding site. Consistent with this, overexpression of GCN4 partially alleviates the requirement for RAP1, whereas HIS4 activation via a weak GAL4 binding site requires RAP1. RAP1 is extremely effective at interfering with positioning of a nucleosome containing its binding site, consistent with a role in opening chromatin at the HIS4 promoter. Furthermore, increasing the spacing between binding sites for RAP1 and GCN4 by 5 or 10 bp does not impair HIS4 activation, indicating that cooperative protein-protein interactions are not involved in transcriptional facilitation by RAP1. We conclude that an important role of RAP1 is to assist activator binding by opening chromatin.
Collapse
Affiliation(s)
- L Yu
- Molecular Genetics Program, Wadsworth Center, New York State Department of Health, and State University of New York School of Public Health, Albany, New York 12201-2002, USA
| | | |
Collapse
|