1
|
Chan J, Qinqin F, Jianwei L, Ying C, Machida S, Wei C, Yuan YA, Jobichen C. Structural and mechanistic insight into stem-loop RNA processing by yeast Pichia stipitis Dicer. Protein Sci 2021; 30:1210-1220. [PMID: 33884665 DOI: 10.1002/pro.4086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 11/11/2022]
Abstract
Dicer is a member of the ribonuclease III enzyme family and processes double-stranded RNA into small functional RNAs. The variation in the domain architecture of Dicer among different species whilst preserving its biological dicing function is intriguing. Here, we describe the structure and function of a novel catalytically active RNase III protein, a non-canonical Dicer (PsDCR1), found in budding yeast Pichia stipitis. The structure of the catalytically active region (the catalytic RNase III domain and double-stranded RNA-binding domain 1 [dsRBD1]) of DCR1 showed that RNaseIII domain is structurally similar to yeast RNase III (Rnt1p) but uniquely presents dsRBD1 in a diagonal orientation, forming a catalytic core made of homodimer and large RNA-binding surface. The second dsRNA binding domain at C-terminus, which is absent in Rnt1, enhances the RNA cleavage activity. Although the cleavage pattern of PsDCR1 anchors an apical loop similar to Rnt1, the cleavage activity depended on the sequence motif at the lower stem, not the apical loop, of hairpin RNA. Through RNA sequencing and RNA mutations, we showed that RNA cleavage by PsDCR1 is determined by the stem-loop structure of the RNA substrate, suggesting the possibility that stem-loop RNA-guided gene silencing pathway exists in budding yeast.
Collapse
Affiliation(s)
- JingRu Chan
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Fu Qinqin
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Li Jianwei
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Chen Ying
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Satoru Machida
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Chen Wei
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Yuren Adam Yuan
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore.,National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Chacko Jobichen
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| |
Collapse
|
2
|
Altuvia Y, Bar A, Reiss N, Karavani E, Argaman L, Margalit H. In vivo cleavage rules and target repertoire of RNase III in Escherichia coli. Nucleic Acids Res 2019; 46:10380-10394. [PMID: 30113670 PMCID: PMC6212723 DOI: 10.1093/nar/gky684] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/18/2018] [Indexed: 12/02/2022] Open
Abstract
Bacterial RNase III plays important roles in the processing and degradation of RNA transcripts. A major goal is to identify the cleavage targets of this endoribonuclease at a transcriptome-wide scale and delineate its in vivo cleavage rules. Here we applied to Escherichia coli grown to either exponential or stationary phase a tailored RNA-seq-based technology, which allows transcriptome-wide mapping of RNase III cleavage sites at a nucleotide resolution. Our analysis of the large-scale in vivo cleavage data substantiated the established cleavage pattern of a double cleavage in an intra-molecular stem structure, leaving 2-nt-long 3′ overhangs, and refined the base-pairing preferences in the cleavage site vicinity. Intriguingly, we observed that the two stem positions between the cleavage sites are highly base-paired, usually involving at least one G-C or C-G base pair. We present a clear distinction between intra-molecular stem structures that are RNase III substrates and intra-molecular stem structures randomly selected across the transcriptome, emphasizing the in vivo specificity of RNase III. Our study provides a comprehensive map of the cleavage sites in both intra-molecular and inter-molecular duplex substrates, providing novel insights into the involvement of RNase III in post-transcriptional regulation in the bacterial cell.
Collapse
Affiliation(s)
- Yael Altuvia
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Amir Bar
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Niv Reiss
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ehud Karavani
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Liron Argaman
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Hanah Margalit
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| |
Collapse
|
3
|
Gao Y, Yurkovich JT, Seo SW, Kabimoldayev I, Dräger A, Chen K, Sastry AV, Fang X, Mih N, Yang L, Eichner J, Cho BK, Kim D, Palsson BO. Systematic discovery of uncharacterized transcription factors in Escherichia coli K-12 MG1655. Nucleic Acids Res 2018; 46:10682-10696. [PMID: 30137486 PMCID: PMC6237786 DOI: 10.1093/nar/gky752] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/11/2018] [Accepted: 08/08/2018] [Indexed: 02/03/2023] Open
Abstract
Transcriptional regulation enables cells to respond to environmental changes. Of the estimated 304 candidate transcription factors (TFs) in Escherichia coli K-12 MG1655, 185 have been experimentally identified, but ChIP methods have been used to fully characterize only a few dozen. Identifying these remaining TFs is key to improving our knowledge of the E. coli transcriptional regulatory network (TRN). Here, we developed an integrated workflow for the computational prediction and comprehensive experimental validation of TFs using a suite of genome-wide experiments. We applied this workflow to (i) identify 16 candidate TFs from over a hundred uncharacterized genes; (ii) capture a total of 255 DNA binding peaks for ten candidate TFs resulting in six high-confidence binding motifs; (iii) reconstruct the regulons of these ten TFs by determining gene expression changes upon deletion of each TF and (iv) identify the regulatory roles of three TFs (YiaJ, YdcI, and YeiE) as regulators of l-ascorbate utilization, proton transfer and acetate metabolism, and iron homeostasis under iron-limited conditions, respectively. Together, these results demonstrate how this workflow can be used to discover, characterize, and elucidate regulatory functions of uncharacterized TFs in parallel.
