1
|
McGillivary RM, Sood P, Hammar K, Marshall WF. The nuclear transport factor CSE1 drives macronuclear volume increase and macronuclear node coalescence in Stentor coeruleus. iScience 2023; 26:107318. [PMID: 37520736 PMCID: PMC10374459 DOI: 10.1016/j.isci.2023.107318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/27/2023] [Accepted: 07/04/2023] [Indexed: 08/01/2023] Open
Abstract
Stentor coeruleus provides a unique opportunity to study how cells regulate nuclear shape because its macronucleus undergoes a rapid, dramatic, and developmentally regulated shape change. We found that the volume of the macronucleus increases during coalescence, suggesting an inflation-based mechanism. When the nuclear transport factor, CSE1, is knocked down by RNAi, the shape and volume changes of the macronucleus are attenuated, and nuclear morphology is altered. CSE1 protein undergoes a dynamic relocalization correlated with nuclear shape changes, being mainly cytoplasmic prior to nuclear coalescence, and accumulating inside the macronucleus during coalescence. At the end of regeneration, CSE1 protein levels are reduced as the macronucleus returns to its pre-coalescence volume. We propose a model in which nuclear transport via CSE1 is required to increase the volume of the macronucleus, thereby decreasing the surface-to-volume ratio and driving coalescence of the nodes into a single mass.
Collapse
Affiliation(s)
- Rebecca M. McGillivary
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Pranidhi Sood
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Katherine Hammar
- Central Microscopy Facility, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Wallace F. Marshall
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
2
|
Jibiki K, Kodama TS, Yasuhara N. Importin alpha family NAAT/IBB domain: Functions of a pleiotropic long chameleon sequence. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 134:175-209. [PMID: 36858734 DOI: 10.1016/bs.apcsb.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nuclear transport is essential for eukaryotic cell survival and regulates the movement of functional molecules in and out of the nucleus via the nuclear pore. Transport is facilitated by protein-protein interactions between cargo and transport receptors, which contribute to the expression and regulation of downstream genetic information. This chapter focuses on the molecular basis of the multifunctional nature of the importin α family, the representative transport receptors that bring proteins into the nucleus. Importin α performs multiple functions during the nuclear transport cycle through interactions with multiple molecules by a single domain called the IBB domain. This domain is a long chameleon sequence, which can change its conformation and binding mode depending on the interaction partners. By considering the evolutionarily conserved biochemical/physicochemical propensities of the amino acids constituting the functional complex interfaces, together with their structural properties, the mechanisms of switching between multiple complexes formed via IBB and the regulation of downstream functions are examined in detail. The mechanism of regulation by IBB indicates that the time has come for a paradigm shift in the way we view the molecular mechanisms by which proteins regulate downstream functions through their interactions with other molecules.
Collapse
Affiliation(s)
- Kazuya Jibiki
- Graduate School of Integrated Basic Sciences, Nihon University, Setagaya-ku, Tokyo, Japan
| | - Takashi S Kodama
- Laboratory of Molecular Biophysics, Institute for Protein Research, Osaka University, Osaka, Japan.
| | - Noriko Yasuhara
- Graduate School of Integrated Basic Sciences, Nihon University, Setagaya-ku, Tokyo, Japan.
| |
Collapse
|
3
|
Jibiki K, Liu MY, Lei CS, Kodama TS, Kojima C, Fujiwara T, Yasuhara N. Biochemical propensity mapping for structural and functional anatomy of importin α IBB domain. Genes Cells 2021; 27:173-191. [PMID: 34954861 DOI: 10.1111/gtc.12917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/28/2022]
Abstract
Importin α has been described as a nuclear protein transport receptor that enables proteins synthesized in the cytoplasm to translocate into the nucleus. Besides its function in nuclear transport, an increasing number of studies have examined its non-nuclear transport functions. In both nuclear transport and non-nuclear transport, a functional domain called the IBB domain (importin β binding domain) plays a key role in regulating importin α behavior, and is a common interacting domain for multiple binding partners. However, it is not yet fully understood how the IBB domain interacts with multiple binding partners, which leads to the switching of importin α function. In this study, we have distinguished the location and propensities of amino acids important for each function of the importin α IBB domain by mapping the biochemical/physicochemical propensities of evolutionarily conserved amino acids of the IBB domain onto the structure associated with each function. We found important residues that are universally conserved for IBB functions across species and family members, in addition to those previously known, as well as residues that are presumed to be responsible for the differences in complex-forming ability among family members and for functional switching.
Collapse
Affiliation(s)
- Kazuya Jibiki
- Graduate School of Integrated Basic Sciences, Nihon University, Setagaya-ku, Tokyo, Japan
| | - Mo-Yan Liu
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Setagaya-ku, Tokyo, Japan
| | - Chao-Sen Lei
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Setagaya-ku, Tokyo, Japan
| | - Takashi S Kodama
- Laboratory of Molecular Biophysics, Institute for Protein Research, Osaka University, Sita, Osaka, Japan
| | - Chojiro Kojima
- Laboratory of Molecular Biophysics, Institute for Protein Research, Osaka University, Sita, Osaka, Japan.,Graduate School of Engineering Science, Yokohama National University, Yokohama, kanagawa, Japan
| | - Toshimichi Fujiwara
- Laboratory of Molecular Biophysics, Institute for Protein Research, Osaka University, Sita, Osaka, Japan
| | - Noriko Yasuhara
- Graduate School of Integrated Basic Sciences, Nihon University, Setagaya-ku, Tokyo, Japan.,Department of Biosciences, College of Humanities and Sciences, Nihon University, Setagaya-ku, Tokyo, Japan
| |
Collapse
|
4
|
Hirsch AG, Becker D, Lamping JP, Krebber H. Unraveling the stepwise maturation of the yeast telomerase including a Cse1 and Mtr10 mediated quality control checkpoint. Sci Rep 2021; 11:22174. [PMID: 34773052 PMCID: PMC8590012 DOI: 10.1038/s41598-021-01599-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/29/2021] [Indexed: 01/17/2023] Open
Abstract
Telomerases elongate the ends of chromosomes required for cell immortality through their reverse transcriptase activity. By using the model organism Saccharomyces cerevisiae we defined the order in which the holoenzyme matures. First, a longer precursor of the telomerase RNA, TLC1 is transcribed and exported into the cytoplasm, where it associates with the protecting Sm-ring, the Est and the Pop proteins. This partly matured telomerase is re-imported into the nucleus via Mtr10 and a novel TLC1-import factor, the karyopherin Cse1. Remarkably, while mutations in all known transport factors result in short telomere ends, mutation in CSE1 leads to the amplification of Y′ elements in the terminal chromosome regions and thus elongated telomere ends. Cse1 does not only support TLC1 import, but also the Sm-ring stabilization on the RNA enableling Mtr10 contact and nuclear import. Thus, Sm-ring formation and import factor contact resembles a quality control step in the maturation process of the telomerase. The re-imported immature TLC1 is finally trimmed into the 1158 nucleotides long mature form via the nuclear exosome. TMG-capping of TLC1 finalizes maturation, leading to mature telomerase.
Collapse
Affiliation(s)
- Anna Greta Hirsch
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie Und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| | - Daniel Becker
- Philipps-Universität Marburg, Klinik für Dermatologie Und Allergologie, Baldingerstraße, 35043, Marburg, Germany
| | - Jan-Philipp Lamping
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie Und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| | - Heike Krebber
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie Und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany.
| |
Collapse
|
5
|
Xu M, Liang H, Li K, Zhu S, Yao Z, Xu R, Lin N. Value of KPNA4 as a diagnostic and prognostic biomarker for hepatocellular carcinoma. Aging (Albany NY) 2021; 13:5263-5283. [PMID: 33535183 PMCID: PMC7950262 DOI: 10.18632/aging.202447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 11/25/2020] [Indexed: 05/11/2023]
Abstract
It is important to identify novel biomarkers to improve hepatocellular carcinoma (HCC) diagnosis and treatment. Herein, we reported the role of karyopherin α4 (KPNA4) in HCC patients through public data mining and examined the results using clinical samples in our center. Our results revealed that KPNA4 expression level was positively correlated with the infiltration of CD8+ T cells, B cells, dendritic cells, CD4+ T cells, neutrophils and macrophages. In addition, KPNA4 expression was significantly associated with T cell exhaustion. KPNA4 mRNA and protein expression levels were significantly higher in cancerous tissue than in normal tissue. Besides, the increased expression of KPNA4 indicated poor overall survival. Univariate and multivariate Cox regression analyses showed KPNA4 could be viewed as an independent risk factor for HCC patients. Moreover, our experimental results were consistent with those obtained from bioinformatic results. These findings revealed KPNA4 may serve as a novel prognostic biomarker and a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Mingxing Xu
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Hao Liang
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Kun Li
- Department of Liver Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Shu Zhu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Zhicheng Yao
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Ruiyun Xu
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Nan Lin
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| |
Collapse
|
6
|
Lange A, Fasken MB, Stewart M, Corbett AH. Dissecting the roles of Cse1 and Nup2 in classical NLS-cargo release in vivo. Traffic 2020; 21:622-635. [PMID: 32734712 PMCID: PMC7891619 DOI: 10.1111/tra.12759] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 01/26/2023]
Abstract
The importin α/β transport machinery mediates the nuclear import of cargo proteins that bear a classical nuclear localization sequence (cNLS). These cargo proteins are linked to the major nuclear protein import factor, importin‐β, by the importin‐α adapter, after which cargo/carrier complexes enter the nucleus through nuclear pores. In the nucleus, cargo is released by the action of RanGTP and the nuclear pore protein Nup2, after which the importins are recycled to the cytoplasm for further transport cycles. The nuclear export of importin‐α is mediated by Cse1/CAS. Here, we exploit structures of functionally important complexes to identify residues that are critical for these interactions and provide insight into how cycles of protein import and recycling of importin‐α occur in vivo using a Saccharomyces cerevisiae model. We examine how these molecular interactions impact protein localization, cargo import, function and complex formation. We show that reversing the charge of key residues in importin‐α (Arg44) or Cse1 (Asp220) results in loss of function of the respective proteins and impairs complex formation both in vitro and in vivo. To extend these results, we show that basic residues in the Nup2 N‐terminus are required for both Nup2 interaction with importin‐α and Nup2 function. These results provide a more comprehensive mechanistic model of how Cse1, RanGTP and Nup2 function in concert to mediate cNLS‐cargo release in the nucleus. Directional transport of cargoes between the nucleus and cytoplasm is mediated by receptors that bind cargo in one compartment and release cargo into a destination compartment. Cargoes that contain a cNLS are recognized by importin‐α in the cytoplasm. Release factors including the importin‐α export receptor, Cse1, and a nuclear pore complex protein, Nup2, ensure efficient cargo delivery into the nucleus. Interactions defined by previous structural studies are required for productive interactions between importin‐α, Cse1, and Nup2 to occur in vivo.
