1
|
Li M, Qin J, Xiong K, Jiang B, Zhang T. Review of arginase as a promising biocatalyst: characteristics, preparation, applications and future challenges. Crit Rev Biotechnol 2021; 42:651-667. [PMID: 34612104 DOI: 10.1080/07388551.2021.1947962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
As a committed step in the urea cycle, arginase cleaves l-arginine to form l-ornithine and urea. l-Ornithine is essential to: cell proliferation, collagen formation and other physiological functions, while the urea cycle itself converts highly toxic ammonia to urea for excretion. Recently, arginase was exploited as an efficient catalyst for the environmentally friendly synthesis of l-ornithine, an abundant nonprotein amino acid that is widely employed as a food supplement and nutrition product. It was also proposed as an arginine-reducing agent in order to treat arginase deficiency and to be a means of depleting arginine to treat arginine auxotrophic tumors. Targeting arginase inhibitors of the arginase/ornithine pathway offers great promise as a therapy for: cardiovascular, central nervous system diseases and cancers with high arginase expression. In this review, recent advances in the characteristics, structure, catalytic mechanism and preparation of arginase were summarized, with a focus being placed on the biotechnical and medical applications of arginase. In particular, perspectives have been presented on the challenges and opportunities for the environmentally friendly utilization of arginase during l-ornithine production and in therapies.
Collapse
Affiliation(s)
- Mengli Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jiufu Qin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Kai Xiong
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
2
|
Athukorala SNP, Piercey-Normore MD. Recognition- and defense-related gene expression at 3 resynthesis stages in lichen symbionts. Can J Microbiol 2015; 61:1-12. [PMID: 25485526 DOI: 10.1139/cjm-2014-0470] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recognition and defense responses are early events in plant-pathogen interactions and between lichen symbionts. The effect of elicitors on responses between lichen symbionts is not well understood. The objective of this study was to compare the difference in recognition- and defense-related gene expression as a result of culture extracts (containing secreted water-soluble elicitors) from compatible and incompatible interactions at each of 3 resynthesis stages in the symbionts of Cladonia rangiferina. This study investigated gene expression by quantitative PCR in cultures of C. rangiferina and its algal partner, Asterochloris glomerata/irregularis, after incubation with liquid extracts from cultures of compatible and incompatible interactions at 3 early resynthesis stages. Recognition-related genes were significantly upregulated only after physical contact, demonstrating symbiont recognition in later resynthesis stages than expected. One of 3 defense-related genes, chit, showed significant downregulation in early resynthesis stages and upregulation in the third resynthesis stage, demonstrating a need for the absence of chitinase early in thallus formation and a need for its presence in later stages as an algal defense reaction. This study revealed that recognition- and defense-related genes are triggered by components in culture extracts at 3 stages of resynthesis, and some defense-related genes may be induced throughout thallus growth. The parasitic nature of the interaction shows parallels between lichen symbionts and plant pathogenic systems.
