1
|
Wang ST, Neo BH, Betts RJ. Glycosaminoglycans: Sweet as Sugar Targets for Topical Skin Anti-Aging. Clin Cosmet Investig Dermatol 2021; 14:1227-1246. [PMID: 34548803 PMCID: PMC8449875 DOI: 10.2147/ccid.s328671] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/19/2021] [Indexed: 12/23/2022]
Abstract
Glycosaminoglycans (GAGs) are long, linear polysaccharides comprised of repeating disaccharide units with pleiotropic biological functions, with the non-sulfated GAG hyaluronic acid (HA), and sulfated GAGs dermatan sulfate, chondroitin sulfate, heparan sulfate, keratan sulfate, and to a lesser extent heparin all being expressed in skin. Their ability to regulate keratinocyte proliferation and differentiation, inflammatory processes and extracellular matrix composition and quality demonstrates their critical role in regulating skin physiology. Similarly, the water-binding properties of GAGs and structural qualities, particularly for HA, are crucial for maintaining proper skin form and hydration. The biological importance of GAGs, as well as extensive evidence that their properties and functions are altered in both chronological and extrinsic skin aging, makes them highly promising targets to improve cosmetic skin quality. Within the present review, we examine the cutaneous biological activity of GAGs alongside the protein complexes they form called proteoglycans and summarize the age-related changes of these molecules in skin. We also examine current topical interventional approaches to modulate GAGs for improved skin quality such as direct exogenous administration of GAGs, with a particular interest in strategies targeted at potentiating GAG levels in skin through either attenuating GAG degradation or increasing GAG production.
Collapse
Affiliation(s)
- Siew Tein Wang
- L'Oréal Research & Innovation, L'Oréal Singapore, Singapore
| | - Boon Hoe Neo
- L'Oréal Research & Innovation, L'Oréal Singapore, Singapore
| | | |
Collapse
|
2
|
Morgani SM, Hadjantonakis AK. Signaling regulation during gastrulation: Insights from mouse embryos and in vitro systems. Curr Top Dev Biol 2019; 137:391-431. [PMID: 32143751 DOI: 10.1016/bs.ctdb.2019.11.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gastrulation is the process whereby cells exit pluripotency and concomitantly acquire and pattern distinct cell fates. This is driven by the convergence of WNT, BMP, Nodal and FGF signals, which are tightly spatially and temporally controlled, resulting in regional and stage-specific signaling environments. The combination, level and duration of signals that a cell is exposed to, according its position within the embryo and the developmental time window, dictates the fate it will adopt. The key pathways driving gastrulation exhibit complex interactions, which are difficult to disentangle in vivo due to the complexity of manipulating multiple signals in parallel with high spatiotemporal resolution. Thus, our current understanding of the signaling dynamics regulating gastrulation is limited. In vitro stem cell models have been established, which undergo organized cellular differentiation and patterning. These provide amenable, simplified, deconstructed and scalable models of gastrulation. While the foundation of our understanding of gastrulation stems from experiments in embryos, in vitro systems are now beginning to reveal the intricate details of signaling regulation. Here we discuss the current state of knowledge of the role, regulation and dynamic interaction of signaling pathways that drive mouse gastrulation.
Collapse
Affiliation(s)
- Sophie M Morgani
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre Cambridge Biomedical Campus, Cambridge, United Kingdom.
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States.
| |
Collapse
|
3
|
Smith RAA, Murali S, Rai B, Lu X, Lim ZXH, Lee JJL, Nurcombe V, Cool SM. Minimum structural requirements for BMP-2-binding of heparin oligosaccharides. Biomaterials 2018; 184:41-55. [PMID: 30205243 DOI: 10.1016/j.biomaterials.2018.08.056] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 12/27/2022]
Abstract
Bone morphogenetic proteins (BMPs) are essential during tissue repair and remodeling after injury. Glycosaminoglycan (GAG) sugars are known to enhance BMP activity in vitro and in vivo; here the interactions of BMP-2 with various glycosaminoglycan classes were compared and shown to be selective for heparin over other comparable saccharides. The minimal chain lengths and specific sulfate moieties required for heparin-derived oligosaccharide binding to BMP-2, and the ability of such oligosaccharides to promote BMP-2-induced osteogenic differentiation in vitro were then determined. BMP-2 could bind to heparin hexasaccharides (dp6) and octasaccharides (dp8), but decasaccharides (dp10) were the minimum chain length required for both efficient binding of BMP-2 and consequent heparin-dependent cell responses. N-sulfation is the most important, and 6-O-sulfation moderately important for BMP-2 binding and activity, whereas 2-O-sulfation was much less critical. Bone formation assays in vivo further confirmed that dp10, N-sulfated heparin oligosaccharides were the minimal requirement for effective enhancement of BMP-2-induced bone formation. Such information is necessary for the rational design of the next generations of heparan-based devices for bone tissue repair.
Collapse
Affiliation(s)
- Raymond A A Smith
- Glycotherapeutics Group, Institute of Medical Biology, 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - Sadasivam Murali
- Glycotherapeutics Group, Institute of Medical Biology, 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - Bina Rai
- Glycotherapeutics Group, Institute of Medical Biology, 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - Xiaohua Lu
- Glycotherapeutics Group, Institute of Medical Biology, 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - Zophia Xue Hui Lim
- Glycotherapeutics Group, Institute of Medical Biology, 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - Jaslyn J L Lee
- Glycotherapeutics Group, Institute of Medical Biology, 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - Victor Nurcombe
- Glycotherapeutics Group, Institute of Medical Biology, 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University-Imperial College London, Singapore
| | - Simon M Cool
- Glycotherapeutics Group, Institute of Medical Biology, 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore; Dept. of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119074, Singapore.
| |
Collapse
|
4
|
Baumann H. Biological Effects of Heparan Sulfates and Regioselectively Modified Heparin-Heparan Mimetics. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911503018001006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The heparan sulfates (HS) are structurally the most complex but information rich biopolymers known. They are composed of polysaccharides containing regioselectively distributed carboxyl, sulfate ester, acetyl, amino, and N-sulfonyl groups with sequence- and domain-like arrangements. HS are found ubiquitously on cell surfaces and in extracellular matrices where they are covalently anchored via restricted protein cores. They modulate numerous development cell processes and the pathology of living organisms. HS concentration is extremely low on endothelial cell surfaces (1 pmol/cm2), therefore, they are difficult to isolate and evaluate. Furthermore, their sequence variability is extremely high and the sequence analysis is in its infancy. HS acts as a low affinity receptor which plays a central role in the reception and modulation of a wide range of effector proteins such as growth factors, morphogens, chemokines, enzymes, protease inhibitors. Water soluble fragments of HS and heparin (HE) enzymatically released or synthetic sequences, analogs of heparinoids and heparanoids (HH) mimetics regioselectively modified oligo- and polysaccharides with HE/HS like functional groups, and nonsaccharide containing structures can modulate effector proteins and influence some of the development and pathological processes. Modulation effects are described for anticoagulant antiproliferative properties, for reducing platelet and plasma protein adhesion as well as inhibition or activating growth factors by the influence of HH mimetics. The advantage of defined high molecular weight substrates are discussed and compared to the low molecular weight mimetics. The potential of HH mimetics opens new approaches and strategies for therapeutic treatment.