Collapse
Affiliation(s)
- Allison Lange
- Department of Biology, Emory University, Atlanta, Georgia, USA
| | - Milo B Fasken
- Department of Biology, Emory University, Atlanta, Georgia, USA
| | - Murray Stewart
- Cambridge Biomedical Campus, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Anita H Corbett
- Department of Biology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Serway CN, Dunkelberger BS, Del Padre D, Nolan NWC, Georges S, Freer S, Andres AJ, de Belle JS. Importin-α2 mediates brain development, learning and memory consolidation in Drosophila. J Neurogenet 2020; 34:69-82. [PMID: 31965871 DOI: 10.1080/01677063.2019.1709184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Neuronal development and memory consolidation are conserved processes that rely on nuclear-cytoplasmic transport of signaling molecules to regulate gene activity and initiate cascades of downstream cellular events. Surprisingly, few reports address and validate this widely accepted perspective. Here we show that Importin-α2 (Imp-α2), a soluble nuclear transporter that shuttles cargoes between the cytoplasm and nucleus, is vital for brain development, learning and persistent memory in Drosophila melanogaster. Mutations in importin-α2 (imp-α2, known as Pendulin or Pen and homologous with human KPNA2) are alleles of mushroom body miniature B (mbmB), a gene known to regulate aspects of brain development and influence adult behavior in flies. Mushroom bodies (MBs), paired associative centers in the brain, are smaller than normal due to defective proliferation of specific intrinsic Kenyon cell (KC) neurons in mbmB mutants. Extant KCs projecting to the MB β-lobe terminate abnormally on the contralateral side of the brain. mbmB adults have impaired olfactory learning but normal memory decay in most respects, except that protein synthesis-dependent long-term memory (LTM) is abolished. This observation supports an alternative mechanism of persistent memory in which mutually exclusive protein-synthesis-dependent and -independent forms rely on opposing cellular mechanisms or circuits. We propose a testable model of Imp-α2 and nuclear transport roles in brain development and conditioned behavior. Based on our molecular characterization, we suggest that mbmB is hereafter referred to as imp-α2mbmB.
Collapse
Affiliation(s)
- Christine N Serway
- School of Life Sciences, University of Nevada, Las Vegas, NV, USA.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA
| | - Brian S Dunkelberger
- School of Life Sciences, University of Nevada, Las Vegas, NV, USA.,Las Vegas High School, Las Vegas, NV, USA
| | - Denise Del Padre
- School of Life Sciences, University of Nevada, Las Vegas, NV, USA
| | - Nicole W C Nolan
- School of Life Sciences, University of Nevada, Las Vegas, NV, USA.,Methodist Estabrook Cancer Center, Omaha, NE, USA
| | - Stephanie Georges
- School of Life Sciences, University of Nevada, Las Vegas, NV, USA.,Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Stephanie Freer
- School of Life Sciences, University of Nevada, Las Vegas, NV, USA.,Research Square Inc, Nashville, TN, USA
| | - Andrew J Andres
- School of Life Sciences, University of Nevada, Las Vegas, NV, USA
| | - J Steven de Belle
- School of Life Sciences, University of Nevada, Las Vegas, NV, USA.,Department of Psychological Sciences, University of San Diego, San Diego, CA, USA
| |
Collapse
|
8
|
Becker D, Hirsch AG, Bender L, Lingner T, Salinas G, Krebber H. Nuclear Pre-snRNA Export Is an Essential Quality Assurance Mechanism for Functional Spliceosomes. Cell Rep 2019; 27:3199-3214.e3. [PMID: 31189105 DOI: 10.1016/j.celrep.2019.05.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 04/03/2019] [Accepted: 05/09/2019] [Indexed: 02/05/2023] Open
Abstract
Removal of introns from pre-mRNAs is an essential step in eukaryotic gene expression, mediated by spliceosomes that contain snRNAs as key components. Although snRNAs are transcribed in the nucleus and function in the same compartment, all except U6 shuttle to the cytoplasm. Surprisingly, the physiological relevance for shuttling is unclear, in particular because the snRNAs in Saccharomyces cerevisiae were reported to remain nuclear. Here, we show that all yeast pre-snRNAs including U6 undergo a stepwise maturation process after nuclear export by Mex67 and Xpo1. Sm- and Lsm-ring attachment occurs in the cytoplasm and is important for the snRNA re-import, mediated by Cse1 and Mtr10. Finally, nuclear pre-snRNA cleavage and trimethylation of the 5'-cap finalizes shuttling. Importantly, preventing pre-snRNAs from being exported or processed results in faulty spliceosome assembly and subsequent genome-wide splicing defects. Thus, pre-snRNA export is obligatory for functional splicing and resembles an essential evolutionarily conserved quality assurance step.
Collapse
Affiliation(s)
- Daniel Becker
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| | - Anna Greta Hirsch
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| | - Lysann Bender
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| | - Thomas Lingner
- Transkriptomanalyselabor, Institut für Entwicklungsbiochemie, Georg-August Universität Göttingen, Göttingen, Germany
| | - Gabriela Salinas
- Transkriptomanalyselabor, Institut für Entwicklungsbiochemie, Georg-August Universität Göttingen, Göttingen, Germany
| | - Heike Krebber
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany.
| |
Collapse
|
9
|
Garapati HS, Mishra K. Comparative genomics of nuclear envelope proteins. BMC Genomics 2018; 19:823. [PMID: 30445911 PMCID: PMC6240307 DOI: 10.1186/s12864-018-5218-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/31/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The nuclear envelope (NE) that encapsulates the nuclear genome is a double lipid bilayer with several integral and peripherally associated proteins. It is a characteristic feature of the eukaryotes and acts as a hub for a number of important nuclear events including transcription, repair, and regulated gene expression. The proteins associated with the nuclear envelope mediate the NE functions and maintain its structural integrity, which is crucial for survival. In spite of the importance of this structure, knowledge of the protein composition of the nuclear envelope and their function, are limited to very few organisms belonging to Opisthokonta and Archaeplastida supergroups. The NE composition is largely unknown in organisms outside these two supergroups. RESULTS In this study, we have taken a comparative sequence analysis approach to identify the NE proteome that is present across all five eukaryotic supergroups. We identified 22 proteins involved in various nuclear functions to be part of the core NE proteome. The presence of these proteins across eukaryotes, suggests that they are traceable to the Last Eukaryotic Common Ancestor (LECA). Additionally, we also identified the NE proteins that have evolved in a lineage specific manner and those that have been preserved only in a subset of organisms. CONCLUSIONS Our study identifies the conserved features of the nuclear envelope across eukaryotes and provides insights into the potential composition and the functionalities that were constituents of the LECA NE.
Collapse
Affiliation(s)
- Hita Sony Garapati
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Krishnaveni Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
10
|
Gonzales-Zubiate FA, Okuda EK, Da Cunha JPC, Oliveira CC. Identification of karyopherins involved in the nuclear import of RNA exosome subunit Rrp6 in Saccharomyces cerevisiae. J Biol Chem 2017; 292:12267-12284. [PMID: 28539363 DOI: 10.1074/jbc.m116.772376] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/11/2017] [Indexed: 11/06/2022] Open
Abstract
The exosome is a conserved multiprotein complex essential for RNA processing and degradation. The nuclear exosome is a key factor for pre-rRNA processing through the activity of its catalytic subunits, Rrp6 and Rrp44. In Saccharomyces cerevisiae, Rrp6 is exclusively nuclear and has been shown to interact with exosome cofactors. With the aim of analyzing proteins associated with the nuclear exosome, in this work, we purified the complex with Rrp6-TAP, identified the co-purified proteins by mass spectrometry, and found karyopherins to be one of the major groups of proteins enriched in the samples. By investigating the biological importance of these protein interactions, we identified Srp1, Kap95, and Sxm1 as the most important karyopherins for Rrp6 nuclear import and the nuclear localization signals recognized by them. Based on the results shown here, we propose a model of multiple pathways for the transport of Rrp6 to the nucleus.