Collapse
Affiliation(s)
- Ye Gao
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - James T Yurkovich
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Sang Woo Seo
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Ilyas Kabimoldayev
- Department of Genetic Engineering and Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
| | - Andreas Dräger
- Computational Systems Biology of Infection and Antimicrobial-Resistant Pathogens, Center for Bioinformatics Tübingen (ZBIT), 72076 Tübingen, Germany
- Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany
| | - Ke Chen
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Anand V Sastry
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Xin Fang
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Nathan Mih
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Laurence Yang
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Johannes Eichner
- Computational Systems Biology of Infection and Antimicrobial-Resistant Pathogens, Center for Bioinformatics Tübingen (ZBIT), 72076 Tübingen, Germany
| | - Byung-Kwan Cho
- Novo Nordisk Foundation Center for Biosustainability, 2800 Kongens Lyngby, Denmark
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Donghyuk Kim
- Department of Genetic Engineering and Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- School of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Bernhard O Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA
- Novo Nordisk Foundation Center for Biosustainability, 2800 Kongens Lyngby, Denmark
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
4
|
Tata M, Amman F, Pawar V, Wolfinger MT, Weiss S, Häussler S, Bläsi U. The Anaerobically Induced sRNA PaiI Affects Denitrification in Pseudomonas aeruginosa PA14. Front Microbiol 2017; 8:2312. [PMID: 29218039 PMCID: PMC5703892 DOI: 10.3389/fmicb.2017.02312] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/08/2017] [Indexed: 01/08/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that can thrive by anaerobic respiration in the lungs of cystic fibrosis patients using nitrate as terminal electron acceptor. Here, we report the identification and characterization of the small RNA PaiI in the P. aeruginosa strain 14 (PA14). PaiI is anaerobically induced in the presence of nitrate and depends on the two-component system NarXL. Our studies revealed that PaiI is required for efficient denitrification affecting the conversion of nitrite to nitric oxide. In the absence of PaiI anaerobic growth was impaired on glucose, which can be reconciled with a decreased uptake of the carbon source under these conditions. The importance of PaiI for anaerobic growth is further underlined by the observation that a paiI deletion mutant was impaired in growth in murine tumors.
Collapse
Affiliation(s)
- Muralidhar Tata
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Fabian Amman
- Institute of Theoretical Chemistry, University of Vienna, Vienna, Austria
| | - Vinay Pawar
- Institute of Immunology, Hannover Medical School, Hannover, Germany.,Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig, Germany
| | | | - Siegfried Weiss
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Susanne Häussler
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig, Germany.,Institute of Molecular Bacteriology, Twincore, Center for Experimental and Clinical Infection Research, Hannover, Germany
| | - Udo Bläsi
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Characterization of ribonuclease III from Brucella. Gene 2016; 579:183-92. [PMID: 26778206 DOI: 10.1016/j.gene.2015.12.068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/22/2015] [Accepted: 12/29/2015] [Indexed: 11/22/2022]
Abstract
Bacterial ribonuclease III (RNase III) is a highly conserved endonuclease, which plays pivotal roles in RNA maturation and decay pathways by cleaving double-stranded structure of RNAs. Here we cloned rncS gene from the genomic DNA of Brucella melitensis, and analyzed the cleavage properties of RNase III from Brucella. We identified Brucella-encoding small RNA (sRNA) by high-throughput sequencing and northern blot, and found that sRNA of Brucella and Homo miRNA precursor (pre-miRNA) can be bound and cleaved by B.melitensis ribonuclease III (Bm-RNase III). Cleavage activity of Bm-RNase III is bivalent metal cations- and alkaline buffer-dependent. We constructed several point mutations in Bm-RNase III, whose cleavage activity indicated that the 133th Glutamic acid residue was required for catalytic activity. Western blot revealed that Bm-RNase III was differently expressed in Brucella virulence strain 027 and vaccine strain M5-90. Collectively, our data suggest that Brucella RNase III can efficiently bind and cleave stem-loop structure of small RNA, and might participate in regulation of virulence in Brucella.