Collapse
Affiliation(s)
- H. Baumann
- Institute for Technical and Macromolecular Chemistry Hemocompatible and Biocompatible Biomaterials RWTH Aachen, Worringer Weg 1, D-52074 Aachen, Germany
| |
Collapse
|
5
|
Luo Y, Yang C, Ye M, Jin C, Abbruzzese JL, Lee MH, Yeung SCJ, McKeehan WL. Deficiency of metabolic regulator FGFR4 delays breast cancer progression through systemic and microenvironmental metabolic alterations. Cancer Metab 2013; 1:21. [PMID: 24279986 PMCID: PMC4178208 DOI: 10.1186/2049-3002-1-21] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 11/08/2013] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Endocrine FGF21 and FGF19 target adipocytes and hepatocytes through betaKlotho (KLB) and FGFR tyrosine kinases effecting glucose, lipid and energy metabolism. Both factors alleviate obesity and metabolic abnormalities which are contributing factors to breast tumor progression. Genomic manipulation of hepatic FGFR4 has uncovered roles of endocrine FGF signaling in both metabolic and cellular homeostasis. Here we determined whether systemic and microenvironmental metabolic alterations caused by the FGFR4 deficiency affect tumorigenesis in breast where FGFR4 is negligible. Breast tumors were induced in the bigenic mice with ablation of FGFR4 and overexpression of TGFα that activates Her2 in the ductal and lobular epithelium surrounded by adipocytes. Mammary tumorigenesis and alterations in systemic and breast microenvironmental metabolic parameters and regulatory pathways were analyzed. RESULTS Ablation of FGFR4 had no effect on cellular homeostasis and Her2 activity of normal breast tissue. However, the absence of FGFR4 reduced TGFα-driven breast tumor incidence and progression and improved host survival. Notable increases in hepatic and serum FGF21, ileal FGF15/19, adiponectin and adipsin, and decreases in systemic Fetuin A, IGF-1, IGFBP-1, RBP4 and TIMP1 were observed. The ablation affected adipogenesis and secretory function of adipocytes as well as lipogenesis, glycolysis and energy homeostasis associated with the functions of mitochondria, ER and peroxisomes in the breast and tumor foci. Treatment with a chemical inhibitor of NAMPT involved in the pathways inhibited the growth and survival of breast tumor cells and tumor-initiating cell-containing spheres. The FGFR4 ablation also caused elevation of inflammatory factors in the breast. CONCLUSIONS Although the primary role of FGFR4 in metabolism occurs in hepatocytes, its ablation results in a net inhibitory effect on mammary tumor progression. We suggest that the tumor-delaying effect of FGFR4 deficiency may be in large part due to elevated anti-obesogenic FGF21 that triggers tumor-suppressing signals from both peripheral and breast adipocytes. The predominant changes in metabolic pathways suggested roles of metabolic effects from both peripheral and breast adipocytes on metabolic reprogramming in breast epithelial cells that contribute to the suppression of tumor progression. These results provide new insights into the contribution of systemic and microenvironmental metabolic effects controlled by endocrine FGF signaling to breast carcinogenesis.
Collapse
Affiliation(s)
- Yongde Luo
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 W, Holcombe Blvd,, Houston, TX 77030-3303, USA.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Nilasaroya A, Martens PJ, Whitelock JM. Enzymatic degradation of heparin-modified hydrogels and its effect on bioactivity. Biomaterials 2012; 33:5534-40. [PMID: 22575836 DOI: 10.1016/j.biomaterials.2012.04.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 04/08/2012] [Indexed: 01/02/2023]
Abstract
The extracellular matrix is continually remodelled by the action of various enzymes such as heparanase, which specifically targets heparan sulfate (HS) and is found in human platelets at high levels. The activity of heparin-containing hydrogels following incubation with platelet extract (PE) was investigated in order to simulate the responses that might occur when the hydrogels, as tissue engineered scaffolds, come in contact with blood products at the site of an injury. The heparanase activity of PE on heparin, used as a model of HS, was confirmed by the decrease in molecular weight. PE treatment diminished heparin's anticoagulation property but increased its FGF-2 signalling activity, suggesting that the PE's heparanase activity cleaves at the 3-O-sulfated glucosamine to produce large fragments that can signal cell receptors. The dual effect observed when poly(vinyl alcohol)/heparin co-hydrogels were incubated with PE supports the hypothesis of platelets having the capacity to limit anticoagulation and thus promote blood clot formation, which may be critical in the process of tissue repair.
Collapse
Affiliation(s)
- Anastasia Nilasaroya
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | |
Collapse
|
7
|
Murali S, Leong DFM, Lee JJL, Cool SM, Nurcombe V. Comparative assessment of the effects of gender-specific heparan sulfates on mesenchymal stem cells. J Biol Chem 2011; 286:17755-65. [PMID: 21454472 DOI: 10.1074/jbc.m110.148874] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We compare here the structural and functional properties of heparan sulfate (HS) chains from both male or female adult mouse liver through a combination of molecular sieving, enzymatic cleavage, and strong anion exchange-HPLC. The results demonstrated that male and female HS chains are significantly different by a number of parameters; size determination showed that HS chain lengths were ∼100 and ∼22 kDa, comprising 30-40 and 6-8 disaccharide repeats, respectively. Enzymatic depolymerization and disaccharide composition analyses also demonstrated significant differences in domain organization and fine structure. N-Unsubstituted glucosamine (ΔHexA-GlcNH(3)(+), ΔHexA-GlcNH(3)(+)(6S), ΔHexA(2S)-GlcNH(3)(+), and N-acetylglucosamine (ΔHexA-GlcNAc) are the predominant disaccharides in male mouse liver HS. However, N-sulfated glucosamine (ΔHexA-GlcNSO(3)) is the predominant disaccharide found in female liver. These structurally different male and female liver HS forms exert differential effects on human mesenchymal cell proliferation and subsequent osteogenic differentiation. The present study demonstrates the potential usefulness of gender-specific liver HS for the manipulation of human mesenchymal cell properties, including expansion, multipotentiality, and subsequent matrix mineralization. Our results suggest that HS chains show both tissue- and gender-specific differences in biochemical composition that directly reflect their biological activity.
Collapse
Affiliation(s)
- Sadasivam Murali
- Stem Cells and Tissue Repair Group, Institute of Medical Biology, 8A Biomedical Grove, 06-06 Immunos, Singapore 138648
| | | | | | | | | |
Collapse
|
8
|
Murali S, Manton KJ, Tjong V, Su X, Haupt LM, Cool SM, Nurcombe V. Purification and characterization of heparan sulfate from human primary osteoblasts. J Cell Biochem 2010; 108:1132-42. [PMID: 19777445 DOI: 10.1002/jcb.22340] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Heparan sulfate (HS) is a linear, highly variable, highly sulfated glycosaminoglycan sugar whose biological activity largely depends on internal sulfated domains that mediate specific binding to an extensive range of proteins. In this study we employed anion exchange chromatography, molecular sieving and enzymatic cleavage on HS fractions purified from three compartments of cultured osteoblasts-soluble conditioned media, cell surface, and extracellular matrix (ECM). We demonstrate that the composition of HS chains purified from the different compartments is structurally non-identical by a number of parameters, and that these differences have significant ramifications for their ligand-binding properties. The HS chains purified of conditioned medium had twice the binding affinity for FGF2 when compared with either cell surface or ECM HS. In contrast, similar binding of BMP2 to the three types of HS was observed. These results suggest that different biological compartments of cultured cells have structurally and functionally distinct HS species that help to modulate the flow of HS-dependent factors between the ECM and the cell surface.
Collapse
Affiliation(s)
- Sadasivam Murali
- Stem Cells and Tissue Repair Group, Institute of Medical Biology, A*STAR (Agency for Science, Technology and Research), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | | | | | | | | | | | | |
Collapse
|
9
|
|
10
|
Lehiy CJ, Martinez O, Passarelli AL. Virion-associated viral fibroblast growth factor stimulates cell motility. Virology 2009; 395:152-60. [PMID: 19800090 DOI: 10.1016/j.virol.2009.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 08/26/2009] [Accepted: 09/09/2009] [Indexed: 10/20/2022]
Abstract
The Autographa californica M nucleopolyhedrovirus (AcMNPV) viral fibroblast growth factor (vFGF) has functional parallels to cellular FGFs. Deletion of the AcMNPV vfgf has no obvious phenotype in cell culture but delays the time of insect death. Here, we determined vFGF production during virus infection. vFGF was detected at 24 hours post infection and through the remainder of the infection cycle. Since vFGF is thought to be a secreted membrane-binding protein and virions acquire an envelope derived from the cell membrane, we examined virions for the presence of vFGF using microscopy, flow cytometry, and affinity chromatography. We found that vFGF associated with virions. Furthermore, budded virus carrying vFGF had more affinity to heparin than vFGF-deficient budded virus, consistent with the affinity of FGFs for heparan sulfate proteoglycans. Although the function of virion-associated vFGF is not clear, we found that virion-associated vFGF stimulated cell motility and affected virus attachment.