Collapse
Affiliation(s)
| | - Ellen K Okuda
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000 SP, Brazil
| | - Julia P C Da Cunha
- Cell Cycle Laboratory, Center of Toxins, Immune Response and Cell Signaling-Center for Research on Toxins, Immune-response, and Cell Signaling (CeTICS), Butantan Institute, São Paulo 05503-900 SP, Brazil
| | - Carla Columbano Oliveira
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000 SP, Brazil.
| |
Collapse
|
11
|
DNA interference-mediated screening of maternal factors in the chordate Oikopleura dioica. Sci Rep 2017; 7:44226. [PMID: 28281645 PMCID: PMC5345011 DOI: 10.1038/srep44226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 02/06/2017] [Indexed: 01/26/2023] Open
Abstract
The maternal contribution to the oocyte cytoplasm plays an important role during embryogenesis because it is involved in early cell fate specification and embryonic axis establishment. However, screening projects targeting maternal factors have only been conducted in a limited number of animal models, such as nematodes, fruit flies, and zebrafish, while few maternal genes have been analysed because of difficulties encountered in inhibiting gene products already expressed in the ovaries. Therefore, simple and efficient methods for large-scale maternal screening are necessary. The appendicularian Oikopleura dioica is a planktonic tunicate member of the chordates. Gonadal microinjection and a novel gene knockdown method, DNA interference (DNAi), have been developed for use in this animal with the aim of inhibiting gene functions during oogenesis within the gonad. In this study, we adapted these methods for large-scale maternal factor screening, and observed malformation phenotypes related to some maternal factors. Approximately 2000 (56.9%) ovary-enriched gene products were screened, of which the knockdown of seven encoding genes resulted in various abnormalities during embryonic development. Most of these were related to microtubules and cell adhesion-related proteins. We conclude that DNAi is a potentially powerful screening tool for the identification of novel maternal factors in chordates.
Collapse
|
12
|
SUMO and Nucleocytoplasmic Transport. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:111-126. [DOI: 10.1007/978-3-319-50044-7_7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Choo HJ, Cutler A, Rother F, Bader M, Pavlath GK. Karyopherin Alpha 1 Regulates Satellite Cell Proliferation and Survival by Modulating Nuclear Import. Stem Cells 2016; 34:2784-2797. [PMID: 27434733 DOI: 10.1002/stem.2467] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 07/07/2016] [Accepted: 07/08/2016] [Indexed: 12/14/2022]
Abstract
Satellite cells are stem cells with an essential role in skeletal muscle repair. Precise regulation of gene expression is critical for proper satellite cell quiescence, proliferation, differentiation and self-renewal. Nuclear proteins required for gene expression are dependent on the nucleocytoplasmic transport machinery to access to nucleus, however little is known about regulation of nuclear transport in satellite cells. The best characterized nuclear import pathway is classical nuclear import which depends on a classical nuclear localization signal (cNLS) in a cargo protein and the heterodimeric import receptors, karyopherin alpha (KPNA) and beta (KPNB). Multiple KPNA1 paralogs exist and can differ in importing specific cNLS proteins required for cell differentiation and function. We show that transcripts for six Kpna paralogs underwent distinct changes in mouse satellite cells during muscle regeneration accompanied by changes in cNLS proteins in nuclei. Depletion of KPNA1, the most dramatically altered KPNA, caused satellite cells in uninjured muscle to prematurely activate, proliferate and undergo apoptosis leading to satellite cell exhaustion with age. Increased proliferation of satellite cells led to enhanced muscle regeneration at early stages of regeneration. In addition, we observed impaired nuclear localization of two key KPNA1 cargo proteins: p27, a cyclin-dependent kinase inhibitor associated with cell cycle control and lymphoid enhancer factor 1, a critical cotranscription factor for β-catenin. These results indicate that regulated nuclear import of proteins by KPNA1 is critical for satellite cell proliferation and survival and establish classical nuclear import as a novel regulatory mechanism for controlling satellite cell fate. Stem Cells 2016;34:2784-2797.
Collapse
Affiliation(s)
| | - Alicia Cutler
- Department of Pharmacology.,Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, Georgia, USA
| | - Franziska Rother
- Max-Delbrück-Center for Molecular Medicine, Berlin-Buch, Germany.,Institute of Biology, University of Lübeck, Germany
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine, Berlin-Buch, Germany
| | | |
Collapse
|
14
|
Hu Z, Wang Y, Yu L, Mahanty SK, Mendoza N, Elion EA. Mapping regions in Ste5 that support Msn5-dependent and -independent nuclear export. Biochem Cell Biol 2016; 94:109-28. [PMID: 26824509 DOI: 10.1139/bcb-2015-0101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Careful control of the available pool of the MAPK scaffold Ste5 is important for mating-pathway activation and the prevention of inappropriate mating differentiation in haploid Saccharomyces cerevisiae. Ste5 shuttles constitutively through the nucleus, where it is degraded by a ubiquitin-dependent mechanism triggered by G1 CDK phosphorylation. Here we narrow-down regions of Ste5 that mediate nuclear export. Four regions in Ste5 relocalize SV40-TAgNLS-GFP-GFP from nucleus to cytoplasm. One region is N-terminal, dependent on exportin Msn5/Ste21/Kap142, and interacts with Msn5 in 2 hybrid assays independently of mating pheromone, Fus3, Kss1, Ptc1, the NLS/PM, and RING-H2. A second region overlaps the PH domain and Ste11 binding site and 2 others are on the vWA domain and include residues essential for MAPK activation. We find no evidence for dependence on Crm1/Xpo1, despite numerous potential nuclear export sequences (NESs) detected by LocNES and NetNES1.1 predictors. Thus, Msn5 (homolog of human Exportin-5) and one or more exportins or adaptor molecules besides Crm1/Xpo1 may regulate Ste5 through multiple recognition sites.
Collapse
Affiliation(s)
- Zhenhua Hu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Yunmei Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Lu Yu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Sanjoy K Mahanty
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Natalia Mendoza
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Elaine A Elion
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
15
|
Matsuura Y. Mechanistic Insights from Structural Analyses of Ran-GTPase-Driven Nuclear Export of Proteins and RNAs. J Mol Biol 2015; 428:2025-39. [PMID: 26519791 DOI: 10.1016/j.jmb.2015.09.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/28/2015] [Indexed: 12/13/2022]
Abstract
Understanding how macromolecules are rapidly exchanged between the nucleus and the cytoplasm through nuclear pore complexes is a fundamental problem in biology. Exportins are Ran-GTPase-dependent nuclear transport factors that belong to the karyopherin-β family and mediate nuclear export of a plethora of proteins and RNAs, except for bulk mRNA nuclear export. Exportins bind cargo macromolecules in a Ran-GTP-dependent manner in the nucleus, forming exportin-cargo-Ran-GTP complexes (nuclear export complexes). Transient weak interactions between exportins and nucleoporins containing characteristic FG (phenylalanine-glycine) repeat motifs facilitate nuclear pore complex passage of nuclear export complexes. In the cytoplasm, nuclear export complexes are disassembled, thereby releasing the cargo. GTP hydrolysis by Ran promoted in the cytoplasm makes the disassembly reaction virtually irreversible and provides thermodynamic driving force for the overall export reaction. In the past decade, X-ray crystallography of some of the exportins in various functional states coupled with functional analyses, single-particle electron microscopy, molecular dynamics simulations, and small-angle solution X-ray scattering has provided rich insights into the mechanism of cargo binding and release and also begins to elucidate how exportins interact with the FG repeat motifs. The knowledge gained from structural analyses of nuclear export is being translated into development of clinically useful inhibitors of nuclear export to treat human diseases such as cancer and influenza.
Collapse
Affiliation(s)
- Yoshiyuki Matsuura
- Division of Biological Science and Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya 466-8550, Japan.
| |
Collapse
|
16
|
Bauer NC, Doetsch PW, Corbett AH. Mechanisms Regulating Protein Localization. Traffic 2015; 16:1039-61. [PMID: 26172624 DOI: 10.1111/tra.12310] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 07/08/2015] [Accepted: 07/08/2015] [Indexed: 12/23/2022]
Abstract
Cellular functions are dictated by protein content and activity. There are numerous strategies to regulate proteins varying from modulating gene expression to post-translational modifications. One commonly used mode of regulation in eukaryotes is targeted localization. By specifically redirecting the localization of a pool of existing protein, cells can achieve rapid changes in local protein function. Eukaryotic cells have evolved elegant targeting pathways to direct proteins to the appropriate cellular location or locations. Here, we provide a general overview of these localization pathways, with a focus on nuclear and mitochondrial transport, and present a survey of the evolutionarily conserved regulatory strategies identified thus far. We end with a description of several specific examples of proteins that exploit localization as an important mode of regulation.
Collapse
Affiliation(s)
- Nicholas C Bauer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.,Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.,Current address: Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Paul W Doetsch
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA.,Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA.,Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Anita H Corbett
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
17
|
Yang X, Ding F, Zhang L, Sheng Y, Zheng X, Wang Y. The importin α subunit PsIMPA1 mediates the oxidative stress response and is required for the pathogenicity of Phytophthora sojae. Fungal Genet Biol 2015; 82:108-15. [DOI: 10.1016/j.fgb.2015.04.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 11/24/2022]
|
18
|
Wang L, Ma H, Fu L, Yao J. Kpna7 interacts with egg-specific nuclear factors in the rainbow trout (Oncorhynchus mykiss). Mol Reprod Dev 2014; 81:1136-45. [PMID: 25511304 DOI: 10.1002/mrd.22433] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/09/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Lei Wang
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia
| | | | | | | |
Collapse
|
19
|
Kimura M, Imamoto N. Biological significance of the importin-β family-dependent nucleocytoplasmic transport pathways. Traffic 2014; 15:727-48. [PMID: 24766099 DOI: 10.1111/tra.12174] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/22/2014] [Accepted: 04/22/2014] [Indexed: 12/19/2022]
Abstract
Importin-β family proteins (Imp-βs) are nucleocytoplasmic transport receptors (NTRs) that import and export proteins and RNAs through the nuclear pores. The family consists of 14-20 members depending on the biological species, and each member transports a specific group of cargoes. Thus, the Imp-βs mediate multiple, parallel transport pathways that can be regulated separately. In fact, the spatiotemporally differential expressions and the functional regulations of Imp-βs have been reported. Additionally, the biological significance of each pathway has been characterized by linking the function of a member of Imp-βs to a cellular consequence. Connecting these concepts, the regulation of the transport pathways conceivably induces alterations in the cellular physiological states. However, few studies have linked the regulation of an importin-β family NTR to an induced cellular response and the corresponding cargoes, despite the significance of this linkage in comprehending the biological relevance of the transport pathways. This review of recent reports on the regulation and biological functions of the Imp-βs highlights the significance of the transport pathways in physiological contexts and points out the possibility that the identification of yet unknown specific cargoes will reinforce the importance of transport regulation.
