1
|
Zheng H, Xu Q, Ji D, Yang B, Ji X. CTDP1 and RPB7 stabilize Pol II and permit reinitiation. Nat Commun 2025; 16:2161. [PMID: 40038320 PMCID: PMC11880454 DOI: 10.1038/s41467-025-57513-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 02/25/2025] [Indexed: 03/06/2025] Open
Abstract
The mechanisms governing the termination and subsequent reinitiation of RNA polymerase II (Pol II) remain poorly understood. Here we find that depletion of RPB7 leads to the destabilization of Pol II's largest subunit, RPB1. This destabilization is influenced by the loop regions of RPB7, CDK9, the C-terminal domain (CTD) of RPB1, and its linker region. The stabilization process of RPB1 is regulated by the E3 ubiquitin ligase Cullin 3. Additionally, RPB7 interacts with the phosphatase CTDP1, which is crucial for maintaining RPB1 stability. RPB7 is also vital for the reinitiation of Pol II, engages with RNA processing factors, and is localized to the RNA exit channel of the Pol II complex. The absence of RPB7 compromises RNA processing. We propose that RPB7 recruits CTDP1 to dephosphorylate Pol II, enhancing its stability and facilitating efficient reinitiation, adding an emerging dimension to transcriptional regulation.
Collapse
Affiliation(s)
- Haonan Zheng
- State Key Laboratory of Gene Function and Modulation Research, Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Beijing Advanced Center of RNA Biology (BEACON), School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Qiqin Xu
- State Key Laboratory of Gene Function and Modulation Research, Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Beijing Advanced Center of RNA Biology (BEACON), School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Dexun Ji
- State Key Laboratory of Gene Function and Modulation Research, Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Beijing Advanced Center of RNA Biology (BEACON), School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Boqin Yang
- State Key Laboratory of Gene Function and Modulation Research, Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Beijing Advanced Center of RNA Biology (BEACON), School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xiong Ji
- State Key Laboratory of Gene Function and Modulation Research, Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Beijing Advanced Center of RNA Biology (BEACON), School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
2
|
Mestareehi A, Abu-Farsakh N. Impact of Protein Phosphatase Expressions on the Prognosis of Hepatocellular Carcinoma Patients. ACS OMEGA 2024; 9:10299-10331. [PMID: 38463290 PMCID: PMC10918787 DOI: 10.1021/acsomega.3c07787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 03/12/2024]
Abstract
The study was conducted to unveil the significance of protein phosphatases in the prognosis of hepatocellular carcinoma (HCC) patients and its related molecular biological attributes as well as to discover novel potential biomarkers for therapeutic significance and diagnostic purposes that may benefit clinical practice. Analyzing a data set from 159 HCC patients using high-throughput phosphoproteomics, we examined the dysregulated expression of protein phosphatases. Employing bioinformatic and pathway analyses, we explored differentially expressed genes linked to protein phosphatases. A protein-protein interaction network was constructed using the search tool for the retrieval of interacting genes/proteins database. We quantified a total of 11,547 phosphorylation sites associated with 4043 phosphoproteins from HCC patients. Within this data set, we identified 105 identified phosphorylation sites associated with protein phosphatases; 28 genes were upregulated and 3 were downregulated in HCC. Enriched pathways using Gene Set Enrichment Analysis encompassed oocyte meiosis, proteoglycans in cancer, the oxytocin signaling pathway, the cGMP-PKG signaling pathway, the vascular smooth muscle, and the cAMP signaling pathway. The Kyoto encyclopedia of genes and genomes (KEGG) analysis highlighted pathways like mitogen-activated protein kinase, AMPK, and PI3K-Akt, indicating potential involvement in HCC progression. Notably, the PPI network identified hub genes, emphasizing their interconnections and potential roles in HCC. In our study, we found significantly upregulated levels of CDC25C, PPP1R13L, and PPP1CA, which emerge as promising avenues. This significant expression could serve as potent diagnostic and prognostic markers to enhance the effectiveness of HCC cancer treatment, offering efficiency and accuracy in patient assessment. The findings regarding protein phosphatases reveal their elevated expression in HCC, correlating with unfavorable prognosis. Moreover, the outcomes of gene ontology and KEGG pathway analyses suggest that protein phosphatases may influence liver cancer by engaging diverse targets and pathways, ultimately fostering the progression of HCC. These results underscore the substantial potential of protein phosphatases as key contributors to HCC's development and advancement. This insight holds promise for identifying therapeutic targets and charting research avenues to enhance the comprehension of the intricate molecular mechanisms underpinning HCC.
Collapse
Affiliation(s)
- Aktham Mestareehi
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, Isra University, P.O. Box 22, Amman 11622, Jordan
- Department
of Pharmaceutical Sciences, School of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48201, United States
- School
of Medicine, The Ohio State University, Columbus, Ohio 43202, United States
| | - Noor Abu-Farsakh
- Department
of Gastroenterology and Hepatology, Internal Medicine Department, Jordan University Hospital, Amman 11942, Jordan
| |
Collapse
|
3
|
Tokuoka M, Kobayashi K, Lemaire P, Satou Y. Protein kinases and protein phosphatases encoded in the Ciona robusta genome. Genesis 2022; 60:e23471. [PMID: 35261143 DOI: 10.1002/dvg.23471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 11/06/2022]
Abstract
Protein kinases (PKs) and protein phosphatases (PPs) regulate the phosphorylation of proteins that are involved in a variety of biological processes. To study such biological processes systematically, it is important to know the whole repertoire of PKs and PPs encoded in a genome. In the present study, we surveyed the genome of an ascidian (Ciona robusta or Ciona intestinalis type A) to comprehensively identify the genes that encoded PKs and PPs. Because ascidians belong to the sister group of vertebrates, a comparison of the whole repertoire of PKs and PPs of ascidians with those of vertebrates may help to delineate the complements of these proteins that were present in the last common ancestor of these two groups of animals. Our results show that the repertory of PPs was much more expanded in vertebrates than the repertory of PKs. We also showed that approximately 75% of PKs and PPs were expressed during development from eggs to larvae. Thus, the present study provides catalogs for PKs and PPs encoded in the ascidian genome. These catalogs will be useful for systematic studies of biological processes that involve phosphorylation and for evolutionary studies of the origin of vertebrates.
Collapse
Affiliation(s)
- Miki Tokuoka
- Institut de Biologie du Développement de Marseille (IBDM), CNRS, Aix-Marseille Université, Marseille, France.,Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Kenji Kobayashi
- Institut de Biologie du Développement de Marseille (IBDM), CNRS, Aix-Marseille Université, Marseille, France.,Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Patrick Lemaire
- Institut de Biologie du Développement de Marseille (IBDM), CNRS, Aix-Marseille Université, Marseille, France.,Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), CNRS, Université de Montpellier, Montpellier, France
| | - Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Prieto VA, Namitz KEW, Showalter SA. Transient Electrostatic Interactions between Fcp1 and Rap74 Bias the Conformational Ensemble of the Complex with Minimal Impact on Binding Affinity. J Phys Chem B 2021; 125:10917-10927. [PMID: 34550709 DOI: 10.1021/acs.jpcb.1c05131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Intrinsically disordered protein (IDP) sequences often contain a high proportion of charged residues in conjunction with their high degree of hydrophilicity and solvation. For high net charge IDPs, long-range electrostatic interactions are thought to play a role in modulating the strength or kinetics of protein-protein interactions. In this work, we examined intramolecular interactions mediated by charged regions of a model IDP, the C-terminal tail of the phosphatase Fcp1. Specifically, this work focuses on intermolecular interactions between acidic and basic patches in the primary structure of Fcp1 and their contributions to binding its predominantly basic partner, the winged helix domain of Rap74. We observe both intramolecular and intermolecular interactions through paramagnetic relaxation enhancement (PRE) consistent with oppositely charged regions associating with one another, both in unbound Fcp1 and in the Fcp1-Rap74 complex. Formation of this complex is strongly driven by hydrophobic interactions in the minimal binding motif. Here, we test the hypothesis that charged residues in Fcp1 that flank the binding helix also contribute to the strength of binding. Charge inversion mutations in Fcp1 generally support this hypothesis, while PRE data suggest substitution of observed transient interactions in the unbound ensemble for similarly transient interactions with Rap74 in the complex.