Collapse
Affiliation(s)
- Christopher Jon Lehiy
- Molecular, Cellular, and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506-4901, USA
| | | | | |
Collapse
|
11
|
Fernández C, Hattan CM, Kerns RJ. Semi-synthetic heparin derivatives: chemical modifications of heparin beyond chain length, sulfate substitution pattern and N-sulfo/N-acetyl groups. Carbohydr Res 2006; 341:1253-65. [PMID: 16712822 DOI: 10.1016/j.carres.2006.04.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2006] [Revised: 04/04/2006] [Accepted: 04/09/2006] [Indexed: 11/24/2022]
Abstract
The glycosaminoglycan heparin is a polyanionic polysaccharide most recognized for its anticoagulant activity. Heparin binds to cationic regions in hundreds of prokaryotic and eukaryotic proteins, termed heparin-binding proteins. The endogenous ligand for many of these heparin-binding proteins is a structurally similar glycosaminoglycan, heparan sulfate (HS). Chemical and biosynthetic modifications of heparin and HS have been employed to discern specific sequences and charge-substitution patterns required for these polysaccharides to bind specific proteins, with the goal of understanding structural requirements for protein binding well enough to elucidate the function of the saccharide-protein interactions and/or to develop new or improved heparin-based pharmaceuticals. The most common modifications to heparin structure have been alteration of sulfate substitution patterns, carboxyl reduction, replacement N-sulfo groups with N-acetyl groups, and chain fragmentation. However, an accumulation of reports over the past 50 years describe semi-synthetic heparin derivatives obtained by incorporating aliphatic, aryl, and heteroaryl moieties into the heparin structure. A primary goal in many of these reports has been to identify heparin-derived structures as new or improved heparin-based therapeutics. Presented here is a perspective on the introduction of non-anionic structural motifs into heparin structure, with a focus on such modifications as a strategy to generate novel reduced-charge heparin-based bind-and-block antagonists of HS-protein interactions. The chemical methods employed to synthesize such derivatives, as well as other unique heparin conjugates, are reviewed.
Collapse
Affiliation(s)
- Cristina Fernández
- Division of Medicinal and Natural Products Chemistry, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
12
|
Clamp A, Blackhall FH, Henrioud A, Jayson GC, Javaherian K, Esko J, Gallagher JT, Merry CLR. The Morphogenic Properties of Oligomeric Endostatin Are Dependent on Cell Surface Heparan Sulfate. J Biol Chem 2006; 281:14813-22. [PMID: 16481316 DOI: 10.1074/jbc.m512400200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Endostatin has attracted considerable attention because of its ability to inhibit angiogenesis. This property of monomeric endostatin contrasts with that of the trimeric endostatin moiety generated from the intact C-terminal domain of collagen XVIII that induces a promigratory phenotype in endothelial cells. This activity is inhibited by monomeric endostatin. In this study we demonstrate that the effect of oligomeric endostatin can also be inhibited by exogenous glycosaminoglycans in a size-dependent manner, with heparin oligosaccharides containing more than 20 monosaccharide residues having optimal inhibitory activity. Oligomeric endostatin was also found to induce morphological changes in Chinese hamster ovary cells, an epithelial cell line. This novel observation allowed the utilization of a panel of Chinese hamster ovary cell mutants with defined glycosaminoglycan biosynthetic defects. The action of oligomeric endostatin on these cells was shown to be dependent on cell surface glycosaminoglycans, principally heparan sulfate with N- and 6-O-sulfation of glucosamine residues rather than iduronate 2-O-sulfation being important for bioactivity. The responsiveness of a cell line (pgsE-606) with globally reduced heparan sulfate sulfation and shortened S domains, however, indicates that overall heparan sulfate domain patterning is the key determinant of the bioactivity of oligomeric endostatin. Purified heparin-monomeric endostatin constructs generated by zero-length cross-linking techniques were found to be unable to inhibit the action of oligomeric endostatin. This indicates a mechanism for the perturbation of oligomeric endostatin action by its monomeric counterpart via competition for glycosaminoglycan attachment sites at the cell surface.
Collapse
Affiliation(s)
- Andrew Clamp
- Department of Medical Oncology, Cancer Research UK and the University of Manchester, Christie Hospital NHS Trust, Manchester M20 4BX, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Vivès RR, Crublet E, Andrieu JP, Gagnon J, Rousselle P, Lortat-Jacob H. A novel strategy for defining critical amino acid residues involved in protein/glycosaminoglycan interactions. J Biol Chem 2004; 279:54327-33. [PMID: 15485868 DOI: 10.1074/jbc.m409760200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The binding of proteins to glycosaminoglycans (GAGs) is the prerequisite for a large number of cellular processes and regulatory events and is associated to many pathologies. However, progress in the understanding of these mechanisms has been hampered by the lack of simple and comprehensive analytical tools for the identification of the structural attributes involved in protein/saccharide interaction. Characterization of GAG binding motifs on proteins has so far relied on site-directed mutagenesis studies, protein sequence mapping using synthetic peptides, molecular modeling, or structural analysis. Here, we report the development of a novel approach for identifying protein residues involved in the binding to heparin, the archetypal member of the GAG family. This method, which uses native proteins, is based on the formation of cross-linked complexes of the protein of interest with heparin beads, the proteolytic digestion of these complexes, and the subsequent identification of the heparin binding containing peptides by N terminus sequencing. Analysis of the CC chemokine regulated on activation, normal T-cell expressed, and secreted (RANTES), the envelope glycoprotein gC from pseudorabies virus and the laminin-5 alpha 3LG4/5 domain validated the techniques and provided novel information on the heparin binding motifs present within these proteins. Our results highlighted this method as a fast and valuable alternative to existing approaches. Application of this technique should greatly contribute to facilitate the structural study of protein/GAG interactions and the understanding of their biological functions.
Collapse
Affiliation(s)
- Romain R Vivès
- Institut de Biologie Structurale, CNRS-CEA-UJF, 41 rue Horowitz, 38027 Grenoble cedex 01, France.
| | | | | | | | | | | |
Collapse
|
14
|
Harmer NJ, Ilag LL, Mulloy B, Pellegrini L, Robinson CV, Blundell TL. Towards a resolution of the stoichiometry of the fibroblast growth factor (FGF)-FGF receptor-heparin complex. J Mol Biol 2004; 339:821-34. [PMID: 15165853 DOI: 10.1016/j.jmb.2004.04.031] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Revised: 03/30/2004] [Accepted: 04/13/2004] [Indexed: 11/22/2022]
Abstract
The 22 members of the fibroblast growth factor (FGF) family have been implicated in cell proliferation, differentiation, survival, and migration. They are required for both development and maintenance of vertebrates, demonstrating an exquisite pattern of affinities for both protein and proteoglycan receptors. Recent crystal structures have suggested two models for the complex between FGFs, FGF receptors (FGFRs) and the proteoglycan heparan sulphate that mediates signalling, and have provided insight into how FGFs show differing affinities for the range of FGFRs. However, the physiological relevance of the two different models has not been made clear. Here, we demonstrate that the two complexes can be prepared from the same protein components, confirming that neither complex is the product of misfolded protein samples. Analyses of the complexes with mass spectrometry and analytical ultracentrifugation show that the species observed are consistent with the crystal structures formed using the two preparation protocols. This analysis supports the contention that both of the crystal structures reflect the state of the molecules in solution. Mass spectrometry of the complexes suggests that the stoichiometry of the complexes is 2 FGF1:2 FGFR2:1 heparin, regardless of the method used to prepare the complexes. These observations suggest that the two proposed complex architectures may both have relevance to the formation of an in vivo signalling complex, with a combination of the two interactions contributing to the formation of a larger focal complex.