Collapse
Affiliation(s)
- Makoto Kimura
- Cellular Dynamics Laboratory, RIKEN, Hirosawa 2-1, Wako, Saitama, 351-0198, Japan
| | | |
Collapse
|
20
|
Etxebeste O, Villarino M, Markina-Iñarrairaegui A, Araújo-Bazán L, Espeso EA. Cytoplasmic dynamics of the general nuclear import machinery in apically growing syncytial cells. PLoS One 2013; 8:e85076. [PMID: 24376868 PMCID: PMC3869923 DOI: 10.1371/journal.pone.0085076] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/21/2013] [Indexed: 12/20/2022] Open
Abstract
Karyopherins are transporters involved in the bidirectional, selective and active transport of macromolecules through nuclear pores. Importin-β1 is the paradigm of karyopherins and, together with its cargo-adapter importin-α, mediates the general nuclear import pathway. Here we show the existence of different cellular pools of both importin-α and -β1 homologues, KapA and KapB, in the coenocytic ascomycete Aspergillus nidulans. Fluorescence analysis of haploid and diploid strains expressing KapB::GFP and/or KapA::mRFP showed patches of both karyopherins concurrently translocating long distances in apically-growing cells. Anterograde and retrograde movements allowed those patches to reach cell tips and distal regions with an average speed in the range of μm/s. This bidirectional traffic required microtubules as well as kinesin and dynein motors, since it is blocked by benomyl and also by the inactivation of the dynein/dynactin complex through nudA1 or nudK317 mutations. Deletion of Kinesin-3 motor UncA, required for the transport through detyrosinated microtubules, strongly inhibited KapA and KapB movement along hyphae. Overall, this is the first report describing the bidirectional dynamics of the main nuclear import system in coenocytic fungi. A functional link is proposed between two key cellular machines of the filamentous fungal cell: nuclear transport and the tip-growth apparatus.
Collapse
Affiliation(s)
- Oier Etxebeste
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country, San Sebastian, Spain
| | - María Villarino
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Ane Markina-Iñarrairaegui
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country, San Sebastian, Spain
| | - Lidia Araújo-Bazán
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Department of Molecular Microbiology and Infection Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Eduardo A. Espeso
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- * E-mail:
| |
Collapse
|
21
|
Chafe SC, Pierce JB, Mangroo D. Nuclear-cytoplasmic trafficking of NTF2, the nuclear import receptor for the RanGTPase, is subjected to regulation. PLoS One 2012; 7:e42501. [PMID: 22880006 PMCID: PMC3411763 DOI: 10.1371/journal.pone.0042501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 07/06/2012] [Indexed: 11/18/2022] Open
Abstract
NTF2 is a cytosolic protein responsible for nuclear import of Ran, a small Ras-like GTPase involved in a number of critical cellular processes, including cell cycle regulation, chromatin organization during mitosis, reformation of the nuclear envelope following mitosis, and controlling the directionality of nucleocytoplasmic transport. Herein, we provide evidence for the first time that translocation of the mammalian NTF2 from the nucleus to the cytoplasm to collect Ran in the GDP form is subjected to regulation. Treatment of mammalian cells with polysorbitan monolaurate was found to inhibit nuclear export of tRNA and proteins, which are processes dependent on RanGTP in the nucleus, but not nuclear import of proteins. Inhibition of the export processes by polysorbitan monolaurate is specific and reversible, and is caused by accumulation of Ran in the cytoplasm because of a block in translocation of NTF2 to the cytoplasm. Nuclear import of Ran and the nuclear export processes are restored in polysorbitan monolaurate treated cells overproducing NTF2. Moreover, increased phosphorylation of a phospho-tyrosine protein and several phospho-threonine proteins was observed in polysorbitan monolaurate treated cells. Collectively, these findings suggest that nucleocytoplasmic translocation of NTF2 is regulated in mammalian cells, and may involve a tyrosine and/or threonine kinase-dependent signal transduction mechanism(s).
Collapse
Affiliation(s)
| | | | - Dev Mangroo
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
- * E-mail:
| |
Collapse
|
22
|
Genome rearrangements caused by depletion of essential DNA replication proteins in Saccharomyces cerevisiae. Genetics 2012; 192:147-60. [PMID: 22673806 DOI: 10.1534/genetics.112.141051] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Genetic screens of the collection of ~4500 deletion mutants in Saccharomyces cerevisiae have identified the cohort of nonessential genes that promote maintenance of genome integrity. Here we probe the role of essential genes needed for genome stability. To this end, we screened 217 tetracycline-regulated promoter alleles of essential genes and identified 47 genes whose depletion results in spontaneous DNA damage. We further showed that 92 of these 217 essential genes have a role in suppressing chromosome rearrangements. We identified a core set of 15 genes involved in DNA replication that are critical in preventing both spontaneous DNA damage and genome rearrangements. Mapping, classification, and analysis of rearrangement breakpoints indicated that yeast fragile sites, Ty retrotransposons, tRNA genes, early origins of replication, and replication termination sites are common features at breakpoints when essential replication genes that suppress chromosome rearrangements are downregulated. We propose mechanisms by which depletion of essential replication proteins can lead to double-stranded DNA breaks near these features, which are subsequently repaired by homologous recombination at repeated elements.
Collapse
|
23
|
Wen R, Li F, Xie Y, Li S, Xiang J. A Homolog of the Cell Apoptosis Susceptibility Gene Involved in Ovary Development of Chinese Shrimp Fenneropenaeus chinensis1. Biol Reprod 2012; 86:1-7. [DOI: 10.1095/biolreprod.111.092635] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
24
|
McGuire AT, Mangroo D. Cex1p facilitates Rna1p-mediated dissociation of the Los1p-tRNA-Gsp1p-GTP export complex. Traffic 2011; 13:234-56. [PMID: 22008473 DOI: 10.1111/j.1600-0854.2011.01304.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 10/17/2011] [Accepted: 10/17/2011] [Indexed: 01/17/2023]
Abstract
Nuclear tRNA export plays an essential role in key cellular processes such as regulation of protein synthesis, cell cycle progression, response to nutrient availability and DNA damage and development. Like other nuclear export processes, assembly of the nuclear tRNA export complex in the nucleus is dependent on Ran-GTP/Gsp1p-GTP, and dissociation of the export receptor-tRNA-Ran-GTP/Gsp1p-GTP complex in the cytoplasm requires RanBP1/Yrb1p and RanGAP/Rna1p to activate the GTPase activity of Ran-GTP/Gsp1p-GTP. The Saccharomyces cerevisiae Cex1p and Human Scyl1 have also been proposed to participate in unloading of the tRNA export receptors at the cytoplasmic face of the nuclear pore complex (NPC). Here, we provide evidence suggesting that Cex1p is required for activation of the GTPase activity of Gsp1p and dissociation of the receptor-tRNA-Gsp1p export complex in S. cerevisiae. The data suggest that Cex1p recruits Rna1p from the cytoplasm to the NPC and facilitates Rna1p activation of the GTPase activity of Gsp1p by enabling Rna1p to gain access to Gsp1p-GTP bound to the export receptor tRNA complex. It is possible that this tRNA unloading mechanism is conserved in evolutionarily diverse organisms and that other Gsp1p-GTP-dependent export processes use a pathway-specific component to recruit Rna1p to the NPC.
Collapse
Affiliation(s)
- Andrew T McGuire
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | | |
Collapse
|
25
|
Hall MN, Griffin CA, Simionescu A, Corbett AH, Pavlath GK. Distinct roles for classical nuclear import receptors in the growth of multinucleated muscle cells. Dev Biol 2011; 357:248-58. [PMID: 21741962 PMCID: PMC3156328 DOI: 10.1016/j.ydbio.2011.06.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 05/25/2011] [Accepted: 06/21/2011] [Indexed: 01/06/2023]
Abstract
Proper muscle function is dependent on spatial and temporal control of gene expression in myofibers. Myofibers are multinucleated cells that are formed, repaired and maintained by the process of myogenesis in which progenitor myoblasts proliferate, differentiate and fuse. Gene expression is dependent upon proteins that require facilitated nuclear import, however little is known about the regulation of nucleocytoplasmic transport during the formation of myofibers. We analyzed the role of karyopherin alpha (KPNA), a key classical nuclear import receptor, during myogenesis. We established that five karyopherin alpha paralogs are expressed by primary mouse myoblasts in vitro and that their steady-state levels increase in multinucleated myotubes, suggesting a global increase in demand for classical nuclear import during myogenesis. We used siRNA-mediated knockdown to identify paralog-specific roles for KPNA1 and KPNA2 during myogenesis. KPNA1 knockdown increased myoblast proliferation, whereas KPNA2 knockdown decreased proliferation. In contrast, no proliferation defect was observed with KPNA4 knockdown. Only knockdown of KPNA2 decreased myotube growth. These results identify distinct pathways involved in myoblast proliferation and myotube growth that rely on specific nuclear import receptors suggesting that regulation of classical nuclear import pathways likely plays a critical role in controlling gene expression in skeletal muscle.