Collapse
|
6
|
Court DL, Gan J, Liang YH, Shaw GX, Tropea JE, Costantino N, Waugh DS, Ji X. RNase III: Genetics and function; structure and mechanism. Annu Rev Genet 2014; 47:405-31. [PMID: 24274754 DOI: 10.1146/annurev-genet-110711-155618] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RNase III is a global regulator of gene expression in Escherichia coli that is instrumental in the maturation of ribosomal and other structural RNAs. We examine here how RNase III itself is regulated in response to growth and other environmental changes encountered by the cell and how, by binding or processing double-stranded RNA (dsRNA) intermediates, RNase III controls the expression of genes. Recent insight into the mechanism of dsRNA binding and processing, gained from structural studies of RNase III, is reviewed. Structural studies also reveal new cleavage sites in the enzyme that can generate longer 3' overhangs.
Collapse
Affiliation(s)
- Donald L Court
- Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702; , , , , , , ,
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Romilly C, Chevalier C, Marzi S, Masquida B, Geissmann T, Vandenesch F, Westhof E, Romby P. Loop-loop interactions involved in antisense regulation are processed by the endoribonuclease III in Staphylococcus aureus. RNA Biol 2012; 9:1461-72. [PMID: 23134978 DOI: 10.4161/rna.22710] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The endoribonuclease III (RNase III) belongs to the enzyme family known to process double-stranded RNAs. Staphylococcus aureus RNase III was shown to regulate, in concert with the quorum sensing induced RNAIII, the degradation of several mRNAs encoding virulence factors and the transcriptional repressor of toxins Rot. Two of the mRNA-RNAIII complexes involve fully base paired loop-loop interactions with similar sequences that are cleaved by RNase III at a unique position. We show here that the sequence of the base pairs within the loop-loop interaction is not critical for RNase III cleavage, but that the co-axial stacking of three consecutive helices provides an ideal topology for RNase III recognition. In contrast, RNase III induces several strong cleavages in a regular helix, which carries a sequence similar to the loop-loop interaction. The introduction of a bulged loop that interrupts the regular helix restrains the number of cleavages. This work shows that S. aureus RNase III is able to bind and cleave a variety of RNA-mRNA substrates, and that specific structure elements direct the action of RNase III.
Collapse
Affiliation(s)
- Cédric Romilly
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
8
|
When ribonucleases come into play in pathogens: a survey of gram-positive bacteria. Int J Microbiol 2012; 2012:592196. [PMID: 22550495 PMCID: PMC3328962 DOI: 10.1155/2012/592196] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 11/27/2011] [Indexed: 11/20/2022] Open
Abstract
It is widely acknowledged that RNA stability plays critical roles in bacterial adaptation and survival in different environments like those encountered when bacteria infect a host. Bacterial ribonucleases acting alone or in concert with regulatory RNAs or RNA binding proteins are the mediators of the regulatory outcome on RNA stability. We will give a current update of what is known about ribonucleases in the model Gram-positive organism Bacillus subtilis and will describe their established roles in virulence in several Gram-positive pathogenic bacteria that are imposing major health concerns worldwide. Implications on bacterial evolution through stabilization/transfer of genetic material (phage or plasmid DNA) as a result of ribonucleases' functions will be covered. The role of ribonucleases in emergence of antibiotic resistance and new concepts in drug design will additionally be discussed.
Collapse
|
9
|
Bergeron L, Perreault JP, Abou Elela S. Short RNA duplexes guide sequence-dependent cleavage by human Dicer. RNA (NEW YORK, N.Y.) 2010; 16:2464-73. [PMID: 20974746 PMCID: PMC2995407 DOI: 10.1261/rna.2346510] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 09/16/2010] [Indexed: 05/30/2023]
Abstract
Dicer is a member of the double-stranded (ds) RNA-specific ribonuclease III (RNase III) family that is required for RNA processing and degradation. Like most members of the RNase III family, Dicer possesses a dsRNA binding domain and cleaves long RNA duplexes in vitro. In this study, Dicer substrate selectivity was examined using bipartite substrates. These experiments revealed that an RNA helix possessing a 2-nucleotide (nt) 3'-overhang may bind and direct sequence-specific Dicer-mediated cleavage in trans at a fixed distance from the 3'-end overhang. Chemical modifications of the substrate indicate that the presence of the ribose 2'-hydroxyl group is not required for Dicer binding, but some located near the scissile bonds are needed for RNA cleavage. This suggests a flexible mechanism for substrate selectivity that recognizes the overall shape of an RNA helix. Examination of the structure of natural pre-microRNAs (pre-miRNAs) suggests that they may form bipartite substrates with complementary mRNA sequences, and thus induce seed-independent Dicer cleavage. Indeed, in vitro, natural pre-miRNA directed sequence-specific Dicer-mediated cleavage in trans by supporting the formation of a substrate mimic.