Collapse
Affiliation(s)
- Nicholas J Harmer
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK.
| | | | | | | | | | | |
Collapse
|
15
|
Lau EK, Paavola CD, Johnson Z, Gaudry JP, Geretti E, Borlat F, Kungl AJ, Proudfoot AE, Handel TM. Identification of the glycosaminoglycan binding site of the CC chemokine, MCP-1: implications for structure and function in vivo. J Biol Chem 2004; 279:22294-305. [PMID: 15033992 DOI: 10.1074/jbc.m311224200] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In a recent study, we demonstrated that glycosaminoglycan (GAG) binding and oligomerization are essential for the in vivo function of the chemokines MCP-1/CCL2, RANTES/CCL5, and MIP-1beta/CCL4 (1). Binding to the GAG chains of cell surface proteoglycans is thought to facilitate the formation of high localized concentrations of chemokines, which in turn provide directional signals for leukocyte migration. To understand the molecular details of the chemokine-GAG interaction, in the present study we identified the GAG binding epitopes of MCP-1/CCL2 by characterizing a panel of surface alanine mutants in a series of heparin-binding assays. Using sedimentation equilibrium and cross-linking methods, we also observed that addition of heparin octasaccharide induces tetramer formation of MCP-1/CCL2. Although MCP-1/CCL2 forms a dimer in solution, both a dimer and tetramer have been observed by x-ray crystallography, providing a glimpse of the putative heparin-bound state. When the GAG binding residues are mapped onto the surface of the tetramer, the pattern that emerges is a continuous ring of basic residues encircling the tetramer, creating a positively charged surface well suited for binding GAGs. The structure also suggests several possible functional roles for GAG-induced oligomerization beyond retention of chemokines at the site of production.
Collapse
Affiliation(s)
- Elaine K Lau
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Krieger E, Geretti E, Brandner B, Goger B, Wells TN, Kungl AJ. A structural and dynamic model for the interaction of interleukin-8 and glycosaminoglycans: Support from isothermal fluorescence titrations. Proteins 2004; 54:768-75. [PMID: 14997572 DOI: 10.1002/prot.10590] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Binding of interleukin-8 (IL-8) to glycosaminoglycans (GAGs) on the surface of endothelial cells is crucial for the recruitment of neutrophils to an inflammatory site. Deriving structural knowledge about this interaction from in silico docking experiments has proved difficult because of the high flexibility and the size of GAGs. Therefore, we developed a docking method that takes into account ligand and protein flexibility by running approximately 15,000 molecular dynamics simulations of the docking event with different initial orientations of the binding partners. The method was shown to successfully reproduce the residues of basic fibroblast growth factor involved in GAG binding. Docking of a heparin hexasaccharide to IL-8 gave an interaction interface involving the basic residues His18, Lys20, Arg60, Lys64, Lys67, and Arg68. By subjecting IL-8 single-site mutants, in which these amino acids were replaced by alanine, to isothermal fluorescence titrations, the affinities for heparin were determined to be wtIL-8 > IL-8(H18A) >> IL-8(R68A) > IL-8(K67A) >> IL-8(K20A) > IL-8(R60A) >> IL-8(K64A). A comparison with the binding energies calculated from the model revealed high values for wtIL-8 and the H18A mutant and significantly lower but similar energies for the remaining mutants. Connecting the two fully sulfated hexasaccharides bound to each of the two IL-8 monomers in the dimeric chemokine by an N-acetylated dodecasaccharide gave a complex structure in which the GAG molecule aligned in a parallel fashion to the N-terminal alpha-helices of IL-8 like a horseshoe. A 5-ns molecular dynamics simulation of this complex confirmed its structural stability and revealed a reorientation in both binding sites where a disaccharide became the central binding unit. Isothermal fluorescence titration experiments using differently sulfated heparin disaccharides confirmed that a single disaccharide can indeed bind IL-8 with high affinity.
Collapse
Affiliation(s)
- Elmar Krieger
- Centre for Molecular and Biomolecular Informatics, Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
17
|
The development of heparan sulfate sugars as therapeutics: Versatility that couples stem cells, tissue engineering, and wound repair. Drug Dev Res 2004. [DOI: 10.1002/ddr.10395] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Wu CH, Chang GY, Chang WC, Hsu CT, Chen RS. Wound healing effects of porcine placental extracts on rats with thermal injury. Br J Dermatol 2003; 148:236-45. [PMID: 12588374 DOI: 10.1046/j.1365-2133.2003.05164.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Placental extracts have been used as Chinese folk medicines to accelerate wound healing. However, the molecular mechanism of placental extracts on wound healing has not been identified. It is known that fibroblast growth factors (FGF) and transforming growth factors (TGF) are two key factors involved in wound healing. OBJECTIVES To determine the molecular mechanism of placental extracts on wound healing. METHODS The protein levels of both growth factors in rat skins with thermal injury were therefore studied to explore the molecular mechanism of placental extracts on wound healing. As cell proliferation is essential for wound healing, effects of placental extracts on fibroblast proliferation were also determined. RESULTS As compared with the controls, the S phase of fibroblasts was significantly increased by 1.5-, 1.7- and 4.7-fold for 1, 10 and 30 mg mL(-1) of placental extracts, respectively. The increase of the S phase was not due to the minute amount of sex hormones in the placental extracts as the addition of equivalent amounts of hormones showed no increase of the S phase. In addition, a 2.5-fold increase of TGF-beta1 in wound skin biopsy was noticed with 30 mg mL(-1) of porcine placental extracts. The FGF levels in the wound skin receiving 30 mg mL(-1) of porcine placental extracts were also significantly increased compared with the controls. CONCLUSIONS These ex vivo data support the observation that the application of 30 mg mL(-1) of placental extracts reduced the wound healing time by about 50%. To the best of our knowledge, this is the first report to explore the molecular mechanisms of porcine placental extracts on wound healing. These results may provide the insight into the potential use of porcine placental extracts as an alternative medicine for accelerating wound healing.
Collapse
Affiliation(s)
- C-H Wu
- Department of Pharmacology, School of Medicine, China Medical College, 91 Hsueh-Shih Road, Taichung 404, Taiwan, ROC.
| | | | | | | | | |
Collapse
|
19
|
Melcangi RC, Martini L, Galbiati M. Growth factors and steroid hormones: a complex interplay in the hypothalamic control of reproductive functions. Prog Neurobiol 2002; 67:421-49. [PMID: 12385863 DOI: 10.1016/s0301-0082(02)00060-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The mechanisms through which LHRH-secreting neurons are controlled still represent a crucial and debated field of research in the neuroendocrine control of reproduction. In the present review, we have specifically considered two potential signals reaching these hypothalamic neurons: steroid hormones and growth factors. Examples of the relevant physiological role of the interactions between these two families of biologically acting molecules have been provided. In many cases, these interactions occur at the level of hypothalamic astrocytes, which are presently accepted as functional partners of the LHRH-secreting neurons. On the basis of the observations here summarized, we have formulated the hypothesis that a functional co-operation of steroid hormones and growth factors occurring in the hypothalamic astrocytic compartment represents a key factor in the neuroendocrine control of reproductive functions.
Collapse
Affiliation(s)
- Roberto C Melcangi
- Department of Endocrinology, Center of Excellence on Neurodegenerative Diseases, University of Milan, Via Balzaretti 9, 20133, Milan, Italy.