Collapse
Affiliation(s)
- Monica N. Hall
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, GA 30322, USA
| | - Christine A. Griffin
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, GA 30322, USA
| | - Adriana Simionescu
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, GA 30322, USA
| | - Anita H. Corbett
- Department of Biochemistry, Emory University, Atlanta, GA 30322, USA
| | - Grace K. Pavlath
- Department of Pharmacology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
26
|
Lott K, Cingolani G. The importin β binding domain as a master regulator of nucleocytoplasmic transport. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1813:1578-92. [PMID: 21029753 PMCID: PMC3037977 DOI: 10.1016/j.bbamcr.2010.10.012] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 10/11/2010] [Accepted: 10/19/2010] [Indexed: 12/16/2022]
Abstract
Specific and efficient recognition of import cargoes is essential to ensure nucleocytoplasmic transport. To this end, the prototypical karyopherin importin β associates with import cargoes directly or, more commonly, through import adaptors, such as importin α and snurportin. Adaptor proteins bind the nuclear localization sequence (NLS) of import cargoes while recruiting importin β via an N-terminal importin β binding (IBB) domain. The use of adaptors greatly expands and amplifies the repertoire of cellular cargoes that importin β can efficiently import into the cell nucleus and allows for fine regulation of nuclear import. Accordingly, the IBB domain is a dedicated NLS, unique to adaptor proteins that functions as a molecular liaison between importin β and import cargoes. This review provides an overview of the molecular role played by the IBB domain in orchestrating nucleocytoplasmic transport. Recent work has determined that the IBB domain has specialized functions at every step of the import and export pathway. Unexpectedly, this stretch of ~40 amino acids plays an essential role in regulating processes such as formation of the import complex, docking and translocation through the nuclear pore complex (NPC), release of import cargoes into the cell nucleus and finally recycling of import adaptors and importin β into the cytoplasm. Thus, the IBB domain is a master regulator of nucleocytoplasmic transport, whose complex molecular function is only recently beginning to emerge. This article is part of a Special Issue entitled: Regulation of Signaling and Cellular Fate through Modulation of Nuclear Protein Import.
Collapse
Affiliation(s)
- Kaylen Lott
- Dept. of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA
- Dept. of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| | - Gino Cingolani
- Dept. of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA
| |
Collapse
|
27
|
Ran-dependent nuclear export mediators: a structural perspective. EMBO J 2011; 30:3457-74. [PMID: 21878989 DOI: 10.1038/emboj.2011.287] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 07/22/2011] [Indexed: 12/25/2022] Open
Abstract
Nuclear export is an essential eukaryotic activity. It proceeds through nuclear pore complexes (NPCs) and is mediated by soluble receptors that shuttle between nucleus and cytoplasm. RanGTPase-dependent export mediators (exportins) constitute the largest class of these carriers and are functionally highly versatile. All of these exportins load their substrates in response to RanGTP binding in the nucleus and traverse NPCs as ternary RanGTP-exportin-cargo complexes to the cytoplasm, where GTP hydrolysis leads to export complex disassembly. The different exportins vary greatly in their substrate range. Recent structural studies of both protein- and RNA-specific exporters have illuminated how exportins bind their cargoes, how Ran triggers cargo loading and how export complexes are disassembled in the cytoplasm. Here, we review the current state of knowledge and highlight emerging principles as well as prevailing questions.
Collapse
|
28
|
Hall MN, Corbett AH, Pavlath GK. Regulation of nucleocytoplasmic transport in skeletal muscle. Curr Top Dev Biol 2011; 96:273-302. [PMID: 21621074 DOI: 10.1016/b978-0-12-385940-2.00010-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Proper skeletal muscle function is dependent on spatial and temporal control of gene expression in multinucleated myofibers. In addition, satellite cells, which are tissue-specific stem cells that contribute critically to repair and maintenance of skeletal muscle, are also required for normal muscle physiology. Gene expression in both myofibers and satellite cells is dependent upon nuclear proteins that require facilitated nuclear transport. A unique challenge for myofibers is controlling the transcriptional activity of hundreds of nuclei in a common cytoplasm yet achieving nuclear selectivity in transcription at specific locations such as neuromuscular synapses and myotendinous junctions. Nucleocytoplasmic transport of macromolecular cargoes is regulated by a complex interplay among various components of the nuclear transport machinery, namely nuclear pore complexes, nuclear envelope proteins, and various soluble transport receptors. The focus of this review is to highlight what is known about the nuclear transport machinery and its regulation in skeletal muscle and to consider the unique challenges that multinucleated muscle cells as well as satellite cells encounter in regulating nucleocytoplasmic transport during cell differentiation and tissue adaptation. Understanding how regulated nucleocytoplasmic transport controls gene expression in skeletal muscle may lead to further insights into the mechanisms contributing to muscle growth and maintenance throughout the lifespan of an individual.
Collapse
Affiliation(s)
- Monica N Hall
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, Georgia, USA
| | | | | |
Collapse
|
29
|
Tran LT, Wang’ondu RW, Weng JB, Wanjiku GW, Fong CM, Kile AC, Koepp DM, Hood-DeGrenier JK. TORC1 kinase and the S-phase cyclin Clb5 collaborate to promote mitotic spindle assembly and DNA replication in S. cerevisiae. Curr Genet 2010; 56:479-93. [PMID: 20697716 PMCID: PMC3088515 DOI: 10.1007/s00294-010-0316-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 07/26/2010] [Accepted: 07/27/2010] [Indexed: 11/25/2022]
Abstract
The Target of Rapamycin complex 1 (TORC1) is a central regulator of eukaryotic cell growth that is inhibited by the drug rapamycin. In the budding yeast Saccharomyces cerevisiae, translational defects associated with TORC1 inactivation inhibit cell cycle progression at an early stage in G1, but little is known about the possible roles for TORC1 later in the cell cycle. We investigated the rapamycin-hypersensitivity phenotype of cells lacking the S phase cyclin Clb5 (clb5Δ) as a basis for uncovering novel connections between TORC1 and the cell cycle regulatory machinery. Dosage suppression experiments suggested that the clb5Δ rapamycin hypersensitivity reflects a unique Clb5-associated cyclin-dependent kinase (CDK) function that cannot be performed by mitotic cyclins and that also involves motor proteins, particularly the kinesin-like protein Kip3. Synchronized cell experiments revealed rapamycin-induced defects in pre-anaphase spindle assembly and S phase progression that were more severe in clb5Δ than in wild-type cells but no apparent activation of Rad53-dependent checkpoint pathways. Some rapamycin-treated cells had aberrant spindle morphologies, but rapamycin did not cause gross defects in the microtubule cytoskeleton. We propose a model in which TORC1 and Clb5/CDK act coordinately to promote both spindle assembly via a pathway involving Kip3 and S phase progression.
Collapse
Affiliation(s)
- Lieu T. Tran
- Department of Biological Sciences, Wellesley College, Wellesley, MA 02481
| | - Ruth W. Wang’ondu
- Department of Biological Sciences, Wellesley College, Wellesley, MA 02481
| | - Jessica B. Weng
- Department of Biological Sciences, Wellesley College, Wellesley, MA 02481
| | - Grace W. Wanjiku
- Department of Biological Sciences, Wellesley College, Wellesley, MA 02481
| | - Chi M. Fong
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Andrew C. Kile
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Deanna M. Koepp
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | | |
Collapse
|
30
|
Taberner FJ, Igual JC. Yeast karyopherin Kap95 is required for cell cycle progression at Start. BMC Cell Biol 2010; 11:47. [PMID: 20587033 PMCID: PMC2904269 DOI: 10.1186/1471-2121-11-47] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 06/29/2010] [Indexed: 11/18/2022] Open
Abstract
Background The control of the subcellular localization of cell cycle regulators has emerged as a crucial mechanism in cell division regulation. The active transport of proteins between the nucleus and the cytoplasm is mediated by the transport receptors of the β-karyopherin family. In this work we characterized the terminal phenotype of a mutant strain in β-karyopherin Kap95, a component of the classical nuclear import pathway. Results When KAP95 was inactivated, most cells arrested at the G2/M phase of the cell cycle, which is in agreement with the results observed in mutants in the other components of this pathway. However, a number of cells accumulate at G1, suggesting a novel role of Kap95 and the classical import pathway at Start. We investigated the localization of Start transcription factors. It is known that Swi6 contains a classical NLS that interacts with importin α. Here we show that the in vivo nuclear import of Swi6 depends on Kap95. For Swi4, we identified a functional NLS between amino acids 371 and 376 that is sufficient and necessary for Swi4 to enter the nucleus. The nuclear import driven by this NLS is mediated by karyopherins Kap95 and Srp1. Inactivation of Kap95 also produces a dramatic change in the localization of Mbp1 since the protein is mainly detected in the cytoplasm. Two functionally redundant Kap95- and Srp1-dependent NLSs were identified in Mbp1 between amino acids 27-30 and 166-181. Nuclear accumulation was not completely abolished in a kap95 mutant or in the Mbp1 mutated in the two NLSs, suggesting that alternative pathways might contribute to the Mbp1 nuclear import to a lesser extent. Conclusions Kap95 plays an essential role at the initiation of the cell cycle by driving the nuclear import of Swi4, Swi6 and Mbp1, the three transcription factors responsible for the gene expression at Start. This transport depends on the specific nuclear localization signals present in cargo proteins.