Collapse
Affiliation(s)
- Victor A Prieto
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Kevin E W Namitz
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Scott A Showalter
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.,Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
5
|
Cossa G, Parua PK, Eilers M, Fisher RP. Protein phosphatases in the RNAPII transcription cycle: erasers, sculptors, gatekeepers, and potential drug targets. Genes Dev 2021; 35:658-676. [PMID: 33888562 PMCID: PMC8091971 DOI: 10.1101/gad.348315.121] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this review, Cossa et al. discuss the current knowledge and outstanding questions about phosphatases in the context of the RNAPII transcription cycle. The transcription cycle of RNA polymerase II (RNAPII) is governed at multiple points by opposing actions of cyclin-dependent kinases (CDKs) and protein phosphatases, in a process with similarities to the cell division cycle. While important roles of the kinases have been established, phosphatases have emerged more slowly as key players in transcription, and large gaps remain in understanding of their precise functions and targets. Much of the earlier work focused on the roles and regulation of sui generis and often atypical phosphatases—FCP1, Rtr1/RPAP2, and SSU72—with seemingly dedicated functions in RNAPII transcription. Decisive roles in the transcription cycle have now been uncovered for members of the major phosphoprotein phosphatase (PPP) family, including PP1, PP2A, and PP4—abundant enzymes with pleiotropic roles in cellular signaling pathways. These phosphatases appear to act principally at the transitions between transcription cycle phases, ensuring fine control of elongation and termination. Much is still unknown, however, about the division of labor among the PPP family members, and their possible regulation by or of the transcriptional kinases. CDKs active in transcription have recently drawn attention as potential therapeutic targets in cancer and other diseases, raising the prospect that the phosphatases might also present opportunities for new drug development. Here we review the current knowledge and outstanding questions about phosphatases in the context of the RNAPII transcription cycle.
Collapse
Affiliation(s)
- Giacomo Cossa
- Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Pabitra K Parua
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Martin Eilers
- Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Robert P Fisher
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
6
|
Zheng H, Qi Y, Hu S, Cao X, Xu C, Yin Z, Chen X, Li Y, Liu W, Li J, Wang J, Wei G, Liang K, Chen FX, Xu Y. Identification of Integrator-PP2A complex (INTAC), an RNA polymerase II phosphatase. Science 2020; 370:370/6520/eabb5872. [DOI: 10.1126/science.abb5872] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/09/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Hai Zheng
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
- The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yilun Qi
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Shibin Hu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Xuan Cao
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Congling Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Zhinang Yin
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xizi Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yan Li
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Weida Liu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Jie Li
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Jiawei Wang
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Gang Wei
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kaiwei Liang
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Fei Xavier Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
- The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
- Human Phenome Institute, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
7
|
Rallabandi HR, Ganesan P, Kim YJ. Targeting the C-Terminal Domain Small Phosphatase 1. Life (Basel) 2020; 10:life10050057. [PMID: 32397221 PMCID: PMC7281111 DOI: 10.3390/life10050057] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
The human C-terminal domain small phosphatase 1 (CTDSP1/SCP1) is a protein phosphatase with a conserved catalytic site of DXDXT/V. CTDSP1’s major activity has been identified as dephosphorylation of the 5th Ser residue of the tandem heptad repeat of the RNA polymerase II C-terminal domain (RNAP II CTD). It is also implicated in various pivotal biological activities, such as acting as a driving factor in repressor element 1 (RE-1)-silencing transcription factor (REST) complex, which silences the neuronal genes in non-neuronal cells, G1/S phase transition, and osteoblast differentiation. Recent findings have denoted that negative regulation of CTDSP1 results in suppression of cancer invasion in neuroglioma cells. Several researchers have focused on the development of regulating materials of CTDSP1, due to the significant roles it has in various biological activities. In this review, we focused on this emerging target and explored the biological significance, challenges, and opportunities in targeting CTDSP1 from a drug designing perspective.
Collapse
|
8
|
Kumar P, Tathe P, Chaudhary N, Maddika S. PPM1G forms a PPP-type phosphatase holoenzyme with B56δ that maintains adherens junction integrity. EMBO Rep 2019; 20:e46965. [PMID: 31432583 PMCID: PMC6776900 DOI: 10.15252/embr.201846965] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 07/26/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022] Open
Abstract
Serine/threonine phosphatases achieve substrate diversity by forming distinct holoenzyme complexes in cells. Although the PPP family of serine/threonine phosphatase family members such as PP1 and PP2A are well known to assemble and function as holoenzymes, none of the PPM family members were so far shown to act as holoenzymes. Here, we provide evidence that PPM1G, a member of PPM family of serine/threonine phosphatases, forms a distinct holoenzyme complex with the PP2A regulatory subunit B56δ. B56δ promotes the re-localization of PPM1G to the cytoplasm where the phosphatase can access a discrete set of substrates. Further, we unveil α-catenin, a component of adherens junction, as a new substrate for the PPM1G-B56 phosphatase complex in the cytoplasm. B56δ-PPM1G dephosphorylates α-catenin at serine 641, which is necessary for the appropriate assembly of adherens junctions and the prevention of aberrant cell migration. Collectively, we reveal a new holoenzyme with PPM1G-B56δ as integral components, in which the regulatory subunit provides accessibility to distinct substrates for the phosphatase by defining its cellular localization.
Collapse
Affiliation(s)
- Parveen Kumar
- Laboratory of Cell Death & Cell SurvivalCentre for DNA Fingerprinting and Diagnostics (CDFD)Uppal, HyderabadIndia
- Graduate StudiesManipal Academy of Higher EducationManipalIndia
| | - Prajakta Tathe
- Laboratory of Cell Death & Cell SurvivalCentre for DNA Fingerprinting and Diagnostics (CDFD)Uppal, HyderabadIndia
- Graduate StudiesManipal Academy of Higher EducationManipalIndia
| | - Neelam Chaudhary
- Laboratory of Cell Death & Cell SurvivalCentre for DNA Fingerprinting and Diagnostics (CDFD)Uppal, HyderabadIndia
| | - Subbareddy Maddika
- Laboratory of Cell Death & Cell SurvivalCentre for DNA Fingerprinting and Diagnostics (CDFD)Uppal, HyderabadIndia
| |
Collapse
|
9
|
Yu ZH, Zhang ZY. Regulatory Mechanisms and Novel Therapeutic Targeting Strategies for Protein Tyrosine Phosphatases. Chem Rev 2018; 118:1069-1091. [PMID: 28541680 PMCID: PMC5812791 DOI: 10.1021/acs.chemrev.7b00105] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An appropriate level of protein phosphorylation on tyrosine is essential for cells to react to extracellular stimuli and maintain cellular homeostasis. Faulty operation of signal pathways mediated by protein tyrosine phosphorylation causes numerous human diseases, which presents enormous opportunities for therapeutic intervention. While the importance of protein tyrosine kinases in orchestrating the tyrosine phosphorylation networks and in target-based drug discovery has long been recognized, the significance of protein tyrosine phosphatases (PTPs) in cellular signaling and disease biology has historically been underappreciated, due to a large extent to an erroneous assumption that they are largely constitutive and housekeeping enzymes. Here, we provide a comprehensive examination of a number of regulatory mechanisms, including redox modulation, allosteric regulation, and protein oligomerization, that control PTP activity. These regulatory mechanisms are integral to the myriad PTP-mediated biochemical events and reinforce the concept that PTPs are indispensable and specific modulators of cellular signaling. We also discuss how disruption of these PTP regulatory mechanisms can cause human diseases and how these diverse regulatory mechanisms can be exploited for novel therapeutic development.
Collapse
Affiliation(s)
- Zhi-Hong Yu
- Department of Medicinal Chemistry and Molecular Pharmacology, Department of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Department of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907
| |
Collapse
|
10
|
Ardito F, Giuliani M, Perrone D, Troiano G, Lo Muzio L. The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (Review). Int J Mol Med 2017; 40:271-280. [PMID: 28656226 PMCID: PMC5500920 DOI: 10.3892/ijmm.2017.3036] [Citation(s) in RCA: 820] [Impact Index Per Article: 102.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/11/2017] [Indexed: 12/31/2022] Open
Abstract
Protein phosphorylation is an important cellular regulatory mechanism as many enzymes and receptors are activated/deactivated by phosphorylation and dephosphorylation events, by means of kinases and phosphatases. In particular, the protein kinases are responsible for cellular transduction signaling and their hyperactivity, malfunction or overexpression can be found in several diseases, mostly tumors. Therefore, it is evident that the use of kinase inhibitors can be valuable for the treatment of cancer. In this review, we discuss the mechanism of action of phosphorylation, with particular attention to the importance of phosphorylation under physiological and pathological conditions. We also discuss the possibility of using kinase inhibitors in the treatment of tumors.