| | | | | |
Collapse
|
20
|
Netelenbos T, Zuijderduijn S, van den Born J, Kessler FL, Zweegman S, Huijgens PC, Dräger AM. Proteoglycans guide SDF‐1‐induced migration of hematopoietic progenitor cells. J Leukoc Biol 2002. [DOI: 10.1189/jlb.72.2.353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Tanja Netelenbos
- Department of Hematology, Vrije Universiteit Medical Center, Amsterdam, The Netherlands and
| | - Suzanne Zuijderduijn
- Department of Hematology, Vrije Universiteit Medical Center, Amsterdam, The Netherlands and
| | - Jacob van den Born
- Department of Molecular Cell Biology, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Floortje L. Kessler
- Department of Hematology, Vrije Universiteit Medical Center, Amsterdam, The Netherlands and
| | - Sonja Zweegman
- Department of Hematology, Vrije Universiteit Medical Center, Amsterdam, The Netherlands and
| | - Peter C. Huijgens
- Department of Hematology, Vrije Universiteit Medical Center, Amsterdam, The Netherlands and
| | - Angelika M. Dräger
- Department of Hematology, Vrije Universiteit Medical Center, Amsterdam, The Netherlands and
| |
Collapse
|
21
|
Casu B, Lindahl U. Structure and biological interactions of heparin and heparan sulfate. Adv Carbohydr Chem Biochem 2002; 57:159-206. [PMID: 11836942 DOI: 10.1016/s0065-2318(01)57017-1] [Citation(s) in RCA: 289] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- B Casu
- G. Ronzoni Institute for Chemical and Biochemical Research, Milan, Italy
| | | |
Collapse
|
22
|
Ostrovsky O, Berman B, Gallagher J, Mulloy B, Fernig DG, Delehedde M, Ron D. Differential effects of heparin saccharides on the formation of specific fibroblast growth factor (FGF) and FGF receptor complexes. J Biol Chem 2002; 277:2444-53. [PMID: 11714710 DOI: 10.1074/jbc.m108540200] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heparan sulfates (HS) play an important role in the control of cell growth and differentiation by virtue of their ability to modulate the activities of heparin-binding growth factors, an issue that is particularly well studied for fibroblast growth factors (FGFs). HS/heparin co-ordinate the interaction of FGFs with their receptors (FGFRs) and are thought to play a critical role in receptor dimerization. Biochemical and crystallographic studies, conducted mainly with FGF-2 or FGF-1 and FGF receptors 1 and 2, suggests that an octasaccharide is the minimal length required for FGF- and FGFR-induced dimerization and subsequent activation. In addition, 6-O-sulfate groups are thought to be essential for binding of HS to FGFR and for receptor dimerization. We show here that oligosaccharides shorter than 8 sugar units support activation of FGFR2 IIIb by FGF-1 and interaction of FGFR4 with FGF-1. In contrast, only relatively long oligosaccharides supported receptor binding and activation in the FGF-1.FGFR1 or FGF-7.FGFR2 IIIb setting. In addition, both 6-O- and 2-O-desulfated heparin activated FGF-1 signaling via FGFR2 IIIb, whereas neither one stimulated FGF-1 signaling via FGFR1 or FGF-7 via FGFR2 IIIb. These findings indicate that the structure of HS required for activating FGFs is dictated by the specific FGF and FGFR combination. These different requirements may reflect the differences in the mode by which a given FGFR interacts with the various FGFs.
Collapse
Affiliation(s)
- Olga Ostrovsky
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | | | | | | | |
Collapse
|
23
|
Russo K, Ragone R, Facchiano AM, Capogrossi MC, Facchiano A. Platelet-derived growth factor-BB and basic fibroblast growth factor directly interact in vitro with high affinity. J Biol Chem 2002; 277:1284-91. [PMID: 11694520 DOI: 10.1074/jbc.m108858200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Platelet-derived growth factor-BB (PDGF-BB) and basic fibroblast growth factor (bFGF) are potent growth factors active on many cell types. The present study indicates that they directly interact in vitro. The interaction was investigated with overlay experiments, surface plasmon resonance experiments, and solid-phase immunoassays by immobilizing one factor or the other and by steady-state fluorescence analysis. The interaction observed was specific, dose-dependent, and saturable, and the bFGF/PDGF-BB binding stoichiometry was found to be 2:1. K(D)(1) for the first step equilibrium and the overall K(D) values were found to be in the nanomolar and in the picomolar range, respectively. Basic FGF/PDGF-BB interaction was strongly reduced as a function of time of PDGF-BB proteolysis. Furthermore, docking analysis suggested that the PDGF-BB region interacting with bFGF may overlap, at least in part, with the PDGF-BB receptor-binding site. This hypothesis was supported by surface plasmon resonance experiments showing that an anti-PDGF-BB antibody, known to inhibit PDGF-BB binding with its receptor, strongly reduced bFGF/PDGF-BB interaction, whereas a control antibody was ineffective. According to these data, the observed bFGF.PDGF-BB complex formation might explain, at least in part, previous observations showing that PDGF-BB chemotactic and mitogenic activity on smooth muscle cells are strongly inhibited in the presence of bFGF.
Collapse
Affiliation(s)
- Katia Russo
- Laboratorio di Patologia Vascolare, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico, 00167 Roma, Italy
| | | | | | | | | |
Collapse
|
24
|
Lyon M, Deakin JA, Gallagher JT. The mode of action of heparan and dermatan sulfates in the regulation of hepatocyte growth factor/scatter factor. J Biol Chem 2002; 277:1040-6. [PMID: 11689562 DOI: 10.1074/jbc.m107506200] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hepatocyte growth factor/scatter factor, in addition to binding to its specific signal-transducing receptor, Met, also interacts with both heparan and dermatan sulfates with high affinity. We have investigated the comparative role of these two glycosaminoglycans in the activation of Met by hepatocyte growth factor/scatter factor. Using glycosaminoglycan-deficient CHO pgsA-745 cells we have shown that growth factor activity is critically dependent upon glycosaminoglycans, and that heparan sulfate and dermatan sulfate are equally potent as co-receptors. Cross-linked 1:1 conjugates of growth factor and either heparan or dermatan sulfate do not dimerize under physiological conditions and are biologically active. This implies that a ternary signaling complex with Met forms in vivo. Native Met isolated from CHO pgsA-745 cells shows only very weak intrinsic affinity for heparin in vitro. Also, a heparin-derived hexasaccharide, which is the minimal size for high affinity binding to the growth factor alone, is sufficient to induce biological activity. Together these observations imply that the role of these glycosaminoglycan may be primarily to effect a conformational change in hepatocyte growth factor/scatter factor, rather than to induce a necessary growth factor dimerization, or to stabilize a ternary complex by additionally interacting with Met.
Collapse
Affiliation(s)
- Malcolm Lyon
- Cancer Research Campaign & University of Manchester Department of Medical Oncology, Christie Hospital NHS Trust, Manchester M20 4BX, United Kingdom.
| | | | | |
Collapse
|
25
|
Pellegrini L. Role of heparan sulfate in fibroblast growth factor signalling: a structural view. Curr Opin Struct Biol 2001; 11:629-34. [PMID: 11785766 DOI: 10.1016/s0959-440x(00)00258-x] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fibroblast growth factors (FGFs) are among the best-studied heparin-binding proteins, and heparan sulfate proteoglycans regulate FGF signalling by direct molecular association with FGF and its tyrosine kinase receptor, FGFR. Two recently determined crystal structures of FGF-FGFR-heparin complexes have provided new structural information on how heparin binds to FGF and FGFR, and lead to different models for receptor dimerisation.
Collapse
Affiliation(s)
- L Pellegrini
- Department of Biochemistry, University of Cambridge, UK.
| |
Collapse
|
26
|
Ghiselli G, Eichstetter I, Iozzo RV. A role for the perlecan protein core in the activation of the keratinocyte growth factor receptor. Biochem J 2001; 359:153-63. [PMID: 11563979 PMCID: PMC1222131 DOI: 10.1042/0264-6021:3590153] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Perlecan, a widespread heparan sulphate (HS) proteoglycan, is directly involved in the storing of angiogenic growth factors, mostly members of the fibroblast growth factor (FGF) gene family. We have previously shown that antisense targeting of the perlecan gene causes a reduced growth and responsiveness to FGF7 [also known as keratinocyte growth factor (KGF)] in human cancer cells, and that the perlecan protein core interacts specifically with FGF7. In the present paper, we have investigated human colon carcinoma cells in which the perlecan gene was disrupted by targeted homologous recombination. After screening over 1000 clones, we obtained two clones heterozygous for the null mutation with no detectable perlecan, indicating that the other allele was non-functioning. The perlecan-deficient cells grew more slowly, did not respond to FGF7 with or without the addition of heparin, and were less tumorigenic than control cells. Paradoxically, the perlecan-deficient cells displayed increased FGF7 surface binding. However, the perlecan protein core was required for functional activation of the KGF receptor and downstream signalling. Because heparin could not substitute for perlecan, the HS chains are not critical for FGF7-mediated signalling in this cell system. These results provide the first genetic evidence that the perlecan protein core is a molecular entity implicated in FGF7 binding and activation of its receptor.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Blotting, Western
- Cell Division/drug effects
- Colonic Neoplasms/metabolism
- DNA, Antisense/pharmacology
- Fibrinolytic Agents/pharmacology
- Fibroblast Growth Factor 1/metabolism
- Fibroblast Growth Factor 7
- Fibroblast Growth Factors/metabolism
- Gene Targeting
- Heparan Sulfate Proteoglycans/physiology
- Heparin/pharmacology
- Humans
- Mice
- Mice, Nude
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Protein Binding
- Receptor, Fibroblast Growth Factor, Type 2
- Receptors, Fibroblast Growth Factor/metabolism
- Recombinant Proteins/metabolism
- Signal Transduction
- Transplantation, Heterologous
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/metabolism
- Tumor Cells, Cultured/transplantation
Collapse
Affiliation(s)
- G Ghiselli
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
27
|
Affiliation(s)
- J T Gallagher
- Department of Medical Oncology, University of Manchester, Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Wilmslow Road, Manchester, M20 4BX, United Kingdom.