Collapse
Affiliation(s)
- Francisco José Taberner
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Dr. Moliner 50, 46100 Burjassot (Valencia), Spain
| | | |
Collapse
|
31
|
Martínez-Bono B, Quilis I, Zalve E, Igual JC. Yeast karyopherins Kap123 and Kap95 are related to the function of the cell integrity pathway. FEMS Yeast Res 2009; 10:28-37. [PMID: 19930464 DOI: 10.1111/j.1567-1364.2009.00591.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The characterization of mutant strains in the gene encoding karyopherin Kap123 has revealed several morphogenetic defects. Inactivation of KAP123 caused alterations in the actin cytoskeleton, resulting in hyperpolarization and resistance to the actin polymerization inhibitor latrunculin B. In fact, the level of actin filaments is increased in kap123 mutant cells. In addition to the defect in actin cytoskeleton, the kap123 mutant cells showed a weakened cell wall, cell lysis and a growth defect in either the presence of sodium dodecyl sulfate or at high temperatures, which is alleviated by osmotic stabilizers. These defects in cell integrity and the actin cytoskeleton suggested a relationship with the protein kinase C (PKC) cell integrity pathway. Slt2, the mitogen-activated protein kinase of the PKC cell integrity pathway, is constitutively activated in the absence of Kap123, which is consistent with the existence of cell integrity defects. Analysis of the subcellular localization of nuclear proteins involved in cell wall gene expression indicated that the localization of the Slt2 kinase and the transcription factors Rlm1, Swi6 and Paf1 was not affected by Kap123. Finally, we identified karyopherin Kap95 as the transport factor responsible for the nuclear import of Slt2 and Rlm1.
Collapse
Affiliation(s)
- Bárbara Martínez-Bono
- Departament de Bioquímica i Biologia Molecular, Facultat de Ciències Biològiques, Universitat de València, Valencia, Spain
| | | | | | | |
Collapse
|
32
|
Wu J, Corbett AH, Berland KM. The intracellular mobility of nuclear import receptors and NLS cargoes. Biophys J 2009; 96:3840-9. [PMID: 19413990 DOI: 10.1016/j.bpj.2009.01.050] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 01/15/2009] [Accepted: 01/28/2009] [Indexed: 12/27/2022] Open
Abstract
We have investigated classical nuclear localization sequence (NLS) mediated protein trafficking by measuring biomolecular dynamics within living cells using two-photon fluorescence correlation spectroscopy. By directly observing the behavior of specific molecules in their native cellular environment, it is possible to uncover functional details that are not apparent from traditional biochemical investigations or functional assays. We show that the intracellular mobility of NLS cargoes and their import receptor proteins, karyopherin-alpha and karyopherin-beta, can be robustly measured and that quantitative comparison of intracellular diffusion coefficients provides new insights into nuclear transport mechanisms. Import cargo complexes are assembled throughout the cytoplasm, and their diffusion is slower than predicted by molecular weight due to specific interactions. Analysis of NLS cargo diffusion in the cytoplasm indicates that these interactions are likely disrupted by NLS cargo binding. Our results suggest that delivery of import receptors and NLS cargoes to nuclear pores may complement selective translocation through the pores as a functional mechanism for regulating transport of proteins into the nucleus.
Collapse
Affiliation(s)
- Jianrong Wu
- Department of Physics, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
33
|
|
34
|
Design of peptide inhibitors for the importin alpha/beta nuclear import pathway by activity-based profiling. ACTA ACUST UNITED AC 2008; 15:940-9. [PMID: 18804031 DOI: 10.1016/j.chembiol.2008.07.019] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 07/07/2008] [Accepted: 07/21/2008] [Indexed: 02/07/2023]
Abstract
Despite the current availability of selective inhibitors for the classical nuclear export pathway, no inhibitor for the classical nuclear import pathway has been developed. Here we describe the development of specific inhibitors for the importin alpha/beta pathway using a novel method of peptide inhibitor design. An activity-based profile was created via systematic mutational analysis of a peptide template of a nuclear localization signal. An additivity-based design using the activity-based profile generated two peptides with affinities for importin alpha that were approximately 5 million times higher than that of the starting template sequence. The high affinity of these peptides resulted in specific inhibition of the importin alpha/beta pathway. These peptide inhibitors provide a useful tool for studying nuclear import events. Moreover, our inhibitor design method should enable the development of potent inhibitors from a peptide seed.
Collapse
|
35
|
The classical nuclear localization signal receptor, importin-alpha, is required for efficient transition through the G1/S stage of the cell cycle in Saccharomyces cerevisiae. Genetics 2008; 181:105-18. [PMID: 18984568 DOI: 10.1534/genetics.108.097303] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
There is significant evidence linking nucleocytoplasmic transport to cell cycle control. The budding yeast, Saccharomyces cerevisiae, serves as an ideal model system for studying transport events critical to cell cycle progression because the nuclear envelope remains intact throughout the cell cycle. Previous studies linked the classical nuclear localization signal (cNLS) receptor, importin-alpha/Srp1, to the G(2)/M transition of the cell cycle. Here, we utilize two engineered mutants of importin-alpha/Srp1 with specific molecular defects to explore how protein import affects cell cycle progression. One mutant, Srp1-E402Q, is defective in binding to cNLS cargoes that contain two clusters of basic residues termed a bipartite cNLS. The other mutant, Srp1-55, has defects in release of cNLS cargoes into the nucleus. Consistent with distinct in vivo functional consequences for each of the Srp1 mutants analyzed, we find that overexpression of different nuclear transport factors can suppress the temperature-sensitive growth defects of each mutant. Studies aimed at understanding how each of these mutants affects cell cycle progression reveal a profound defect at the G(1) to S phase transition in both srp1-E402Q and srp1-55 mutants as well as a modest G(1)/S defect in the temperature-sensitive srp1-31 mutant, which was previously implicated in G(2)/M. We take advantage of the characterized defects in the srp1-E402Q and srp1-55 mutants to predict candidate cargo proteins likely to be affected in these mutants and provide evidence that three of these cargoes, Cdc45, Yox1, and Mcm10, are not efficiently localized to the nucleus in importin-alpha mutants. These results reveal that the classical nuclear protein import pathway makes important contributions to the G(1)/S cell cycle transition.
Collapse
|
36
|
Classical NLS proteins from Saccharomyces cerevisiae. J Mol Biol 2008; 379:678-94. [PMID: 18485366 DOI: 10.1016/j.jmb.2008.04.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 04/12/2008] [Accepted: 04/15/2008] [Indexed: 02/02/2023]
Abstract
Proteins can enter the nucleus through various receptor-mediated import pathways. One class of import cargos carries a classical nuclear localization signal (cNLS) containing a short cluster of basic residues. This pathway involves importin alpha (Impalpha), which possesses the cNLS binding site, and importin beta (Impbeta), which translocates the import complex through the nuclear pore complex. The defining criteria for a cNLS protein from Saccharomyces cerevisiae are an in vivo import defect in Impalpha and Impbeta mutants, direct binding to purified Impalpha, and stimulation of this binding by Impbeta. We show for the first time that endogenous S. cerevisiae proteins Prp20, Cdc6, Swi5, Cdc45, and Clb2 fulfill all of these criteria identifying them as authentic yeast cNLS cargos. Furthermore, we found that the targeting signal of Prp20 is a bipartite cNLS and that of Cdc6 is a monopartite cNLS. Basic residues present within these motifs are of different significance for the interaction with Impalpha. We determined the binding constants for import complexes containing the five cNLS proteins by surface plasmon resonance spectrometry. The dissociation constants for cNLS/alpha/beta complexes differ considerably, ranging from 1 nM for Cdc6 to 112 nM for Swi5, suggesting that the nuclear import kinetics is determined by the strength of cNLS/Impalpha binding. Impbeta enhances the affinity of Impalpha for cNLSs approximately 100-fold. This stimulation of cNLS binding to Impalpha results from a faster association in the presence of Impbeta, whereas the dissociation rate is unaffected by Impbeta. This implies that, after entry into the nucleus, the release of Impbeta by the Ran guanosine triphosphatase (Ran GTPase) from the import complex is not sufficient to dissociate the cNLS/Impalpha subcomplex. Our observation that the nucleoporin Nup2, which had been previously shown to release the cNLS from Impalpha in vitro, is required for efficient import of all the genuine cNLS cargos supports a general role of Nup2 in import termination.
Collapse
|
37
|
Sorokin AV, Kim ER, Ovchinnikov LP. Nucleocytoplasmic transport of proteins. BIOCHEMISTRY (MOSCOW) 2008; 72:1439-57. [PMID: 18282135 DOI: 10.1134/s0006297907130032] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In eukaryotic cells, the movement of macromolecules between the nucleus and cytoplasm occurs through the nuclear pore complex (NPC)--a large protein complex spanning the nuclear envelope. The nuclear transport of proteins is usually mediated by a family of transport receptors known as karyopherins. Karyopherins bind to their cargoes via recognition of nuclear localization signal (NLS) for nuclear import or nuclear export signal (NES) for export to form a transport complex. Its transport through NPC is facilitated by transient interactions between the karyopherins and NPC components. The interactions of karyopherins with their cargoes are regulated by GTPase Ran. In the current review, we describe the NPC structure, NLS, and NES, as well as the model of classic Ran-dependent transport, with special emphasis on existing alternative mechanisms; we also propose a classification of the basic mechanisms of protein transport regulation.