Collapse
Affiliation(s)
- Fatima Ardito
- Department of Clinical and Experimental Medicine, Foggia University, I-71122 Foggia, Italy
| | - Michele Giuliani
- Department of Clinical and Experimental Medicine, Foggia University, I-71122 Foggia, Italy
| | - Donatella Perrone
- Department of Clinical and Experimental Medicine, Foggia University, I-71122 Foggia, Italy
| | - Giuseppe Troiano
- Department of Clinical and Experimental Medicine, Foggia University, I-71122 Foggia, Italy
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, Foggia University, I-71122 Foggia, Italy
| |
Collapse
|
11
|
Cellular Dynamics Controlled by Phosphatases. J Indian Inst Sci 2017. [DOI: 10.1007/s41745-016-0016-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Schenkel LC, Kernohan KD, McBride A, Reina D, Hodge A, Ainsworth PJ, Rodenhiser DI, Pare G, Bérubé NG, Skinner C, Boycott KM, Schwartz C, Sadikovic B. Identification of epigenetic signature associated with alpha thalassemia/mental retardation X-linked syndrome. Epigenetics Chromatin 2017; 10:10. [PMID: 28293299 PMCID: PMC5345252 DOI: 10.1186/s13072-017-0118-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/01/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Alpha thalassemia/mental retardation X-linked syndrome (ATR-X) is caused by a mutation at the chromatin regulator gene ATRX. The mechanisms involved in the ATR-X pathology are not completely understood, but may involve epigenetic modifications. ATRX has been linked to the regulation of histone H3 and DNA methylation, while mutations in the ATRX gene may lead to the downstream epigenetic and transcriptional effects. Elucidating the underlying epigenetic mechanisms altered in ATR-X will provide a better understanding about the pathobiology of this disease, as well as provide novel diagnostic biomarkers. RESULTS We performed genome-wide DNA methylation assessment of the peripheral blood samples from 18 patients with ATR-X and compared it to 210 controls. We demonstrated the evidence of a unique and highly specific DNA methylation "epi-signature" in the peripheral blood of ATRX patients, which was corroborated by targeted bisulfite sequencing experiments. Although genomically represented, differentially methylated regions showed evidence of preferential clustering in pericentromeric and telometric chromosomal regions, areas where ATRX has multiple functions related to maintenance of heterochromatin and genomic integrity. CONCLUSION Most significant methylation changes in the 14 genomic loci provide a unique epigenetic signature for this syndrome that may be used as a highly sensitive and specific diagnostic biomarker to support the diagnosis of ATR-X, particularly in patients with phenotypic complexity and in patients with ATRX gene sequence variants of unknown significance.
Collapse
Affiliation(s)
- Laila C Schenkel
- Department of Pathology and Lab Medicine, Western University, London, ON Canada
| | - Kristin D Kernohan
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON Canada
| | - Arran McBride
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON Canada
| | - Ditta Reina
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON Canada.,Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, ON Canada
| | - Amanda Hodge
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON Canada.,Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, ON Canada
| | - Peter J Ainsworth
- Department of Pathology and Lab Medicine, Western University, London, ON Canada.,Molecular Genetics Laboratory, Victoria Hospital, London Health Sciences Center, 800 Commissioner's Road E, B10-104, London, ON N6A 5W9 Canada.,Department of Paediatrics, Western University, London, ON Canada.,Department of Biochemistry, Western University, London, ON Canada.,Department of Oncology, Western University, London, ON Canada.,Children's Health Research Institute, London, ON Canada
| | - David I Rodenhiser
- Department of Paediatrics, Western University, London, ON Canada.,Department of Biochemistry, Western University, London, ON Canada.,Department of Oncology, Western University, London, ON Canada.,Children's Health Research Institute, London, ON Canada
| | - Guillaume Pare
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON Canada.,Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, ON Canada
| | - Nathalie G Bérubé
- Department of Paediatrics, Western University, London, ON Canada.,Department of Biochemistry, Western University, London, ON Canada.,Department of Oncology, Western University, London, ON Canada.,Children's Health Research Institute, London, ON Canada
| | - Cindy Skinner
- Center for Molecular Studies, J.C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, SC USA
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON Canada
| | - Charles Schwartz
- Center for Molecular Studies, J.C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, SC USA
| | - Bekim Sadikovic
- Department of Pathology and Lab Medicine, Western University, London, ON Canada.,Molecular Genetics Laboratory, Victoria Hospital, London Health Sciences Center, 800 Commissioner's Road E, B10-104, London, ON N6A 5W9 Canada.,Children's Health Research Institute, London, ON Canada
| |
Collapse
|
13
|
Hu CJ, Pan JB, Song G, Wen XT, Wu ZY, Chen S, Mo WX, Zhang FC, Qian J, Zhu H, Li YZ. Identification of Novel Biomarkers for Behcet Disease Diagnosis Using Human Proteome Microarray Approach. Mol Cell Proteomics 2016; 16:147-156. [PMID: 27777341 DOI: 10.1074/mcp.m116.061002] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/26/2016] [Indexed: 11/06/2022] Open
Abstract
Behcet disease (BD) is a chronic systemic vasculitis and considered as an autoimmune disease. Although rare, BD can be fatal due to ruptured vascular aneurysms or severe neurological complications. To date, no known biomarker has been reported for this disease, making it difficult to diagnosis in the clinics. To undertake this challenge, we employed the HuProt arrays, each comprised of ∼20,000 unique human proteins, to identify BD-specific autoantibodies using a Two-Phase strategy established previously. In Phase I, we profiled the autoimmunity on the HuProt arrays with 75 serum samples collected from 40 BD patients, 15 diagnosed autoimmune patients who suffer from Takayasu arteritis (TA; n = 5)), ANCA associated vasculitis (AAV; n = 5), and Sjogren's syndrome (SS; n = 5), and 20 healthy subjects, and identified 20 candidate autoantigens that were significantly associated with BD. To validate these candidates, in Phase II we constructed a focused array with these 20 candidate BD-associated antigens, and use it to profile a much larger cohort, comprised of serum samples collected from 130 BD patients, 103 autoimmune patients (i.e. 40TA, 40 AAV and 23 SS), and 110 healthy controls. This allowed us to validate CTDP1 (RNA polymerase II subunit A C-terminal domain phosphatase)as a BD-specific autoantigen. The association of anti-CTDP1 with BD patients was further validated using the traditional Western blotting analysis. In conclusion, anti-CTDP1 antibody serves a novel autoantibody for Behcet disease and is expected to help more accurate clinical diagnosis.
Collapse
Affiliation(s)
- Chao-Jun Hu
- From the ‡Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China100730
| | - Jian-Bo Pan
- §Department of Ophthalmology, Wilmer Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Guang Song
- ¶Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Xiao-Ting Wen
- From the ‡Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China100730
| | - Zi-Yan Wu
- From the ‡Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China100730
| | - Si Chen
- From the ‡Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China100730
| | - Wen-Xiu Mo
- From the ‡Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China100730
| | - Feng-Chun Zhang
- From the ‡Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China100730
| | - Jiang Qian
- §Department of Ophthalmology, Wilmer Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Heng Zhu
- ¶Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Yong-Zhe Li
- From the ‡Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China100730;
| |
Collapse
|
14
|
Gibbs EB, Showalter SA. Quantification of Compactness and Local Order in the Ensemble of the Intrinsically Disordered Protein FCP1. J Phys Chem B 2016; 120:8960-9. [DOI: 10.1021/acs.jpcb.6b06934] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Eric B. Gibbs
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Scott A. Showalter
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department
of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
15
|
Wani S, Sugita A, Ohkuma Y, Hirose Y. Human SCP4 is a chromatin-associated CTD phosphatase and exhibits the dynamic translocation during erythroid differentiation. J Biochem 2016; 160:111-20. [DOI: 10.1093/jb/mvw018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/01/2016] [Indexed: 12/24/2022] Open
|
16
|
Mayfield JE, Burkholder NT, Zhang YJ. Dephosphorylating eukaryotic RNA polymerase II. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:372-87. [PMID: 26779935 DOI: 10.1016/j.bbapap.2016.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/11/2016] [Accepted: 01/14/2016] [Indexed: 12/20/2022]
Abstract
The phosphorylation state of the C-terminal domain of RNA polymerase II is required for the temporal and spatial recruitment of various factors that mediate transcription and RNA processing throughout the transcriptional cycle. Therefore, changes in CTD phosphorylation by site-specific kinases/phosphatases are critical for the accurate transmission of information during transcription. Unlike kinases, CTD phosphatases have been traditionally neglected as they are thought to act as passive negative regulators that remove all phosphate marks at the conclusion of transcription. This over-simplified view has been disputed in recent years and new data assert the active and regulatory role phosphatases play in transcription. We now know that CTD phosphatases ensure the proper transition between different stages of transcription, balance the distribution of phosphorylation for accurate termination and re-initiation, and prevent inappropriate expression of certain genes. In this review, we focus on the specific roles of CTD phosphatases in regulating transcription. In particular, we emphasize how specificity and timing of dephosphorylation are achieved for these phosphatases and consider the various regulatory factors that affect these dynamics.
Collapse
Affiliation(s)
- Joshua E Mayfield
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Nathaniel T Burkholder
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Yan Jessie Zhang
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
17
|
Kuznetsova E, Nocek B, Brown G, Makarova KS, Flick R, Wolf YI, Khusnutdinova A, Evdokimova E, Jin K, Tan K, Hanson AD, Hasnain G, Zallot R, de Crécy-Lagard V, Babu M, Savchenko A, Joachimiak A, Edwards AM, Koonin EV, Yakunin AF. Functional Diversity of Haloacid Dehalogenase Superfamily Phosphatases from Saccharomyces cerevisiae: BIOCHEMICAL, STRUCTURAL, AND EVOLUTIONARY INSIGHTS. J Biol Chem 2015; 290:18678-98. [PMID: 26071590 DOI: 10.1074/jbc.m115.657916] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Indexed: 12/15/2022] Open
Abstract
The haloacid dehalogenase (HAD)-like enzymes comprise a large superfamily of phosphohydrolases present in all organisms. The Saccharomyces cerevisiae genome encodes at least 19 soluble HADs, including 10 uncharacterized proteins. Here, we biochemically characterized 13 yeast phosphatases from the HAD superfamily, which includes both specific and promiscuous enzymes active against various phosphorylated metabolites and peptides with several HADs implicated in detoxification of phosphorylated compounds and pseudouridine. The crystal structures of four yeast HADs provided insight into their active sites, whereas the structure of the YKR070W dimer in complex with substrate revealed a composite substrate-binding site. Although the S. cerevisiae and Escherichia coli HADs share low sequence similarities, the comparison of their substrate profiles revealed seven phosphatases with common preferred substrates. The cluster of secondary substrates supporting significant activity of both S. cerevisiae and E. coli HADs includes 28 common metabolites that appear to represent the pool of potential activities for the evolution of novel HAD phosphatases. Evolution of novel substrate specificities of HAD phosphatases shows no strict correlation with sequence divergence. Thus, evolution of the HAD superfamily combines the conservation of the overall substrate pool and the substrate profiles of some enzymes with remarkable biochemical and structural flexibility of other superfamily members.