| |
Collapse
|
28
|
Nagendra HG, Harrington AE, Harmer NJ, Pellegrini L, Blundell TL, Burke DF. Sequence analyses and comparative modeling of fly and worm fibroblast growth factor receptors indicate that the determinants for FGF and heparin binding are retained in evolution. FEBS Lett 2001; 501:51-8. [PMID: 11457455 DOI: 10.1016/s0014-5793(01)02603-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The presence of a large number of fibroblast growth factors (FGFs) and multiple splice forms of their receptors (FGFRs) in higher vertebrates makes the three-dimensional (3D) analysis of FGF interactions with their receptors a formidable task. The situation differs in Caenorhabditis elegans (worm) and Drosophila melanogaster (fruit fly), where only one or two FGF and FGFR sequences have been identified. Structural studies of the FGF-FGFR complexes in such primitive organisms should reveal the basic features of the ligand-receptor interactions as they first emerged through evolution. We have analysed the sequences of worm and fly FGFs and FGFRs and used the recently determined crystal structure of the human FGF1-FGFR2-heparin ternary complex [Pellegrini, L., Burke, D.F., von Delft, F., Mulloy, B. and Blundell, T.L. (2000) Nature 407, 1029-34] to construct 3D models of the homologous complexes. In spite of a low sequence similarity with their human counterparts, key structural features required for ligand-receptor and protein-heparin binding in humans are conserved in the fly and worm FGF-FGFR-heparin complexes. Analyses of the models show that tertiary interactions that are not conserved in sequence are maintained through novel interactions or complementary mutations in the fly and worm sequences. The overall charge distributions observed in the human FGF-FGFR-heparin complex are retained in the fly and worm models. The arginine residue at position 253 in the linker region between the Ig-like domains D2 and D3 in the wild type fly and worm sequences is particularly striking, as the Pro253Arg mutation in humans is responsible for Apert syndrome. This change may enhance the affinity of receptors for their FGF molecules as observed in Apert mutants.
Collapse
Affiliation(s)
- H G Nagendra
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA, Cambridge, UK.
| | | | | | | | | | | |
Collapse
|
29
|
Cancilla B, Davies A, Cauchi JA, Risbridger GP, Bertram JF. Fibroblast growth factor receptors and their ligands in the adult rat kidney. Kidney Int 2001; 60:147-55. [PMID: 11422746 DOI: 10.1046/j.1523-1755.2001.00781.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Fibroblast growth factors (FGFs) are a family of at least 21 heparin-binding proteins involved in many biological processes, both during development and in the adult, including cell proliferation, differentiation, and angiogenesis. FGFs mediate their effects through high-affinity tyrosine kinase receptors (FGFRs), which are encoded by four genes. The aims of the present study were to localize FGFR-1 through FGFR-3 in the normal adult rat kidney and to determine which functional FGFR variants and FGFs were expressed. METHODS Avidin-biotin-enhanced horseradish peroxidase immunohistochemistry was used on paraffin sections of rat kidney to localize FGFR-1 through FGFR-3, whereas reverse transcriptase-polymerase chain reaction was used to examine expression of the receptor variants and also of FGF-1 through FGF-10 in cortex, outer medulla, and inner medulla. RESULTS By immunohistochemistry, each receptor was localized to distinct and overlapping nephron segments, such that one or more FGFRs were localized to all nephron and collecting duct epithelia. FGFR-1 and FGFR-3 were localized to glomeruli, FGFR-3 to proximal tubules and FGFR-1 to thin limbs. FGFR-1 through FGFR-3 were localized to distal straight tubules, with FGFR-1 and FGFR-3 localized to distal convoluted tubules. FGFR-1 and FGFR-3 were localized to medullary collecting ducts. In addition, FGFR-1 was localized to the smooth muscle of renal arteries. All seven FGFR variants were expressed in the cortex and outer medulla, with fewer FGFRs in the inner medulla. FGF-1, FGF-2, FGF-7, FGF-8, and FGF-9 were expressed in the kidney, with FGF-10 expression found only in the cortex. CONCLUSIONS Mapping of these receptors is critical to the determination of the effects of FGF ligands in discrete regions of the kidney. The distributions of the FGFRs in the normal adult kidney and the restricted expression of FGF ligands suggest that specific FGFs have distinct and important roles in the maintenance of normal kidney structure and function.
Collapse
Affiliation(s)
- B Cancilla
- Monash Institute of Reproduction and Development, Monash University, Clayton, Victoria, Australia
| | | | | | | | | |
Collapse
|
30
|
Delehedde M, Lyon M, Sergeant N, Rahmoune H, Fernig DG. Proteoglycans: pericellular and cell surface multireceptors that integrate external stimuli in the mammary gland. J Mammary Gland Biol Neoplasia 2001; 6:253-73. [PMID: 11547896 DOI: 10.1023/a:1011367423085] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Proteoglycans consist of a core protein and an associated glycosaminoglycan (GAG) chain of heparan sulfate, chondroitin sulfate, dermatan sulfate or keratan sulfate, which are attached to a serine residue. The core proteins of cell surface proteoglycans may be transmembrane, e.g., syndecan, or GPI-anchored, e.g., glypican. Many different cell surface and matrix proteoglycan core proteins are expressed in the mammary gland and in mammary cells in culture. The level of expression of these core proteins, the structure of their GAG chains, and their degradation are regulated by many of the effectors that control the development and function of the mammary gland. Regulatory proteins of the mammary gland that bind GAG include many growth factors and morphogens (fibroblast growth factors, hepatocyte growth factor/scatter factor, members of the midkine family, wnts), matrix proteins (collagen, fibronectin, and laminin), enzymes (lipoprotein lipase) and microbial surface proteins. Structural diversity within GAG chains ensures that each protein-GAG interaction is as specific as necessary and a number of sequences of saccharides that recognize individual proteins have been elucidated. The GAG-protein interactions serve to regulate the signal output of growth factor receptor tyrosine kinase and hence cell fate as well as the storage and diffusion of extracellular protein effectors. In addition, GAGs clearly coordinate stromal and epithelial development, and they are active participants in mediating cell-cell and cell-matrix interactions. Since a single proteoglycan, even if it carries a single GAG chain, can bind multiple proteins, proteoglycans are also likely to act as multireceptors which promote the integration of cellular signals.
Collapse
Affiliation(s)
- M Delehedde
- School of Biological Sciences, University of Liverpool, United Kingdom
| | | | | | | | | |
Collapse
|
31
|
Kwan CP, Venkataraman G, Shriver Z, Raman R, Liu D, Qi Y, Varticovski L, Sasisekharan R. Probing fibroblast growth factor dimerization and role of heparin-like glycosaminoglycans in modulating dimerization and signaling. J Biol Chem 2001; 276:23421-9. [PMID: 11292822 DOI: 10.1074/jbc.m010786200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
For a number of growth factors and cytokines, ligand dimerization is believed to be central to the formation of an active signaling complex. In the case of fibroblast growth factor-2 (FGF2) signaling, heparin/heparan sulfate-like glycosaminoglycans (HLGAGs) are involved through interaction with both FGF2 and its receptors (FGFRs) in assembling a tertiary complex and modulating FGF2 activity. Biochemical data have suggested different modes of HLGAG-induced FGF2 dimerization involving specific protein-protein contacts. In addition, several recent x-ray crystallography studies of FGF.FGFR and FGF.FGFR.HLGAG complexes have revealed other modes of molecular assemblage, with no FGF-FGF contacts. All these different biochemical and structural findings have clarified less and in fact raised more questions as to which mode of FGF2 dimerization, if any, is essential for signaling. In this study, we address the issue of FGF2 dimerization in signaling using a combination of biochemical, biophysical, and site-directed mutagenesis approaches. Our findings presented here provide direct evidence of FGF2 dimerization in mediating FGF2 signaling.