Collapse
Affiliation(s)
- A V Sorokin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | | | | |
Collapse
|
38
|
|
39
|
Isgro TA, Schulten K. Cse1p-binding dynamics reveal a binding pattern for FG-repeat nucleoporins on transport receptors. Structure 2007; 15:977-91. [PMID: 17698002 DOI: 10.1016/j.str.2007.06.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 06/26/2007] [Accepted: 06/27/2007] [Indexed: 01/07/2023]
Abstract
Nuclear pore proteins with phenylalanine-glycine repeats are vital to the functional transport of molecules across the nuclear pore complex. The current study investigates the binding of these FG-nucleoporins to the Cse1p:Kap60p:RanGTP nuclear export complex. Fourteen binding spots for FG-nucleoporin peptides are revealed on the surface of Cse1p, and 5 are revealed on the Kap60p surface. Taken together, and along with binding data for two other transport receptors, the data suggest that the ability to bind FG-nucleoporins by itself is not enough to ensure viable nuclear transport. Rather, it is proposed that the density of binding spots on the transport receptor surface is key in determining transport viability. The number of binding spots on the transport receptor surface should be large enough to ensure multiple, simultaneous FG-repeat binding, and their arrangement should be close enough to ensure multiple binding from the same FG-nucleoporin.
Collapse
Affiliation(s)
- Timothy A Isgro
- Department of Physics, University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, IL 61801, USA
| | | |
Collapse
|
40
|
Araújo-Bazán L, Fernández-Martínez J, Ríos VMDL, Etxebeste O, Albar JP, Peñalva MA, Espeso EA. NapA and NapB are the Aspergillus nidulans Nap/SET family members and NapB is a nuclear protein specifically interacting with importin alpha. Fungal Genet Biol 2007; 45:278-91. [PMID: 17890114 DOI: 10.1016/j.fgb.2007.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 07/26/2007] [Accepted: 08/09/2007] [Indexed: 12/27/2022]
Abstract
In eukaryotic cells, importin alpha is the major carrier for transport protein cargoes into the nucleus. We characterize here kapA, the single Aspergillus nidulans gene encoding an importin alpha. Using an affinity approach, we identify six potential interactors of KapA(50), a deleted version of KapA lacking the autoinhibitory importin-beta-binding domain. One such interactor is NapB, the A. nidulans orthologue of Saccharomyces cerevisiae Vps75p, a histone chaperone member of the Nap/SET family of proteins that additionally plays a cytosolic role in vacuolar protein sorting. NapB, but not its close relative NapA (the A. nidulans orthologue of yeast Nap1p) interacts directly with KapA(50) in pull down assays, despite the fact that NapB does not contain a classical nuclear localization sequence. NapB is a nuclear protein which exits nuclei at the onset of mitosis when two simultaneous mechanisms might be acting, the partial disassembly of the nuclear pore complexes and as yet unidentified posttranslational modification of NapB. The mitotic cytosolic localization of NapB might facilitate its putative role in the sorting of protein cargoes to the vacuole. In addition, we show that NapB and the mitotic B-type cyclin NimE compete for in vitro binding to KapA.
Collapse
Affiliation(s)
- Lidia Araújo-Bazán
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, Madrid 28040, Spain
| | | | | | | | | | | | | |
Collapse
|
41
|
Quan X, Yu J, Bussey H, Stochaj U. The localization of nuclear exporters of the importin-beta family is regulated by Snf1 kinase, nutrient supply and stress. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1773:1052-61. [PMID: 17544521 DOI: 10.1016/j.bbamcr.2007.04.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 04/19/2007] [Accepted: 04/20/2007] [Indexed: 10/23/2022]
Abstract
In the budding yeast Saccharomyces cerevisiae, four members of the importin-beta family of nuclear carriers, Xpo1p/Crm1p, Cse1p, Msn5p and Los1p, function as exporters of protein and tRNA. Under normal growth conditions GFP-tagged exporters are predominantly associated with nuclei. The presence of Snf1 kinase, a key regulator of cell growth and a metabolic sensor, controls the localization of GFP-exporters. Additional glucose-dependent, but Snf1-independent, mechanisms regulate carrier distribution and a switch from fermentable to non-fermentable carbon sources relocates all of the carriers, suggesting a link to the nutritional status of the cell. Moreover, stress controls the proper localization of GFP-exporters, which mislocalize upon exposure to heat, ethanol and starvation. Stress may activate the MAPK cell integrity cascade, and we tested the role of this pathway in exporter localization. Under non-stress conditions, the proper distribution of GFP-Cse1p and Xpo1p/Crm1p-GFP requires kinases of the cell integrity cascade. By contrast, Msn5p-GFP and Los1p-GFP rely on the MAPK module to relocate to the cytoplasm when cells are stressed with ethanol. Our results indicate that the association of nuclear exporters with nuclei is controlled by multiple mechanisms that are organized in a hierarchical fashion and linked to the physiological state of the cell.
Collapse
Affiliation(s)
- XinXin Quan
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
42
|
Lange A, Mills RE, Lange CJ, Stewart M, Devine SE, Corbett AH. Classical nuclear localization signals: definition, function, and interaction with importin alpha. J Biol Chem 2007; 282:5101-5. [PMID: 17170104 PMCID: PMC4502416 DOI: 10.1074/jbc.r600026200] [Citation(s) in RCA: 914] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The best understood system for the transport of macromolecules between the cytoplasm and the nucleus is the classical nuclear import pathway. In this pathway, a protein containing a classical basic nuclear localization signal (NLS) is imported by a heterodimeric import receptor consisting of the beta-karyopherin importin beta, which mediates interactions with the nuclear pore complex, and the adaptor protein importin alpha, which directly binds the classical NLS. Here we review recent studies that have advanced our understanding of this pathway and also take a bioinformatics approach to analyze the likely prevalence of this system in vivo. Finally, we describe how a predicted NLS within a protein of interest can be confirmed experimentally to be functionally important.
Collapse
Affiliation(s)
- Allison Lange
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, Georgia 30322
| | - Ryan E. Mills
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, Georgia 30322
| | - Christopher J. Lange
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, Georgia 30322
| | - Murray Stewart
- Medical Research Center Laboratory of Molecular Biology, Cambridge CB2 2QH, United Kingdom
| | - Scott E. Devine
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, Georgia 30322
| | - Anita H. Corbett
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
43
|
Hood-DeGrenier JK, Boulton CN, Lyo V. Cytoplasmic Clb2 is required for timely inactivation of the mitotic inhibitor Swe1 and normal bud morphogenesis in Saccharomyces cerevisiae. Curr Genet 2006; 51:1-18. [PMID: 17033818 DOI: 10.1007/s00294-006-0102-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 09/05/2006] [Accepted: 09/10/2006] [Indexed: 10/24/2022]
Abstract
Subcellular localization is an important determinant of substrate and functional specificity for cyclin-cyclin dependent kinase (CDK) complexes. This work addresses the cytoplasmic function of the budding yeast mitotic cyclin Clb2, which is mostly nuclear but is also present in the bulk cytoplasm and at the mother-bud neck. Clb2 contains two leucine-rich nuclear export signals (NESs)--one of which we newly describe here--that maintain its presence in the cytoplasm. Yeast strains bearing mutations in one or both of these NESs have elongated buds, indicative of a G2/M cell cycle delay. A small number of these cells exhibit a filamentous-like morphology under conditions that do not normally induce filamentous growth. These phenotypes are enhanced by deletion of the other three mitotic cyclins (CLB1,3,4) and are dependent on expression of Swe1, the yeast Cdk1 inhibitory kinase. Deltaclb1,3,4 Deltabud3 cells, which fail to localize Clb2 to the bud neck, also exhibit a Swe1-dependent elongated bud phenotype. Our results support a model in which cytoplasmic Clb2-Cdk1 is required for timely inactivation of Swe1 at the G2/M transition and bud neck targeting of Clb2 contributes to the efficiency of this process. Cytoplasmic Clb2 may also be important for repression of filamentous growth.
Collapse
|
44
|
Quan X, Tsoulos P, Kuritzky A, Zhang R, Stochaj U. The carrier Msn5p/Kap142p promotes nuclear export of the hsp70 Ssa4p and relocates in response to stress. Mol Microbiol 2006; 62:592-609. [PMID: 17020589 DOI: 10.1111/j.1365-2958.2006.05395.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytoplasmic hsp70s like yeast Ssa4p shuttle between nucleus and cytoplasm under normal growth conditions but accumulate in nuclei upon stress. This nuclear accumulation is only transient, and Ssa4p relocates to the cytoplasm when cells recover. We show here that Ssa4p nuclear export is independent of Xpol/Crm1 and identify the importin-beta family member Msn5p/Kap142p as the exporter for Ssa4p. In growing cells and in vitro, Msn5p and Ssa4p generate genuine export complexes that require Ran/Gsp1p-GTP. Furthermore, nucleoporin Nup82p, which plays a role in Msn5p-mediated transport, is necessary for efficient export of Ssa4p. In living cells, stress not only regulates Ssa4p localization, but also controls the distribution of Msn5p. Msn5p is concentrated in nuclei of unstressed cells, but appears in the cytoplasm upon exposure to ethanol, heat, starvation or severe oxidative stress. In addition, growth on non-fermentable carbon sources relocates a portion of Msn5p to the cytoplasm and leads to a partial nuclear accumulation of Ssa4p. Taken together, growth and stress conditions that localize the transporter Msn5p to the cytoplasm also induce the nuclear accumulation of its cargo Ssa4p.