Collapse
|
3
|
Wideman JG, Lackey SWK, Srayko MA, Norton KA, Nargang FE. Analysis of mutations in Neurospora crassa ERMES components reveals specific functions related to β-barrel protein assembly and maintenance of mitochondrial morphology. PLoS One 2013; 8:e71837. [PMID: 23940790 PMCID: PMC3733929 DOI: 10.1371/journal.pone.0071837] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 07/03/2013] [Indexed: 11/22/2022] Open
Abstract
The endoplasmic reticulum mitochondria encounter structure (ERMES) tethers the er to mitochondria and contains four structural components: Mmm1, Mdm12, Mdm10, and Mmm2 (Mdm34). The Gem1 protein may play a role in regulating ERMES function. Saccharomyces cerevisiae and Neurospora crassa strains lacking any of Mmm1, Mdm12, or Mdm10 are known to show a variety of phenotypic defects including altered mitochondrial morphology and defects in the assembly of β-barrel proteins into the mitochondrial outer membrane. Here we examine ERMES complex components in N. crassa and show that Mmm1 is an ER membrane protein containing a Cys residue near its N-terminus that is conserved in the class Sordariomycetes. The residue occurs in the ER-lumen domain of the protein and is involved in the formation of disulphide bonds that give rise to Mmm1 dimers. Dimer formation is required for efficient assembly of Tom40 into the TOM complex. However, no effects are seen on porin assembly or mitochondrial morphology. This demonstrates a specificity of function and suggests a direct role for Mmm1 in Tom40 assembly. Mutation of a highly conserved region in the cytosolic domain of Mmm1 results in moderate defects in Tom40 and porin assembly, as well as a slight morphological phenotype. Previous reports have not examined the role of Mmm2 with respect to mitochondrial protein import and assembly. Here we show that absence of Mmm2 affects assembly of β-barrel proteins and that lack of any ERMES structural component results in defects in Tom22 assembly. Loss of N. crassa Gem1 has no effect on the assembly of these proteins but does affect mitochondrial morphology.
Collapse
Affiliation(s)
- Jeremy G. Wideman
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - Martin A. Srayko
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Kacie A. Norton
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Frank E. Nargang
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
4
|
Lackey SWK, Wideman JG, Kennedy EK, Go NE, Nargang FE. The Neurospora crassa TOB complex: analysis of the topology and function of Tob38 and Tob37. PLoS One 2011; 6:e25650. [PMID: 21980517 PMCID: PMC3182244 DOI: 10.1371/journal.pone.0025650] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 09/07/2011] [Indexed: 11/18/2022] Open
Abstract
The TOB or SAM complex is responsible for assembling several proteins into the mitochondrial outer membrane, including all β-barrel proteins. We have identified several forms of the complex in Neurospora crassa. One form contains Tob55, Tob38, and Tob37; another contains these three subunits plus the Mdm10 protein; while additional complexes contain only Tob55. As previously shown for Tob55, both Tob37 and Tob38 are essential for viability of the organism. Mitochondria deficient in Tob37 or Tob38 have reduced ability to assemble β-barrel proteins. The function of two hydrophobic domains in the C-terminal region of the Tob37 protein was investigated. Mutant Tob37 proteins lacking either or both of these regions are able to restore viability to cells lacking the protein. One of the domains was found to anchor the protein to the outer mitochondrial membrane but was not necessary for targeting or association of the protein with mitochondria. Examination of the import properties of mitochondria containing Tob37 with deletions of the hydrophobic domains reveals that the topology of Tob37 may be important for interactions between specific classes of β-barrel precursors and the TOB complex.
Collapse
Affiliation(s)
| | - Jeremy G. Wideman
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Erin K. Kennedy
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Nancy E. Go
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Frank E. Nargang
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
5
|
Mercier A, Labbé S. Iron-dependent remodeling of fungal metabolic pathways associated with ferrichrome biosynthesis. Appl Environ Microbiol 2010; 76:3806-3817. [PMID: 20435771 PMCID: PMC2893484 DOI: 10.1128/aem.00659-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 04/21/2010] [Indexed: 11/20/2022] Open
Abstract
The fission yeast Schizosaccharomyces pombe excretes and accumulates the hydroxamate-type siderophore ferrichrome. The sib1(+) and sib2(+) genes encode, respectively, a siderophore synthetase and an l-ornithine N(5)-oxygenase that participate in ferrichrome biosynthesis. In the present report, we demonstrate that sib1(+) and sib2(+) are repressed by the GATA-type transcriptional repressor Fep1 in response to high levels of iron. We further found that the loss of Fep1 results in increased ferrichrome production. We showed that a sib1Delta sib2Delta mutant strain exhibits a severe growth defect on iron-poor media. We determined that two metabolic pathways are involved in biosynthesis of ornithine, an obligatory precursor of ferrichrome. Ornithine is produced by hydrolysis of arginine by the Car1 and Car3 proteins. Although car3(+) was constitutively expressed, car1(+) transcription levels were repressed upon exposure to iron, with a concomitant decrease of Car1 arginase activity. Ornithine is also generated by transformation of glutamate, which itself is produced by two separate biosynthetic pathways which are transcriptionally regulated by iron in an opposite fashion. In one pathway, the glutamate dehydrogenase Gdh1, which produces glutamate from 2-ketoglutarate, was repressed under iron-replete conditions in a Fep1-dependent manner. The other pathway involves two coupled enzymes, glutamine synthetase Gln1 and Fe-S cluster-containing glutamate synthase Glt1, which were both repressed under iron-limiting conditions but were expressed under iron-replete conditions. Collectively, these results indicate that under conditions of iron deprivation, yeast remodels metabolic pathways linked to ferrichrome synthesis in order to limit iron utilization without compromising siderophore production and its ability to sequester iron from the environment.