Collapse
Affiliation(s)
- C P Kwan
- Division of Bioengineering and Environmental Health, the Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Clayton A, Thomas J, Thomas GJ, Davies M, Steadman R. Cell surface heparan sulfate proteoglycans control the response of renal interstitial fibroblasts to fibroblast growth factor-2. Kidney Int 2001; 59:2084-94. [PMID: 11380810 DOI: 10.1046/j.1523-1755.2001.00723.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND While the progression of renal disease to end stage is strongly correlated with tubulointerstitial changes, the control of the fibrotic process within the interstitium is poorly understood. Basic fibroblast growth factor (FGF-2) has been implicated as a major growth factor involved in fibroblast activation and extracellular matrix synthesis. Furthermore, in many cells, the activity of FGF-2 is controlled by a low-affinity but high-capacity interaction with heparan sulfate (HS) proteoglycans (PGs), such as members of the syndecan family. These molecules are likely to be central to the control of interstitial fibrosis, but as yet, there has been no characterization of their synthesis by interstitial cells. METHODS The expression of HSPG on the surface of NRK 49F fibroblasts was demonstrated by immunohistochemistry and by metabolic labeling with [(35)S]-sulfate. HSs were characterized by specific enzymatic digestion, size exclusion chromatography, and anion exchange chromatography. The mRNA for syndecan 1 through syndecan 4 in the fibroblasts was detected by semiquantitative reverse transcription-polymerase chain reaction. Fibroblast proliferation was measured by the MTT assay. RESULTS Immunohistochemistry and [(35)S]-sulfate-labeling demonstrated that renal fibroblasts expressed HSPGs on their surface. Furthermore, enzymatic removal of these HS (but not chondroitin sulfate) glycosaminoglycan (GAG) chains, or inhibition of GAG sulfation, abolished the proliferative response of both NRK cells and primary human cortical fibroblasts to FGF-2 but not to platelet-derived growth factor. The addition of conditioned medium, containing HS-GAG fragments, restored the proliferative response to FGF-2, confirming the specificity of the interaction. Finally, the mRNA for all four syndecans was detected in the fibroblasts, and that for syndecan 1 in particular was up-regulated by FGF-2. CONCLUSIONS The present study demonstrates that the expression of cell surface HSPG was essential for the proliferation of renal fibroblasts in response to FGF-2, and therefore may play a major role in the development and persistence of a proliferating phenotype during interstitial nephritis.
Collapse
Affiliation(s)
- A Clayton
- Institute of Nephrology, University of Wales College of Medicine, Cardiff, Wales, United Kingdom
| | | | | | | | | |
Collapse
|
33
|
Sadir R, Baleux F, Grosdidier A, Imberty A, Lortat-Jacob H. Characterization of the stromal cell-derived factor-1alpha-heparin complex. J Biol Chem 2001; 276:8288-96. [PMID: 11087743 DOI: 10.1074/jbc.m008110200] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The binding of chemokines to glycosaminoglycans is thought to play a crucial role in chemokine functions. It has recently been shown that stromal cell-derived factor-1alpha (SDF-1alpha), a CXC chemokine with potent anti-human immunodeficiency virus activity, binds to heparan sulfate through a typical consensus sequence for heparin recognition (BBXB, where B is a basic residue KHLK, amino acids 24-27). Calculation of the accessible surface, together with the electrostatic potential of the SDF-1alpha dimer, revealed that other amino acids (Arg-41 and Lys-43) are found in the same surface area and contribute to the creation of a positively charged crevice, located at the dimer interface. GRID calculations confirmed that this binding site will be the most energetically favored area for the interaction with sulfate groups. Site-directed mutagenesis and surface plasmon resonance-based binding assays were used to investigate the structural basis for SDF-1alpha binding to heparin. Among the residues clustered in this basic surface area, Lys-24 and Lys-27 have dominant roles and are essential for interaction with heparin. Amino acids Arg-41 and Lys-43 participate in the binding but are not strictly required for the interaction to take place. Direct binding assays and competition analysis with monoclonal antibodies also permitted us to show that the N-terminal residue (Lys-1), an amino acid critical for receptor activation, is involved in complex formation. Binding studies with selectively desulfated heparin, heparin oligosaccharides, and heparitinase-resistant heparan sulfate fragments showed that a minimum size of 12-14 monosaccharide units is required for efficient binding and that 2-O- and N-sulfate groups have a dominant role in the interaction. Finally, the heparin-binding site was identified on the crystal structure of SDF-1alpha, and a docking study was undertaken. During the energy minimization process, heparin lost its perfect ribbon shape and fitted the protein surface perfectly. In the model, Lys-1, Lys-24, Lys-27, and Arg-41 were found to have the major role in binding a polysaccharide fragment consisting of 13 monosaccharide units.
Collapse
Affiliation(s)
- R Sadir
- Institut de Biologie Structurale, CNRS-CEA-UJF, Laboratoire de Biophysique Moléculaire, 41 Rue Horowitz, 38027 Grenoble Cedex 01, France
| | | | | | | | | |
Collapse
|
34
|
Pye DA, Vivès RR, Hyde P, Gallagher JT. Regulation of FGF-1 mitogenic activity by heparan sulfate oligosaccharides is dependent on specific structural features: differential requirements for the modulation of FGF-1 and FGF-2. Glycobiology 2000; 10:1183-92. [PMID: 11087710 DOI: 10.1093/glycob/10.11.1183] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The interaction of heparan sulfate (HS) (and the closely related molecule heparin) with FGF-1 is a requirement for enabling the growth factor to activate its cell surface tyrosine kinase receptor. However, little is known about the regulatory role of naturally occurring cell surface HS in FGF-1 activation. We have addressed this issue by utilizing a library of HS oligosaccharides, which are defined in both length and sulfate content. Mitogenic activation assays using these oligosaccharides showed that HS contained both FGF-1 activatory and inhibitory sugar sequences. Further analysis of these oligosaccharides showed a clear correlation between FGF-1 promoting activity and their 6-O-sulfate content. The results, in particular with the dodecasaccharide sequences, suggested that specific positioning of 6-O-sulfate groups may be required for the promotion of FGF-1 mitogenic activity. This may also be true for 2-O-sulfate groups though the evidence was not as conclusive. Differential activation of FGF-1 and FGF-2 was also observed and found to be mediated by both oligosaccharide length and sulfation pattern, with different specific O-sulfate positioning being implicated for the promotion of different growth factors. These results suggest that variation and tight control of the fine structure of HS may allow cells to not only control their positive/negative responses to individual FGFs but also to change specificity towards promotion of different members of the FGF family.