Collapse
Affiliation(s)
- XinXin Quan
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada
| | | | | | | | | |
Collapse
|
45
|
Yu L, Castillo LP, Mnaimneh S, Hughes TR, Brown GW. A survey of essential gene function in the yeast cell division cycle. Mol Biol Cell 2006; 17:4736-47. [PMID: 16943325 PMCID: PMC1635385 DOI: 10.1091/mbc.e06-04-0368] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mutations impacting specific stages of cell growth and division have provided a foundation for dissecting mechanisms that underlie cell cycle progression. We have undertaken an objective examination of the yeast cell cycle through flow cytometric analysis of DNA content in TetO(7) promoter mutant strains representing 75% of all essential yeast genes. More than 65% of the strains displayed specific alterations in DNA content, suggesting that reduced function of an essential gene in most cases impairs progression through a specific stage of the cell cycle. Because of the large number of essential genes required for protein biosynthesis, G1 accumulation was the most common phenotype observed in our analysis. In contrast, relatively few mutants displayed S-phase delay, and most of these were defective in genes required for DNA replication or nucleotide metabolism. G2 accumulation appeared to arise from a variety of defects. In addition to providing a global view of the diversity of essential cellular processes that influence cell cycle progression, these data also provided predictions regarding the functions of individual genes: we identified four new genes involved in protein trafficking (NUS1, PHS1, PGA2, PGA3), and we found that CSE1 and SMC4 are important for DNA replication.
Collapse
Affiliation(s)
- Lisa Yu
- *Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| | - Lourdes Peña Castillo
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada M5G 1L6; and
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| | - Sanie Mnaimneh
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada M5G 1L6; and
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| | - Timothy R. Hughes
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada M5G 1L6; and
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| | - Grant W. Brown
- *Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| |
Collapse
|
46
|
Hodel AE, Harreman MT, Pulliam KF, Harben ME, Holmes JS, Hodel MR, Berland KM, Corbett AH. Nuclear Localization Signal Receptor Affinity Correlates with in Vivo Localization in Saccharomyces cerevisiae. J Biol Chem 2006; 281:23545-56. [PMID: 16785238 DOI: 10.1074/jbc.m601718200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear localization signals (NLSs) target proteins into the nucleus through mediating interactions with nuclear import receptors. Here, we perform a quantitative analysis of the correlation between NLS receptor affinity and the steady-state distribution of NLS-bearing cargo proteins between the cytoplasm and the nucleus of live yeast, which reflects the relative import rates of various NLS sequences. We find that there is a complicated, but monotonic quantitative relationship between the affinity of an NLS for the import receptor, importin alpha, and the steady-state accumulation of the cargo in the nucleus. This analysis takes into consideration the impact of protein size. In addition, the hypothetical upper limit to an NLS affinity for the receptors is explored through genetic approaches. Overall, our results indicate that there is a correlation between the binding affinity of an NLS cargo for the NLS receptor, importin alpha, and the import rate for this cargo. This correlation, however, is not maintained for cargoes that bind to the NLS receptor with very weak or very strong affinity.
Collapse
Affiliation(s)
- Alec E Hodel
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Jothi R, Cherukuri PF, Tasneem A, Przytycka TM. Co-evolutionary analysis of domains in interacting proteins reveals insights into domain-domain interactions mediating protein-protein interactions. J Mol Biol 2006; 362:861-75. [PMID: 16949097 PMCID: PMC1618801 DOI: 10.1016/j.jmb.2006.07.072] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 06/19/2006] [Accepted: 07/14/2006] [Indexed: 11/28/2022]
Abstract
Recent advances in functional genomics have helped generate large-scale high-throughput protein interaction data. Such networks, though extremely valuable towards molecular level understanding of cells, do not provide any direct information about the regions (domains) in the proteins that mediate the interaction. Here, we performed co-evolutionary analysis of domains in interacting proteins in order to understand the degree of co-evolution of interacting and non-interacting domains. Using a combination of sequence and structural analysis, we analyzed protein-protein interactions in F1-ATPase, Sec23p/Sec24p, DNA-directed RNA polymerase and nuclear pore complexes, and found that interacting domain pair(s) for a given interaction exhibits higher level of co-evolution than the non-interacting domain pairs. Motivated by this finding, we developed a computational method to test the generality of the observed trend, and to predict large-scale domain-domain interactions. Given a protein-protein interaction, the proposed method predicts the domain pair(s) that is most likely to mediate the protein interaction. We applied this method on the yeast interactome to predict domain-domain interactions, and used known domain-domain interactions found in PDB crystal structures to validate our predictions. Our results show that the prediction accuracy of the proposed method is statistically significant. Comparison of our prediction results with those from two other methods reveals that only a fraction of predictions are shared by all the three methods, indicating that the proposed method can detect known interactions missed by other methods. We believe that the proposed method can be used with other methods to help identify previously unrecognized domain-domain interactions on a genome scale, and could potentially help reduce the search space for identifying interaction sites.
Collapse
Affiliation(s)
- Raja Jothi
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
- *Corresponding authors; E-mail addresses of the corresponding authors: ;
| | - Praveen F. Cherukuri
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
- Bioinformatics Program Boston University, Boston, MA 02215, USA
| | - Asba Tasneem
- Booz Allen Hamilton Inc., Rockville, MD 20852, USA
| | - Teresa M. Przytycka
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
- *Corresponding authors; E-mail addresses of the corresponding authors: ;
| |
Collapse
|
48
|
Caesar S, Greiner M, Schlenstedt G. Kap120 functions as a nuclear import receptor for ribosome assembly factor Rpf1 in yeast. Mol Cell Biol 2006; 26:3170-80. [PMID: 16581791 PMCID: PMC1446960 DOI: 10.1128/mcb.26.8.3170-3180.2006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nucleocytoplasmic exchange of macromolecules is mediated by receptors specialized in passage through the nuclear pore complex. The majority of these receptors belong to the importin beta protein family, which has 14 members in Saccharomyces cerevisiae. Nine importins carry various cargos from the cytoplasm into the nucleus, whereas four exportins mediate nuclear export. Kap120 is the only receptor whose transport cargo has not been found previously. Here, we characterize Kap120 as an importin for the ribosome maturation factor Rpf1, which was identified in a two-hybrid screen. Kap120 binds directly to Rpf1 in vitro and is released by Ran-GTP. At least three parallel import pathways exist for Rpf1, since nuclear import is defective in strains with the importins Kap120, Kap114, and Nmd5 deleted. Both kap120 and rpf1 mutants accumulate large ribosomal subunits in the nucleus. The nuclear accumulation of 60S ribosomal subunits in kap120 mutants is abolished upon RPF1 overexpression, indicating that Kap120 does not function in the actual ribosomal export step but rather in import of ribosome maturation factors.
Collapse
Affiliation(s)
- Stefanie Caesar
- Medizinische Biochemie und Molekularbiologie, Universität des Saarlandes, D-66421 Homburg, Germany
| | | | | |
Collapse
|
49
|
Gorjánácz M, Török I, Pomozi I, Garab G, Szlanka T, Kiss I, Mechler BM. Domains of Importin-alpha2 required for ring canal assembly during Drosophila oogenesis. J Struct Biol 2006; 154:27-41. [PMID: 16458020 DOI: 10.1016/j.jsb.2005.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 11/10/2005] [Accepted: 12/07/2005] [Indexed: 10/25/2022]
Abstract
Null-mutation in Drosophila importin-alpha2, such as the deficiency imp-alpha2(D14), causes recessive female sterility with the formation of dumpless eggs. In imp-alpha2(D14) the transfer of nurse cell components to the oocyte is interrupted and the Kelch protein, an oligomeric ring canal actin organizer, is normally produced but fails to associate with the ring canals resulting in their occlusion. To define domains regulating Kelch deposition on ring canals we performed site-directed mutagenesis on protein binding domains and putative phosphorylation sites of Imp-alpha2. Phenotypic analysis of the mutant transgenes in imp-alpha2(D14) revealed that mutations affecting the Imp-beta binding-domain, the dimerization domain, and specific serine residues of putative phosphorylation sites led to a normal or nearly normal oogenesis but arrested early embryonic development, whereas mutations in the nuclear localization signal (NLS) and CAS/exportin binding domains resulted in ring canal occlusion and a drastic nuclear accumulation of the mutant proteins. Deletion of the Imp-beta binding domain also gave rise to a nuclear localization of the mutant protein, which partially retained its function in ring canal assembly. Thus, we propose that mutations in NLS and CAS binding domains affect the deposition of Kelch onto the ring canals and prevent the association of Imp-alpha2 with a negative regulator of Kelch function.
Collapse
Affiliation(s)
- Mátyás Gorjánácz
- Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
| | | | | | | | | | | | | |
Collapse
|
50
|
Cook A, Fernandez E, Lindner D, Ebert J, Schlenstedt G, Conti E. The structure of the nuclear export receptor Cse1 in its cytosolic state reveals a closed conformation incompatible with cargo binding. Mol Cell 2005; 18:355-67. [PMID: 15866177 DOI: 10.1016/j.molcel.2005.03.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Revised: 03/15/2005] [Accepted: 03/23/2005] [Indexed: 11/18/2022]
Abstract
Cse1 mediates nuclear export of importin alpha, the nuclear localization signal (NLS) import adaptor. We report the 3.1 A resolution structure of cargo-free Cse1, representing this HEAT repeat protein in its cytosolic state. Cse1 is compact, consisting of N- and C-terminal arches that interact to form a ring. Comparison with the structure of cargo-bound Cse1 shows a major conformational change leading to opening of the structure upon cargo binding. The largest structural changes occur within a hinge region centered at HEAT repeat 8. This repeat contains a conserved insertion that connects the RanGTP and importin alpha contact sites and that is essential for binding. In the cargo-free state, the RanGTP binding sites are occluded and the importin alpha sites are distorted. Mutations that destabilize the N- to C-terminal interaction uncouple importin alpha and Ran binding, suggesting that the closed conformation prevents association with importin alpha.
Collapse
Affiliation(s)
- Atlanta Cook
- European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|