Collapse
Affiliation(s)
- Ekaterina Kuznetsova
- From the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Boguslaw Nocek
- the Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Greg Brown
- the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Kira S Makarova
- the National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - Robert Flick
- the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Yuri I Wolf
- the National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - Anna Khusnutdinova
- the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Elena Evdokimova
- the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Ke Jin
- the Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Saskatchewan S4S 0A2, Canada, and
| | - Kemin Tan
- the Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Andrew D Hanson
- the Horticultural Sciences Department, Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| | - Ghulam Hasnain
- the Horticultural Sciences Department, Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| | - Rémi Zallot
- the Horticultural Sciences Department, Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| | - Valérie de Crécy-Lagard
- the Horticultural Sciences Department, Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| | - Mohan Babu
- the Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Saskatchewan S4S 0A2, Canada, and
| | - Alexei Savchenko
- the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Andrzej Joachimiak
- the Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Aled M Edwards
- From the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada, the Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Eugene V Koonin
- the National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - Alexander F Yakunin
- the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada,
| |
Collapse
|
18
|
Sun G, Hu Z, Min Z, Yan X, Guan Z, Su H, Fu Y, Ma X, Chen YG, Zhang MQ, Tao Q, Wu W. Small C-terminal Domain Phosphatase 3 Dephosphorylates the Linker Sites of Receptor-regulated Smads (R-Smads) to Ensure Transforming Growth Factor β (TGFβ)-mediated Germ Layer Induction in Xenopus Embryos. J Biol Chem 2015; 290:17239-49. [PMID: 26013826 DOI: 10.1074/jbc.m115.655605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Indexed: 01/27/2023] Open
Abstract
Germ layer induction is one of the earliest events shortly after fertilization that initiates body formation of vertebrate embryos. In Xenopus, the maternally deposited transcriptional factor VegT promotes the expression of zygotic Nodal/Activin ligands that further form a morphogen gradient along the vegetal-animal axis and trigger the induction of the three germ layers. Here we found that SCP3 (small C-terminal domain phosphatase 3) is maternally expressed and vegetally enriched in Xenopus embryos and is essential for the timely induction of germ layers. SCP3 is required for the full activation of Nodal/Activin and bone morphogenetic protein signals and functions via dephosphorylation in the linker regions of receptor-regulated Smads. Consistently, the linker regions of receptor-regulated Smads are heavily phosphorylated in fertilized eggs, and this phosphorylation is gradually removed when embryos approach the midblastula transition. Knockdown of maternal SCP3 attenuates these dephosphorylation events and the activation of Nodal/Activin and bone morphogenetic protein signals after midblastula transition. This study thus suggested that the maternal SCP3 serves as a vegetally enriched, intrinsic factor to ensure a prepared status of Smads for their activation by the upcoming ligands during germ layer induction of Xenopus embryos.
Collapse
Affiliation(s)
- Guanni Sun
- From the MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhirui Hu
- the Bioinformatics Division, Center for Synthetic and Systems Biology, TNLIST, Tsinghua University, Beijing 100084, China
| | - Zheying Min
- the School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaohua Yan
- the State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China, and
| | - Zhenpo Guan
- From the MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hanxia Su
- From the MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yu Fu
- From the MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaopeng Ma
- the Bioinformatics Division, Center for Synthetic and Systems Biology, TNLIST, Tsinghua University, Beijing 100084, China
| | - Ye-Guang Chen
- the State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China, and
| | - Michael Q Zhang
- the Bioinformatics Division, Center for Synthetic and Systems Biology, TNLIST, Tsinghua University, Beijing 100084, China, the Department of Biological Sciences, Center for Systems Biology, University of Texas at Dallas, Richardson, Texas 75080
| | - Qinghua Tao
- the School of Life Sciences, Tsinghua University, Beijing 100084, China,
| | - Wei Wu
- From the MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China,
| |
Collapse
|
19
|
He Y, Guo X, Yu ZH, Wu L, Gunawan AM, Zhang Y, Dixon JE, Zhang ZY. A potent and selective inhibitor for the UBLCP1 proteasome phosphatase. Bioorg Med Chem 2015; 23:2798-809. [PMID: 25907364 DOI: 10.1016/j.bmc.2015.03.066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 11/17/2022]
Abstract
The ubiquitin-like domain-containing C-terminal domain phosphatase 1 (UBLCP1) has been implicated as a negative regulator of the proteasome, a key mediator in the ubiquitin-dependent protein degradation. Small molecule inhibitors that block UBLCP1 activity would be valuable as research tools and potential therapeutics for human diseases caused by the cellular accumulation of misfold/damaged proteins. We report a salicylic acid fragment-based library approach aimed at targeting both the phosphatase active site and its adjacent binding pocket for enhanced affinity and selectivity. Screening of the focused libraries led to the identification of the first potent and selective UBLCP1 inhibitor 13. Compound 13 exhibits an IC50 of 1.0μM for UBLCP1 and greater than 5-fold selectivity against a large panel of protein phosphatases from several distinct families. Importantly, the inhibitor possesses efficacious cellular activity and is capable of inhibiting UBLCP1 function in cells, which in turn up-regulates nuclear proteasome activity. These studies set the groundwork for further developing compound 13 into chemical probes or potential therapeutic agents targeting the UBLCP1 phosphatase.
Collapse
Affiliation(s)
- Yantao He
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | - Xing Guo
- Department of Pharmacology, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Zhi-Hong Yu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | - Li Wu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | - Andrea M Gunawan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | - Yan Zhang
- Department of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station A5300, Austin, TX 78712, USA
| | - Jack E Dixon
- Department of Pharmacology, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Zhong-Yin Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA.
| |
Collapse
|
20
|
Rudzinski JF, Noid WG. Bottom-Up Coarse-Graining of Peptide Ensembles and Helix–Coil Transitions. J Chem Theory Comput 2015; 11:1278-91. [DOI: 10.1021/ct5009922] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joseph F. Rudzinski
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - William G. Noid
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
21
|
Abstract
Reversible protein phosphorylation is an essential posttranslational modification mechanism executed by opposing actions of protein phosphatases and protein kinases. About 1,000 predicted kinases in Arabidopsis thaliana kinome predominate the number of protein phosphatases, of which there are only ~150 members in Arabidopsis. Protein phosphatases were often referred to as "housekeeping" enzymes, which act to keep eukaryotic systems in balance by counteracting the activity of protein kinases. However, recent investigations reveal the crucial and specific regulatory functions of phosphatases in cell signaling. Phosphatases operate in a coordinated manner with the protein kinases, to execute their important function in determining the cellular response to a physiological stimulus. Closer examination has established high specificity of phosphatases in substrate recognition and important roles in plant signaling pathways, such as pathogen defense and stress regulation, light and hormonal signaling, cell cycle and differentiation, metabolism, and plant growth. In this minireview we provide a compact overview about Arabidopsis protein phosphatase families, as well as members of phosphoglucan and lipid phosphatases, and highlight the recent discoveries in phosphatase research.
Collapse
Affiliation(s)
- Alois Schweighofer
- Institute of Biotechnology, University of Vilnius, V. Graičiūno 8, 02241, Vilnius, Lithuania,
| | | |
Collapse
|
22
|
Xie Y, Zhou Y, Wu J, Sun Y, Chen Y, Chen B. When Cri du chat syndrome meets Edwards syndrome. Mol Med Rep 2014; 11:1933-8. [PMID: 25385231 DOI: 10.3892/mmr.2014.2920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 10/24/2014] [Indexed: 11/05/2022] Open
Abstract
It has been well established that the 5p deletion causes Cri du chat syndrome, typically characterized by a cat‑like cry, and that duplication of 18q causes Edwards syndrome; the two are rare genetic abnormalities that separately lead to physical and mental impairments. However, the severity of the clinicopathological characteristics that arise when these two aberrations occur in one patient is unknown. Here, the first case in our knowledge of a single patient (a two‑year‑old female) with 5p partial monosomy and 18q partial trisomy is described. In the present study, chromosome microarray analysis was performed, which identified the imbalance of chromosomes 5 and 18 in the patient. The chromosome aberrations were further confirmed by fluorescence in situ hybridization. By comparing the phenotypes of combined case with those of the individual syndromes, severe clinical phenotypes of the 5p (5p15.33‑p13.3) deletion were confirmed, however, the net effect of the duplication of 18q22.3‑q23 was not determined, as this duplication only appeared to have a weak effect on the patient's phenotypes. The correlation between these chromosomal aberrations and their clinical features has implications for the identification of critical regions of 5p and 18q, particularly for the functional mapping of chromosome 18.