Collapse
Affiliation(s)
- Alexandre Mercier
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Simon Labbé
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
6
|
Wells GA, Müller IB, Wrenger C, Louw AI. The activity of Plasmodium falciparum arginase is mediated by a novel inter-monomer salt-bridge between Glu295-Arg404. FEBS J 2009; 276:3517-30. [PMID: 19456858 DOI: 10.1111/j.1742-4658.2009.07073.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A recent study implicated a role for Plasmodium falciparum arginase in the systemic depletion of arginine levels, which in turn has been associated with human cerebral malaria pathogenesis. Arginase (EC 3.5.3.1) is a multimeric metallo-protein that catalyses the hydrolysis of arginine to ornithine and urea by means of a binuclear spin-coupled Mn(2+) cluster in the active site. A previous report indicated that P. falciparum arginase has a strong dependency between trimer formation, enzyme activity and metal co-ordination. Mutations that abolished Mn(2+) binding also caused dissociation of the trimer; conversely, mutations that abolished trimer formation resulted in inactive monomers. By contrast, the monomers of mammalian (and therefore host) arginase are also active. P. falciparum arginase thus appears to be an obligate trimer and interfering with trimer formation may therefore serve as an alternative route to enzyme inhibition. In the present study, the mechanism of the metal dependency was explored by means of homology modelling and molecular dynamics. When the active site metals are removed, loss of structural integrity is observed. This is reflected by a larger equilibration rmsd for the protein when the active site metal is removed and some loss of secondary structure. Furthermore, modelling revealed the existence of a novel inter-monomer salt-bridge between Glu295 and Arg404, which was shown to be associated with the metal dependency. Mutational studies not only confirmed the importance of this salt-bridge in trimer formation, but also provided evidence for the independence of P. falciparum arginase activity on trimer formation.
Collapse
Affiliation(s)
- Gordon A Wells
- Department of Biochemistry, University of Pretoria, South Africa
| | | | | | | |
Collapse
|
7
|
Jelodar G, Razmi N, Gholampour V. Arginase alteration in the reproductive system of alloxan-diabetic dogs. J Reprod Dev 2007; 53:317-321. [PMID: 17179654 DOI: 10.1262/jrd.18049] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study was conducted to evaluate possible alteration in the activity of arginase, an important enzyme of cell proliferation and vascular smooth muscle contraction regulator in diabetics, that may be correlated with low fertility in diabetic patients. In this investigation, 6 apparently healthy adult male dogs were selected and divided in two groups, diabetics and non-diabetics. Diabetes mellitus was induced in one group by intravenous (IV) injection of alloxan (100 mg/kg). Dogs with a fasting blood glucose (FBS) of more than 200 mg/dl were considered to be diabetic. Four weeks following induction of diabetes mellitus, the animals in both groups were anesthetized by an IV injection of sodium thiopental. Livers and whole reproductive systems, including the testes, penis, urethra, and prostate, were dissected. The epididymides, corpus cavernosum, corpus spongiosum, penile urethra, and vas deferens were also dissected and removed from the reproductive system. Arginase activity and total protein were measured by the urea and Lowry's methods respectively in above mentioned sections. Plasma testosterone was determined by the radioimmunoassay method. The results showed significantly (P<0.05) increased arginase specific activity (ASA) in the liver, epididymis, prostate, corpus cavernosum and corpus spongiosum of the diabetic dogs. In the reproductive system of the diabetic dog, the maximum and minimum ASA was seen in the corpus cavernosum and testes, respectively (105.12 +/- 8.76 vs. 25.0 +/- 0.55). No such variation was observed in the ASA of normal dogs (39.0 +/- 5.47 vs. 25.0 +/- 5.47). There was no significant difference in plasma testosterone level between the groups. In conclusion, diabetes increased the ASA in liver, prostate, epididymis, corpora cavernosa, and corpora spongiosum of the male dogs and may contribute to erectile dysfunction or low fertility in diabetics.