Collapse
Affiliation(s)
- D A Pye
- CRC Department of Drug Development and CRC and University of Manchester Department of Medical Oncology, PICR, Christie Hospital, Manchester M20 4BX, UK
| | | | | | | |
Collapse
|
35
|
Park PW, Reizes O, Bernfield M. Cell surface heparan sulfate proteoglycans: selective regulators of ligand-receptor encounters. J Biol Chem 2000; 275:29923-6. [PMID: 10931855 DOI: 10.1074/jbc.r000008200] [Citation(s) in RCA: 275] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- P W Park
- Division of Newborn Medicine, Department of Pediatrics, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
36
|
Lundin L, Larsson H, Kreuger J, Kanda S, Lindahl U, Salmivirta M, Claesson-Welsh L. Selectively desulfated heparin inhibits fibroblast growth factor-induced mitogenicity and angiogenesis. J Biol Chem 2000; 275:24653-60. [PMID: 10816596 DOI: 10.1074/jbc.m908930199] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Fibroblast growth factors (FGFs) are known to induce formation of new blood vessels, angiogenesis. We show that FGF-induced angiogenesis can be modulated using selectively desulfated heparin. Chinese hamster ovary cells (CHO677) deficient in heparan sulfate biosynthesis were employed to assess the function of heparin/heparan sulfate in FGF receptor-1 (FGFR-1) signal transduction and biological responses. In the presence of FGF-2, FGFR-1 kinase and subsequent mitogen-activated protein kinase Erk2 activities were augmented in a dose-dependent manner, whereas high concentrations of heparin resulted in decreased activity. The length of the heparin oligomer, minimally an 8/10-mer, was critical for the ability to enhance FGFR-1 kinase activity. The N- and 2-O-sulfate groups of heparin were essential for binding to FGF-2, whereas stimulation of FGFR-1 and Erk2 kinases by FGF-2 also required the presence of 6-O-sulfate groups. Sulfation at 2-O- and 6-O-positions was moreover a prerequisite for binding of heparin to a lysine-rich peptide corresponding to amino acids 160-177 in the extracellular domain of FGFR-1. Selectively 6-O-desulfated heparin, which binds to FGF-2 but fails to bind the receptor, decreased FGF-2-induced proliferation of CHO677 cells, presumably by displacing intact heparin. Furthermore, FGF-2-induced angiogenesis in chick embryos was inhibited by 6-O-desulfated heparin. Thus, formation of a ternary complex of FGF-2, heparin, and FGFR-1 appears critical for the activation of FGFR-1 kinase and downstream signal transduction. Preventing complex formation by modified heparin preparations may allow regulation of FGF-2 functions, such as induction of angiogenesis.
Collapse
Affiliation(s)
- L Lundin
- Department of Genetics and Pathology, Rudbeck Laboratory, S-751 85 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
37
|
Forsten KE, Fannon M, Nugent MA. Potential mechanisms for the regulation of growth factor binding by heparin. J Theor Biol 2000; 205:215-30. [PMID: 10873433 DOI: 10.1006/jtbi.2000.2064] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heparin and heparan sulfate proteoglycans (HSPG) bind many soluble growth factors and this binding is now recognized as an important mechanism for modulation of cell activity. Fibroblast growth factor-2 (FGF-2) is one of the best characterized of the heparin-binding growth factors and it has been shown experimentally that heparin regulation of FGF-2 activity is dependent on the level of cell HSPG and the concentration of heparin. In this paper, we explore, using mathematical modeling, proposed mechanisms for heparin regulation and determine how they impact FGF receptor binding. We demonstrate that the experimentally observed receptor binding phenomena can be reproduced if cells (1) express heparin-binding cell surface molecules and if either (2) these heparin binding sites are FGFR and bind heparin and FGF-2-heparin complexes or (3) are surface molecules able to bind FGF-2 and couple with FGF-2 receptors to form high-affinity FGF-2-bound surface complexes. The ability of heparin to directly interact with the FGFR and bind FGF-2 in the absence of this coupling function was not sufficient to explain heparin activity. These findings have implications with regard to regulation of heparin-binding growth factors and could help guide the development of highly specific growth regulatory molecules through specific regulation by heparin and HSPG.
Collapse
Affiliation(s)
- K E Forsten
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0211, USA.
| | | | | |
Collapse
|
38
|
Abstract
This overview attempts to cover, from a personal viewpoint, the development of the 'heparin' field during the last four decades. In particular, it emphasizes the metamorphosis of heparan sulfate (HS), from a disturbing contaminant in heparin production to the present-day key player in cell and developmental biology. Our understanding of the structural properties of the polysaccharides has been greatly promoted by studies of their biosynthesis. We now have a fairly detailed view of the various enzymatic reactions, that convert the initial [4GlcAbeta1-4GlcNAcalpha1-]n polymer into sulfated products with highly variable proportions of GlcA/IdoA and of N-acetyl, N-sulfate and O-sulfate substituents. It is also recognized that the variously substituted domains of the polysaccharide serve to interact, in more or less specific fashion, with a multitude of proteins, and that these interactions are essential to the biological functions of the proteins. Molecular genetics has unravelled the gene structures for almost all of the enzymes required to synthesize a heparin or HS chain, and has shown that several of these proteins exhibit genetic polymorphism. While differences in substrate specificity between enzyme isoforms may help to explain the structural variability of, in particular, HS chains, we still only partly understand the key features of heparin/HS biosynthesis and its regulation.
Collapse
Affiliation(s)
- U Lindahl
- Department of Medical Biochemistry and Microbiology, University of Uppsala, The Biomedical Center, Sweden.
| |
Collapse
|
39
|
Abstract
Fibroblast growth factors (FGFs) comprise a large family of developmental and physiological signaling molecules. All FGFs have a high affinity for the glycosaminoglycan heparin and for cell surface heparan sulfate proteoglycans. A large body of biochemical and cellular evidence points to a direct role for heparin/heparan sulfate in the formation of an active FGF/FGF receptor signaling complex. However, until recently there has been no direct demonstration that heparan is required for the biological activity of FGF in a developmental system in vivo. A recent paper by Lin et al.(1) has broken through this barrier to demonstrate that heparan sulfate is essential for FGF function during Drosophila development. The establishment of a role for heparan sulfate in FGFR activation in vivo suggests that tissue-specific differences in the structure of heparan may modulate the activity of FGF. BioEssays 22:108-112, 2000.
Collapse
Affiliation(s)
- D M Ornitz
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
40
|
|
41
|
Berman B, Ostrovsky O, Shlissel M, Lang T, Regan D, Vlodavsky I, Ishai-Michaeli R, Ron D. Similarities and differences between the effects of heparin and glypican-1 on the bioactivity of acidic fibroblast growth factor and the keratinocyte growth factor. J Biol Chem 1999; 274:36132-8. [PMID: 10593896 DOI: 10.1074/jbc.274.51.36132] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The keratinocyte growth factor (KGF or FGF-7) is unique among its family members both in its target cell specificity and its inhibition by the addition of heparin and the native heparan-sulfate proteoglycan (HSPG), glypican-1 in cells expressing endogenous HSPGs. FGF-1, which binds the FGF-7 receptor with a similar affinity as FGF-7, is stimulated by both molecules. In the present study, we investigated the modulation of FGF-7 activities by heparin and glypican-1 in HS-free background utilizing either HS-deficient cells expressing the FGF-7 receptor (designated BaF/KGFR cells) or soluble extracellular domain of the receptor. At physiological concentrations of FGF-7, heparin was required for high affinity receptor binding and for signaling in BaF/KGFR cells. In contrast, binding of FGF-7 to the soluble form of the receptor did not require heparin. However, high concentrations of heparin inhibited the binding of FGF-7 to both the cell surface and the soluble receptor, similar to the reported effect of heparin in cells expressing endogenous HSPGs. The difference in heparin dependence for high affinity interaction between the cell surface and soluble receptor may be due to other molecule(s) present on cell surfaces. Glypican-1 differed from heparin in that it stimulated FGF-1 but not FGF-7 activities in BaF/KGFR cells. Glypican-1 abrogated the stimulatory effect of heparin, and heparin reversed the inhibitory effect of glypican-1, indicating that this HSPG inhibits FGF-7 activities by acting, most likely, as a competitive inhibitor of stimulatory HSPG species for FGF-7. The regulatory effect of glypican-1 is mediated at the level of interaction with the growth factor as glypican-1 did not bind the KGFR. The effect of heparin and glypican-1 on FGF-1 and FGF-7 oligomerization was studied employing high and physiological concentrations of growth factors. We did not find a correlation between the effects of these glycosaminoglycans on FGFs biological activity and oligomerization. Altogether, our findings argue against the heparin-linked dimer presentation model as key in FGFR activation, and support the notion that HSPGs primarily affect high affinity interaction of FGFs with their receptors.
Collapse
Affiliation(s)
- B Berman
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | | | | | | | | | |
Collapse
|