Collapse
Affiliation(s)
- Yingjun Xie
- Department of Prenatal Diagnosis, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yi Zhou
- Department of Prenatal Diagnosis, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jianzhu Wu
- Department of Prenatal Diagnosis, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yunxia Sun
- Department of Neonatology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Yongzhen Chen
- Department of Prenatal Diagnosis, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Baojiang Chen
- Department of Prenatal Diagnosis, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
23
|
Fukudome A, Aksoy E, Wu X, Kumar K, Jeong IS, May K, Russell WK, Koiwa H. Arabidopsis CPL4 is an essential C-terminal domain phosphatase that suppresses xenobiotic stress responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:27-39. [PMID: 25041272 DOI: 10.1111/tpj.12612] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 06/27/2014] [Accepted: 07/02/2014] [Indexed: 05/20/2023]
Abstract
Eukaryotic gene expression is both promoted and inhibited by the reversible phosphorylation of the C-terminal domain of RNA polymerase II (pol II CTD). More than 20 Arabidopsis genes encode CTD phosphatase homologs, including four CTD phosphatase-like (CPL) family members. Although in vitro CTD phosphatase activity has been established for some CPLs, none have been shown to be involved in the phosphoregulation of pol II in vivo. Here we report that CPL4 is a CTD phosphatase essential for the viability of Arabidopsis thaliana. Mass spectrometry analysis identified the pol II subunits RPB1, RPB2 and RPB3 in the affinity-purified CPL4 complex. CPL4 dephosphorylates both Ser2- and Ser5-PO(4) of the CTD in vitro, with a preference for Ser2-PO(4). Arabidopsis plants overexpressing CPL4 accumulated hypophosphorylated pol II, whereas RNA interference-mediated silencing of CPL4 promoted hyperphosphorylation of pol II. A D128A mutation in the conserved DXDXT motif of the CPL4 catalytic domain resulted in a dominant negative form of CPL4, the overexpression of which inhibited transgene expression in transient assays. Inhibition was abolished by truncation of the phosphoprotein-binding Breast Cancer 1 C-terminal domain of CPL4, suggesting that both catalytic function and protein-protein interaction are essential for CPL4-mediated regulation of gene expression. We were unable to recover a homozygous cpl4 mutant, probably due to the zygotic lethality of this mutation. The reduction in CPL4 levels in CPL4(RNAi) plants increased transcript levels of a suite of herbicide/xenobiotic-responsive genes and improved herbicide tolerance, thus suggesting an additional role for CPL4 as a negative regulator of the xenobiotic detoxification pathway.
Collapse
Affiliation(s)
- Akihito Fukudome
- Molecular and Environmental Plant Sciences, Department of Horticultural Sciences, Vegetable and Fruit Development Center, Texas A&M University, College Station, TX, 77843, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Ni Z, Xu C, Guo X, Hunter GO, Kuznetsova OV, Tempel W, Marcon E, Zhong G, Guo H, Kuo WHW, Li J, Young P, Olsen JB, Wan C, Loppnau P, El Bakkouri M, Senisterra GA, He H, Huang H, Sidhu SS, Emili A, Murphy S, Mosley AL, Arrowsmith CH, Min J, Greenblatt JF. RPRD1A and RPRD1B are human RNA polymerase II C-terminal domain scaffolds for Ser5 dephosphorylation. Nat Struct Mol Biol 2014; 21:686-695. [PMID: 24997600 PMCID: PMC4124035 DOI: 10.1038/nsmb.2853] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 06/02/2014] [Indexed: 01/16/2023]
Abstract
The RNA polymerase II (RNAPII) C-terminal domain (CTD) heptapeptide repeats (1-YSPTSPS-7) undergo dynamic phosphorylation and dephosphorylation during the transcription cycle to recruit factors that regulate transcription, RNA processing and chromatin modification. We show here that RPRD1A and RPRD1B form homodimers and heterodimers through their coiled-coil domains and interact preferentially via CTD-interaction domains (CIDs) with RNAPII CTD repeats phosphorylated at S2 and S7. Crystal structures of the RPRD1A, RPRD1B and RPRD2 CIDs, alone and in complex with RNAPII CTD phosphoisoforms, elucidate the molecular basis of CTD recognition. In an example of cross-talk between different CTD modifications, our data also indicate that RPRD1A and RPRD1B associate directly with RPAP2 phosphatase and, by interacting with CTD repeats where phospho-S2 and/or phospho-S7 bracket a phospho-S5 residue, serve as CTD scaffolds to coordinate the dephosphorylation of phospho-S5 by RPAP2.
Collapse
Affiliation(s)
- Zuyao Ni
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Chao Xu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Xinghua Guo
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Gerald O Hunter
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Olga V Kuznetsova
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Wolfram Tempel
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Edyta Marcon
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Guoqing Zhong
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Hongbo Guo
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Wei-Hung William Kuo
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Joyce Li
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Peter Young
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan B Olsen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Cuihong Wan
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Peter Loppnau
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Majida El Bakkouri
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | | | - Hao He
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Haiming Huang
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Sachdev S Sidhu
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Andrew Emili
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Amber L Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Ontario Cancer Institute, Campbell Family Cancer Research Institute, Toronto, Ontario, Canada
| | - Jinrong Min
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Jack F Greenblatt
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Lawrence CW, Kumar S, Noid WG, Showalter SA. Role of Ordered Proteins in the Folding-Upon-Binding of Intrinsically Disordered Proteins. J Phys Chem Lett 2014; 5:833-838. [PMID: 26274075 DOI: 10.1021/jz402729x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this work, we quantitatively investigate the thermodynamic analogy between the folding of monomeric proteins and the interactions of intrinsically disordered proteins (IDPs). Motivated by the hypothesis that similar hydrophobic forces guide both globular protein folding and also IDP interactions, we present a unified experimental and computational investigation of the coupling between the folding and binding of the intrinsically disordered tail of FCP1 when interacting with the cooperatively folding winged-helix domain of Rap74. Our calorimetric measurements quantitatively demonstrate the significance of hydrophobic interactions for this binding event. Our computational studies indicate that IDPs relieve frustration at the surface of ordered proteins to generate a minimally frustrated complex that is strikingly similar to a globular monomeric protein. In summary, these results not only quantify the thermodynamic forces driving disordered protein interactions but also highlight the role of ordered proteins for IDP function.
Collapse
Affiliation(s)
- Chad W Lawrence
- §Department of Chemistry and †Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Sushant Kumar
- §Department of Chemistry and †Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - William G Noid
- §Department of Chemistry and †Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Scott A Showalter
- §Department of Chemistry and †Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
26
|
Global analysis of serine/threonine and tyrosine protein phosphatase catalytic subunit genes in Neurospora crassa reveals interplay between phosphatases and the p38 mitogen-activated protein kinase. G3-GENES GENOMES GENETICS 2014; 4:349-65. [PMID: 24347630 PMCID: PMC3931568 DOI: 10.1534/g3.113.008813] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Protein phosphatases are integral components of the cellular signaling machinery in eukaryotes, regulating diverse aspects of growth and development. The genome of the filamentous fungus and model organism Neurospora crassa encodes catalytic subunits for 30 protein phosphatase genes. In this study, we have characterized 24 viable N. crassa phosphatase catalytic subunit knockout mutants for phenotypes during growth, asexual development, and sexual development. We found that 91% of the mutants had defects in at least one of these traits, whereas 29% possessed phenotypes in all three. Chemical sensitivity screens were conducted to reveal additional phenotypes for the mutants. This resulted in the identification of at least one chemical sensitivity phenotype for 17 phosphatase knockout mutants, including novel chemical sensitivities for two phosphatase mutants lacking a growth or developmental phenotype. Hence, chemical sensitivity or growth/developmental phenotype was observed for all 24 viable mutants. We investigated p38 mitogen-activated protein kinase (MAPK) phosphorylation profiles in the phosphatase mutants and identified nine potential candidates for regulators of the p38 MAPK. We demonstrated that the PP2C class phosphatase pph-8 (NCU04600) is an important regulator of female sexual development in N. crassa. In addition, we showed that the Δcsp-6 (ΔNCU08380) mutant exhibits a phenotype similar to the previously identified conidial separation mutants, Δcsp-1 and Δcsp-2, that lack transcription factors important for regulation of conidiation and the circadian clock.