Collapse
Affiliation(s)
- Gholamali Jelodar
- Department of Physiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | | | | |
Collapse
|
8
|
Wagemaker MJM, Welboren W, van der Drift C, Jetten MSM, Van Griensven LJLD, Op den Camp HJM. The ornithine cycle enzyme arginase from Agaricus bisporus and its role in urea accumulation in fruit bodies. ACTA ACUST UNITED AC 2004; 1681:107-15. [PMID: 15627502 DOI: 10.1016/j.bbaexp.2004.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Revised: 10/21/2004] [Accepted: 10/22/2004] [Indexed: 11/28/2022]
Abstract
An extensive survey of higher fungi revealed that members of the family Agaricaceae, including Agaricus bisporus, accumulate substantial amounts of urea in their fruit bodies. An important role of the ornithine cycle enzymes in urea accumulation has been proposed. In this work, we present the cloning and sequencing of the arginase gene and its promoter region from A. bisporus. A PCR-probe based on fungal arginase was used to identify the A. bisporus arginase gene from a cDNA library. The arginase cDNA encodes a 311-aa protein which is most likely expressed in the cytosol. Expression of the cDNA in Escherichia coli was established as a His-tagged fusion protein. The arginase gene was used as a molecular marker to study expression and regulation during sporophore formation and postharvest development. The expression of the arginase gene was significantly up-regulated from developmental stage 3 onwards for all the tissues studied. A maximum of expression was reached at stage 6 for both stipe and cap tissue. In postharvest stages 5, 6 and 7 the level of expression observed was similar to normal growth stages 5, 6 and 7. A good correlation was found between arginase expression and urea content of stipe, velum, gills, cap and peel tissue. For all tissues the urea content decreased over the first four stages of development. From stage 4 onwards urea accumulated again except for stipe tissue where no significant changes were observed. The same trend was also observed for postharvest development, but the observed increase of urea in postharvest tissues was much higher.
Collapse
Affiliation(s)
- Matthijs J M Wagemaker
- Department of Microbiology, Faculty of Science, Radboud University Nijmegen, Toernooiveld 1, NL-6525 ED Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
9
|
Metzler DE, Metzler CM, Sauke DJ. The Metabolism of Nitrogen and Amino Acids. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50027-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Bago B, Pfeffer P, Shachar-Hill Y. Could the urea cycle be translocating nitrogen in the arbuscular mycorrhizal symbiosis? THE NEW PHYTOLOGIST 2001; 149:4-8. [PMID: 33853236 DOI: 10.1046/j.1469-8137.2001.00016.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Berta Bago
- Dpto. Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), calle Profesor Albareda 1, 18008-Granada, Spain
| | - Philip Pfeffer
- Microbial Biophysics and Biochemistry, USDA/ARS, 600 E. Mermaid Ln., Wyndmoor, 19038 PA, USA
| | - Yair Shachar-Hill
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces NM 88001, USA
| |
Collapse
|