Collapse
|
27
|
Corden JL. RNA polymerase II C-terminal domain: Tethering transcription to transcript and template. Chem Rev 2013; 113:8423-55. [PMID: 24040939 PMCID: PMC3988834 DOI: 10.1021/cr400158h] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jeffry L Corden
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore Maryland 21205, United States
| |
Collapse
|
28
|
Visconti R, Palazzo L, Pepe A, Della Monica R, Grieco D. The end of mitosis from a phosphatase perspective. Cell Cycle 2013; 12:17-9. [PMID: 23255109 DOI: 10.4161/cc.22875] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Transition through mitosis, the cell division cycle phase deputed to segregate replicated chromosomes, requires a wave of protein phosphorylation. While in the past decades a wealth of information has been gathered on the major kinase activities responsible for the onset of mitosis, only recently has a picture emerged of how their effects are reversed by protein phosphatases at the end of mitosis. Here, we summarized some recent data on the relevance for protein phosphatases in the reversal of mitotic phosphorylation required to complete mitosis in vertebrate cells.
Collapse
|
29
|
Jeronimo C, Bataille AR, Robert F. The Writers, Readers, and Functions of the RNA Polymerase II C-Terminal Domain Code. Chem Rev 2013; 113:8491-522. [DOI: 10.1021/cr4001397] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Célia Jeronimo
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
| | - Alain R. Bataille
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
| | - François Robert
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
- Département
de Médecine,
Faculté de Médecine, Université de Montréal, Montréal, Québec,
Canada H3T 1J4
| |
Collapse
|
30
|
Kumar S, Showalter SA, Noid WG. Native-based simulations of the binding interaction between RAP74 and the disordered FCP1 peptide. J Phys Chem B 2013; 117:3074-85. [PMID: 23387368 DOI: 10.1021/jp310293b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
By dephosphorylating the C-terminal domain (CTD) of RNA polymerase II (Pol II), the Transcription Factor IIF (TFIIF)-associating CTD phosphatase (FCP1) performs an essential function in recycling Pol II for subsequent rounds of transcription. The interaction between FCP1 and TFIIF is mediated by the disordered C-terminal tail of FCP1, which folds to form an α-helix upon binding the RAP74 subunit of TFIIF. The present work reports a structure-based simulation study of this interaction between the folded winged-helix domain of RAP74 and the disordered C-terminal tail of FCP1. The comparison of measured and simulated chemical shifts suggests that the FCP1 peptide samples 40-60% of its native helical structure in the unbound disordered ensemble. Free energy calculations suggest that productive binding begins when RAP74 makes hydrophobic contacts with the C-terminal region of the FCP1 peptide. The FCP1 peptide then folds into an amphipathic helix by zipping up the binding interface. The relative plasticity of FCP1 results in a more cooperative binding mechanism, allows for a greater diversity of pathways leading to the bound complex, and may also eliminate the need for "backtracking" from contacts that form out of sequence.
Collapse
Affiliation(s)
- Sushant Kumar
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | | | | |
Collapse
|
31
|
Jin J, Pawson T. Modular evolution of phosphorylation-based signalling systems. Philos Trans R Soc Lond B Biol Sci 2012; 367:2540-55. [PMID: 22889906 DOI: 10.1098/rstb.2012.0106] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Phosphorylation sites are formed by protein kinases ('writers'), frequently exert their effects following recognition by phospho-binding proteins ('readers') and are removed by protein phosphatases ('erasers'). This writer-reader-eraser toolkit allows phosphorylation events to control a broad range of regulatory processes, and has been pivotal in the evolution of new functions required for the development of multi-cellular animals. The proteins that comprise this system of protein kinases, phospho-binding targets and phosphatases are typically modular in organization, in the sense that they are composed of multiple globular domains and smaller peptide motifs with binding or catalytic properties. The linkage of these binding and catalytic modules in new ways through genetic recombination, and the selection of particular domain combinations, has promoted the evolution of novel, biologically useful processes. Conversely, the joining of domains in aberrant combinations can subvert cell signalling and be causative in diseases such as cancer. Major inventions such as phosphotyrosine (pTyr)-mediated signalling that flourished in the first multi-cellular animals and their immediate predecessors resulted from stepwise evolutionary progression. This involved changes in the binding properties of interaction domains such as SH2 and their linkage to new domain types, and alterations in the catalytic specificities of kinases and phosphatases. This review will focus on the modular aspects of signalling networks and the mechanism by which they may have evolved.
Collapse
Affiliation(s)
- Jing Jin
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada.
| | | |
Collapse
|
32
|
Juhász I, Villányi Z, Tombácz I, Boros IM. High Fcp1 phosphatase activity contributes to setting an intense transcription rate required in Drosophila nurse and follicular cells for egg production. Gene 2012; 509:60-7. [PMID: 22903034 DOI: 10.1016/j.gene.2012.07.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 07/26/2012] [Accepted: 07/30/2012] [Indexed: 11/28/2022]
Abstract
During transcription cycles serine side chains in the carboxyl terminal domain (CTD) of the largest subunit of RNA polymerase II undergo dynamic phosphorylation-de-phosphorylation changes, and the modification status of the CTD serves as a signal for proteins involved in transcription and RNA maturation. We show here that the major CTD de-phosphorylating enzyme Fcp1 is expressed at high levels in germline cells of Drosophila. We used transgene constructs to modify the Fcp1 phosphatase level in Drosophila ovaries and found that high levels of Fcp1 are required for intensive gene expression in nurse cells. On the contrary, low Fcp1 levels might limit the rate of transcription. Fcp1 over-expression results in increased expression of microtubules in nurse cells. Our results show that tightly controlled high level Fcp1 expression in the nurse cells of Drosophila ovaries is required for proper egg maturation.
Collapse
Affiliation(s)
- Ildikó Juhász
- Department of Biochemistry and Molecular Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | | | | | | |
Collapse
|
33
|
Seifried A, Schultz J, Gohla A. Human HAD phosphatases: structure, mechanism, and roles in health and disease. FEBS J 2012; 280:549-71. [PMID: 22607316 DOI: 10.1111/j.1742-4658.2012.08633.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Phosphatases of the haloacid dehalogenase (HAD) superfamily of hydrolases are an ancient and very large class of enzymes that have evolved to dephosphorylate a wide range of low- and high molecular weight substrates with often exquisite specificities. HAD phosphatases constitute approximately one-fifth of all human phosphatase catalytic subunits. While the overall sequence similarity between HAD phosphatases is generally very low, family members can be identified based on the presence of a characteristic Rossmann-like fold and the active site sequence DxDx(V/T). HAD phosphatases employ an aspartate residue as a nucleophile in a magnesium-dependent phosphoaspartyl transferase reaction. Although there is genetic evidence demonstrating a causal involvement of some HAD phosphatases in diseases such as cancer, cardiovascular, metabolic and neurological disorders, the physiological roles of many of these enzymes are still poorly understood. In this review, we discuss the structure and evolution of human HAD phosphatases, and summarize their known functions in health and disease.
Collapse
Affiliation(s)
- Annegrit Seifried
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | | | | |
Collapse
|
34
|
Fcp1-dependent dephosphorylation is required for M-phase-promoting factor inactivation at mitosis exit. Nat Commun 2012; 3:894. [PMID: 22692537 PMCID: PMC3621406 DOI: 10.1038/ncomms1886] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/04/2012] [Indexed: 01/28/2023] Open
Abstract
Correct execution of mitosis in eukaryotes relies on timely activation and inactivation of cyclin B-dependent kinase 1 (cdk1), the M-phase-promoting factor (MPF). Once activated, MPF is sustained until mitotic spindle assembly by phosphorylation-dependent feedback loops that prevent inhibitory phosphorylation of cdk1 and ubiquitin-dependent degradation of cyclin B. Whether subsequent MPF inactivation and anaphase onset require a specific phosphatase(s) to reverse these feedback loops is not known. Here we show through biochemical and genetic evidence that timely MPF inactivation requires activity of the essential RNA polymerase II-carboxy-terminal domain phosphatase Fcp1, in a transcription-independent manner. We identify Cdc20, a coactivator of the ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C) required for cyclin degradation and anaphase onset, USP44, a deubiquitinating peptidase that opposes APC/C action, and Wee1, a cdk1 inhibitory kinase, as relevant Fcp1 targets. We propose that Fcp1 has a crucial role in the liaison between dephosphorylation and ubiquitination that drives mitosis exit. Cyclin B-dependent kinase 1, the M-phase-promoting factor, is precisely activated and inactivated to control mitosis. In this study, Fcp1—the RNA polymerase II-carboxy-terminal domain phosphatase—is identified as a phosphatase required to inactivate the M-phase-promoting factor and promote mitosis exit.
Collapse
|
35
|
The transcription cycle in eukaryotes: From productive initiation to RNA polymerase II recycling. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:391-400. [DOI: 10.1016/j.bbagrm.2012.01.010] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 01/11/2012] [Accepted: 01/14/2012] [Indexed: 01/03/2023]
|
36
|
Kilpatrick AM, Koharudin LMI, Calero GA, Gronenborn AM. Structural and binding studies of the C-terminal domains of yeast TFIIF subunits Tfg1 and Tfg2. Proteins 2011; 80:519-29. [PMID: 22095626 DOI: 10.1002/prot.23217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 09/12/2011] [Accepted: 09/27/2011] [Indexed: 12/13/2022]
Abstract
The general transcription factor TFIIF plays essential roles at several steps during eukaryotic transcription. While several studies have offered insights into the structure/function relationship in human TFIIF, much less is known about the yeast system. Here, we describe the first NMR structural and binding studies of the C-terminal domains (CTDs) of Tfg1 and Tfg2 subunits of Saccharomyces cerevisiae TFIIF. We used the program CS-ROSETTA to determine the three-dimensional folds of these domains in solution, and performed binding studies with DNA and protein targets. CS-ROSETTA models indicate that the Tfg1 and Tfg2 C-terminal domains have winged-helix architectures, similar to the human homologs. We showed that both Tfg1 and Tfg2 CTDs interact with double-stranded DNA oligonucleotides, and mapped the DNA binding interfaces using solution NMR. Tfg1-CTD, but not Tfg2-CTD, also binds to yeast FCP1, an RNA polymerase II-specific phosphatase, and we delineated the interaction surface with the CTD of FCP1. Our results provide insights into the structural basis of yeast TFIIF function and the differential roles of Tfg1 and Tfg2 subunits during transcription.
Collapse
Affiliation(s)
- Adina M Kilpatrick
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | | | | | | |
Collapse
|
37
|
Wostenberg C, Kumar S, Noid WG, Showalter SA. Atomistic Simulations Reveal Structural Disorder in the RAP74-FCP1 Complex. J Phys Chem B 2011; 115:13731-9. [DOI: 10.1021/jp208008m] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Christopher Wostenberg
- Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802, United States
| | - Sushant Kumar
- Huck Insitutes for the Life Sciences, The Pennsylvania State University, Pennsylvania 16802, United States
| | - William G. Noid
- Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802, United States
| | - Scott A. Showalter
- Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802, United States
| |
Collapse
|
38
|
Lawrence CW, Bonny A, Showalter SA. The disordered C-terminus of the RNA polymerase II phosphatase FCP1 is partially helical in the unbound state. Biochem Biophys Res Commun 2011; 410:461-5. [PMID: 21672523 DOI: 10.1016/j.bbrc.2011.05.160] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 05/31/2011] [Indexed: 11/26/2022]
Abstract
Intrinsically disordered proteins (IDPs) lack unique 3D structures under native conditions and yet retain critical functions. Recycling of RNA Polymerase II after transcription is promoted by an interaction between the winged helix domain of RAP74, a component of the general transcription factor IIF (TFIIF), and the C-terminus of the TFIIF-associating CTD phosphatase (FCP1). Sixteen residues from the C-terminus of FCP1 form an α-helix in the complex, but the protein is otherwise agreed in the literature to be intrinsically disordered. Here we show through CD and recently developed carbon-detected NMR that, although FCP1 is intrinsically disordered, the above 16 residues composing the RAP74 binding surface form nascent α-helical structure in the unbound state. We further show retention of general FCP1 disorder and the nascent helical content in HeLa extract, establishing cellular relevance. The conformational bias observed leads to a mechanistic proposal for FCP1's transition from a disordered ensemble to an ordered conformation upon binding.
Collapse
Affiliation(s)
- Chad W Lawrence
- Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, PA 16802, USA.
| | | | | |
Collapse
|
39
|
Arabidopsis SCP1-like small phosphatases differentially dephosphorylate RNA polymerase II C-terminal domain. Biochem Biophys Res Commun 2010; 397:355-60. [DOI: 10.1016/j.bbrc.2010.05.130] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 05/25/2010] [Indexed: 10/19/2022]
|
40
|
Showalter SA. NMR assignment of the intrinsically disordered C-terminal region of Homo sapiens FCP1 in the unbound state. BIOMOLECULAR NMR ASSIGNMENTS 2009; 3:179-181. [PMID: 19888685 DOI: 10.1007/s12104-009-9169-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 06/03/2009] [Indexed: 05/28/2023]
Abstract
The phosphorylation state of the RNA polymerase II C-terminal repeat domain (CTD) regulates progression through the mRNA biogenesis cycle. Termination of transcription and recycling of RNA polymerase II is promoted by an interaction between the general transcription factor IIF (TFIIF) and the TFIIF-associating CTD phosphatase (FCP1). The acidic C-terminal region of FCP1 is disordered in the free state, but adopts an alpha-helical conformation upon binding to the heavy chain of TFIIF. Here we report (1)H, (13)C, and (15)N resonance assignments for the intrinsically disordered unbound form of human C-terminal FCP1 (residues 879-961). The use of recently developed (13)C direct detected "protonless" NMR experiments allowed the nearly complete assignment of FCP1 reported here and is likely to be a generally effective strategy for the chemical shift assignment of disordered proteins.
Collapse
Affiliation(s)
- Scott A Showalter
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
41
|
O'Hare B, Benesi AJ, Showalter SA. Incorporating 1H chemical shift determination into 13C-direct detected spectroscopy of intrinsically disordered proteins in solution. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2009; 200:354-358. [PMID: 19648037 DOI: 10.1016/j.jmr.2009.07.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 07/03/2009] [Accepted: 07/11/2009] [Indexed: 05/28/2023]
Abstract
Exclusively heteronuclear (13)C-detected NMR spectroscopy of proteins in solution has seen resurgence in the past several years. For disordered or unfolded proteins, which tend to have poor (1)H-amide chemical shift dispersion, these experiments offer enhanced resolution and the possibility of complete heteronuclear resonance assignment at the cost of leaving the (1)H resonances unassigned. Here we report two novel (13)C-detected NMR experiments which incorporate a (1)H chemical shift evolution period followed by (13)C-TOCSY mixing for aliphatic (1)H resonance assignment without reliance on (1)H detection.
Collapse
Affiliation(s)
- Bernie O'Hare
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | |
Collapse
|
42
|
Zhu H, Doherty JR, Kuliyev E, Mead PE. CDK9/cyclin complexes modulate endoderm induction by direct interaction with Mix.3/mixer. Dev Dyn 2009; 238:1346-57. [PMID: 19347956 DOI: 10.1002/dvdy.21920] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Mix-related homeodomain proteins are involved in endoderm formation in the early vertebrate embryo. We used a yeast two-hybrid screen to identify proteins that interact with Mix.3/mixer to regulate endoderm induction. We demonstrate that cyclin-dependent kinase 9 (CDK9) interacts with the carboxyl terminal domain of Mix.3. CDK9 is the catalytic subunit of the PTEF-b transcription elongation complex that phosphorylates the C-terminal domain of RNA polymerase II to promote efficient elongation of nascent transcripts. Using whole embryo transcription reporter and animal pole explant assays, we show that Mix.3 activity is regulated by CDK9/cyclin complexes. Co-expression of cyclin T2 and cyclin K had different effects on Mix.3 transcriptional activity and endoderm induction. Our data suggest that binding of CDK9, and the recruitment of different cyclin partners, can modulate the endoderm-inducing activity of Mix.3 during embryonic development. Developmental Dynamics 238:1346-1357, 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Haiqing Zhu
- Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | | | | |
Collapse
|
43
|
The RNA Pol II CTD phosphatase Fcp1 is essential for normal development in Drosophila melanogaster. Gene 2009; 446:58-67. [PMID: 19632310 DOI: 10.1016/j.gene.2009.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 07/09/2009] [Accepted: 07/17/2009] [Indexed: 11/23/2022]
Abstract
The reversible phosphorylation-dephosphorylation of RNA polymerase II (Pol II) large subunit carboxyl terminal domain (CTD) during transcription cycles in eukaryotic cells generates signals for the steps of RNA synthesis and maturation. The major phosphatase specific for CTD dephosphorylation from yeast to mammals is the TFIIF-interacting CTD-phosphatase, Fcp1. We report here on the in vivo analysis of Fcp1 function in Drosophila using transgenic lines in which the phosphatase production is misregulated. Fcp1 function is essential throughout Drosophila development and ectopic up- or downregulation of fcp1 results in lethality. The fly Fcp1 binds to specific regions of the polytene chromosomes at many sites colocalized with Pol II. In accord with the strong evolutional conservation of Fcp1: (1) the Xenopus fcp1 can substitute the fly fcp1 function, (2) similarly to its S. pombe homologue, Drosophila melanogaster (Dm)Fcp1 interacts with the RPB4 subunit of Pol II, and (3) transient expression of DmFcp1 has a negative effect on transcription in mammalian cells. The in vivo experimental system described here suggests that fly Fcp1 is associated with the transcription engaged Pol II and offers versatile possibilities for studying this evolutionary conserved essential enzyme.
Collapse
|
44
|
Yang A, Abbott KL, Desjardins A, Di Lello P, Omichinski JG, Legault P. NMR Structure of a Complex Formed by the Carboxyl-Terminal Domain of Human RAP74 and a Phosphorylated Peptide from the Central Domain of the FCP1 Phosphatase. Biochemistry 2009; 48:1964-74. [DOI: 10.1021/bi801549m] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ao Yang
- Département de Biochimie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, QC, Canada H3C 3J7, and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Karen L. Abbott
- Département de Biochimie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, QC, Canada H3C 3J7, and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Alexandre Desjardins
- Département de Biochimie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, QC, Canada H3C 3J7, and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Paola Di Lello
- Département de Biochimie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, QC, Canada H3C 3J7, and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - James G. Omichinski
- Département de Biochimie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, QC, Canada H3C 3J7, and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Pascale Legault
- Département de Biochimie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, QC, Canada H3C 3J7, and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
45
|
Abstract
Protein phosphorylation appears to be a universal mechanism of protein regulation. Genomics has provided the means to compile inventories of protein phosphatases across a wide selection of organisms and this has supplied insights into the evolution of this group of enzymes. Protein phosphatases evolved independently several times yielding the groups we observe today. Starting from a core catalytic domain, phosphatases evolved by a series of gene duplication events and by adopting the use of regulatory subunits and/or fusion with novel functional modules or domains. Recent analyses also suggest that the serine/threonine specific enzymes are more ancient than the PTPs (protein tyrosine phosphatases). It is likely that the latter played a key role at the onset of metazoan evolution in conjunction with the tremendous expansion of tyrosine kinases and PTPs at this point. In the present review, we discuss the evolution of the PTPs, the serine/threonine specific PPP (phosphoprotein phosphatase) and PPM (metallo-dependent protein phosphatase) families and the more recently discovered phosphatases that utilize an aspartate-based catalytic mechanism. We will also highlight examples of convergent evolution and several phosphatases which are unique to plants.
Collapse
|
46
|
Lavery DN, McEwan IJ. Functional characterization of the native NH2-terminal transactivation domain of the human androgen receptor: binding kinetics for interactions with TFIIF and SRC-1a. Biochemistry 2008; 47:3352-9. [PMID: 18284209 DOI: 10.1021/bi702220p] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The androgen receptor (AR) is a ligand-activated transcription factor that mediates the actions of the steroid hormones testosterone and dihydrotestosterone at the level of gene transcription. The main transactivation function is modular in structure, maps to the N-terminal domain (NTD), and is termed AF1. This region of the AR is structurally flexible and functions in multiple protein-protein interactions with coregulatory proteins and components of the general transcription machinery. Using surface plasmon resonance, the binding kinetics for the interaction of AR-AF1 with the large subunit of the general transcription factor TFIIF, termed RAP74, and the coactivator SRC-1a were measured. AR-AF1 interacts with both the NTD and CTD of RAP74 and the CTD of SRC-1a. The dissociation constants ( Kd) for the binding of polypeptides derived from RAP74 are in the submicromolar range, while a peptide from SRC-1a bound with a Kd of 14 microM. Significantly, the individual NTD and CTD of RAP74 interacted with AR-AF1 with distinct binding kinetics, with the NTD exhibiting slower on and off rates. TFIIF is involved in transcription initiation and elongation, and the CTD of RAP74 binds to the RNA polymerase II enzyme, the general transcription factor TFIIB, and a CTD phosphatase, FCP1. We have mutated hydrophobic residues in the RAP74-CTD structure to disrupt secondary structure elements and show that binding of AR-AF1 depends upon helix 3 in the winged-helix domain of the RAP74-CTD polypeptide. Altogether, a model is suggested for AR-AF1-dependent transactivation of receptor-target genes.
Collapse
Affiliation(s)
- Derek N Lavery
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | | |
Collapse
|
47
|
Brenchley R, Tariq H, McElhinney H, Szöor B, Huxley-Jones J, Stevens R, Matthews K, Tabernero L. The TriTryp phosphatome: analysis of the protein phosphatase catalytic domains. BMC Genomics 2007; 8:434. [PMID: 18039372 PMCID: PMC2175518 DOI: 10.1186/1471-2164-8-434] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 11/26/2007] [Indexed: 01/21/2023] Open
Abstract
Background The genomes of the three parasitic protozoa Trypanosoma cruzi, Trypanosoma brucei and Leishmania major are the main subject of this study. These parasites are responsible for devastating human diseases known as Chagas disease, African sleeping sickness and cutaneous Leishmaniasis, respectively, that affect millions of people in the developing world. The prevalence of these neglected diseases results from a combination of poverty, inadequate prevention and difficult treatment. Protein phosphorylation is an important mechanism of controlling the development of these kinetoplastids. With the aim to further our knowledge of the biology of these organisms we present a characterisation of the phosphatase complement (phosphatome) of the three parasites. Results An ontology-based scan of the three genomes was used to identify 86 phosphatase catalytic domains in T. cruzi, 78 in T. brucei, and 88 in L. major. We found interesting differences with other eukaryotic genomes, such as the low proportion of tyrosine phosphatases and the expansion of the serine/threonine phosphatase family. Additionally, a large number of atypical protein phosphatases were identified in these species, representing more than one third of the total phosphatase complement. Most of the atypical phosphatases belong to the dual-specificity phosphatase (DSP) family and show considerable divergence from classic DSPs in both the domain organisation and sequence features. Conclusion The analysis of the phosphatome of the three kinetoplastids indicates that they possess orthologues to many of the phosphatases reported in other eukaryotes, including humans. However, novel domain architectures and unusual combinations of accessory domains, suggest distinct functional roles for several of the kinetoplastid phosphatases, which await further experimental exploration. These distinct traits may be exploited in the selection of suitable new targets for drug development to prevent transmission and spread of the diseases, taking advantage of the already extensive knowledge on protein phosphatase inhibitors.
Collapse
Affiliation(s)
- Rachel Brenchley
- Faculty of Life Sciences, Michael Smith, University of Manchester, M13 9PT, UK.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Razin SV. C-terminal domain of subunit Rpb1 of nuclear RNA polymerase II and its role in the transcription cycle. Mol Biol 2007; 41:387-94. [PMID: 17685218 DOI: 10.1134/s0026893307030053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Recent years are marked by drastic increase of interest in the role of chromatin in regulation of gene activity. In the seventies of the last century many studies were undertaken in order to identify different forms of histones involved in regulation on transcription. The results of these studies were conflicting. Determination of primary structures of the main forms of histones demonstrated the extreme conservativity of these proteins. Once the nucleosomes were discovered and their organization was studied, it became clear that nucleosome as a basic unit of chromatin is also highly conservative. This conception gradually changed in recent years. Many variant forms of nucleosomal core histones encoded by separate genes were discovered. In addition it was demonstrated that both canonical and variant forms of histones may by modified post-translationally in different ways. As a result, a possibility to assemble a number of different nucleosomal particles became evident. Furthermore, a clear correlation between certain modification of histones and DNA packaging in either active or inactive chromatin was established. Similarly, a correlation between formation of active (inactive) chromatin and incorporation of particular histone variants into nucleosomes was observed. To integrate all the above findings into the existing model of chromatin organization and functioning, the hypothesis of "histone code" was proposed. In this review the present state of our knowledge about chromatin organization and the role of this organization in transcription regulation will be discussed.
Collapse
|
49
|
Shaw PE. Peptidyl-prolyl cis/trans isomerases and transcription: is there a twist in the tail? EMBO Rep 2007; 8:40-5. [PMID: 17203101 PMCID: PMC1796747 DOI: 10.1038/sj.embor.7400873] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Accepted: 10/23/2006] [Indexed: 01/24/2023] Open
Abstract
Eukaryotic transcription is regulated predominantly by the post-translational modification of the participating components. One such modification is the cis-trans isomerization of peptidyl-prolyl bonds, which results in a conformational change in the protein involved. Enzymes that carry out this reaction include the yeast peptidyl-prolyl cis/trans isomerase Ess1 and its human counterpart Pin1, both of which recognize phosphorylated target motifs exclusively. Consequently, they operate together with proline-directed serine-threonine kinases and phosphatases. High-profile client proteins involved in transcription include steroid hormone receptors, cell-cycle regulators and immune mediators. Other key targets are elements of the transcription machinery, including the multiply phosphorylated carboxy-terminal domain of RNA polymerase II. Changes in isomerase activity have been shown to alter the transactivation potential, protein stability or intracellular localization of these client proteins. The resulting disruption to developmental processes and cell proliferation has been linked, in some cases, to human cancers.
Collapse
Affiliation(s)
- Peter E Shaw
- Centre for Biochemistry and Cell Biology (CBCB), School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| |
Collapse
|
50
|
Moorhead GBG, Trinkle-Mulcahy L, Ulke-Lemée A. Emerging roles of nuclear protein phosphatases. Nat Rev Mol Cell Biol 2007; 8:234-44. [PMID: 17318227 DOI: 10.1038/nrm2126] [Citation(s) in RCA: 263] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The phosphorylation state of any protein represents a balance of the actions of specific protein kinases and protein phosphatases. Many protein phosphatases are highly enriched in, or exclusive to, the nuclear compartment, where they dephosphorylate key substrates to regulate various nuclear processes. In this review we will discuss recent findings that define the role of nuclear protein phosphatases in controlling transforming growth factor-beta (TGFbeta) and bone-morphogenetic protein (BMP) signalling, the DNA-damage response, RNA processing, cell-cycle progression and gene transcription.
Collapse
Affiliation(s)
- Greg B G Moorhead
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary Alberta, Canada T2N 1N4.
| | | | | |
Collapse
|