Collapse
Affiliation(s)
- Lucien Bergeron
- RNA group/Groupe ARN, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | | | | |
Collapse
|
10
|
Abstract
Staphylococcus aureus ribonuclease III (Sa-RNase III) belongs to the enzyme family known to process double-stranded RNAs consisting of two turns of the RNA helix. Although the enzyme is thought to play a role in ribosomal RNA processing and gene regulation, the deletion of the rnc gene in S. aureus does not affect cell growth in rich medium. S. aureus RNase III acts in concert with regulatory RNAIII to repress the expression of several mRNAs encoding virulence factors. The action of the RNase is most likely to initiate the degradation of repressed mRNAs leading to an irreversible repression. In this chapter, we describe the overexpression and purification of recombinant RNase III from S. aureus, and we show that its biochemical properties are similar to the orthologous enzyme from Escherichia coli. Both enzymes similarly recognize and cleave different RNA substrates and RNA-mRNA duplexes.
Collapse
|
11
|
Bouvier M, Sharma CM, Mika F, Nierhaus KH, Vogel J. Small RNA binding to 5' mRNA coding region inhibits translational initiation. Mol Cell 2009; 32:827-37. [PMID: 19111662 DOI: 10.1016/j.molcel.2008.10.027] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 09/22/2008] [Accepted: 10/21/2008] [Indexed: 10/21/2022]
Abstract
Small noncoding RNAs (sRNAs) have predominantly been shown to repress bacterial mRNAs by masking the Shine-Dalgarno (SD) or AUG start codon sequence, thereby preventing 30S ribosome entry and, consequently, translation initiation. However, many recently identified sRNAs lack obvious SD and AUG complementarity, indicating that sRNA-mediated translational control could also take place at other mRNA sites. We report that Salmonella RybB sRNA represses ompN mRNA translation by pairing with the 5' coding region. Results of systematic antisense interference with 30S binding to ompN and unrelated mRNAs suggest that sRNAs can act as translational repressors by sequestering sequences within the mRNA down to the fifth codon, even without SD and AUG start codon pairing. This "five codon window" for translational control in the 5' coding region of mRNA not only has implications for sRNA target predictions but might also apply to cis-regulatory systems such as RNA thermosensors and riboswitches.
Collapse
Affiliation(s)
- Marie Bouvier
- Max Planck Institute for Infection Biology, RNA Biology Group, Berlin D-10117, Germany
| | | | | | | | | |
Collapse
|
12
|
Abstract
Recent genomic analyses revealed a surprisingly large number of toxin-antitoxin loci in free-living prokaryotes. The antitoxins are proteins or antisense RNAs that counteract the toxins. Two antisense RNA-regulated toxin-antitoxin gene families, hok/sok and ldr, are unrelated sequence-wise but have strikingly similar properties at the level of gene and RNA organization. Recently, two SOS-induced toxins were found to be regulated by RNA antitoxins. One such toxin, SymE, exhibits similarity with MazE antitoxin and, surprisingly, inhibits translation. Thus, it is possible that an ancestral antitoxin gene evolved into the present toxin gene (symE) whose translation is repressed by an RNA antitoxin (SymR).
Collapse
Affiliation(s)
- Kenn Gerdes
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle NE2 4HH, UK.
| | | |
Collapse
|
13
|
Urban JH, Vogel J. Translational control and target recognition by Escherichia coli small RNAs in vivo. Nucleic Acids Res 2007; 35:1018-37. [PMID: 17264113 PMCID: PMC1807950 DOI: 10.1093/nar/gkl1040] [Citation(s) in RCA: 293] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Small non-coding RNAs (sRNAs) are an emerging class of regulators of bacterial gene expression. Most of the regulatory Escherichia coli sRNAs known to date modulate translation of trans-encoded target mRNAs. We studied the specificity of sRNA target interactions using gene fusions to green fluorescent protein (GFP) as a novel reporter of translational control by bacterial sRNAs in vivo. Target sequences were selected from both monocistronic and polycistronic mRNAs. Upon expression of the cognate sRNA (DsrA, GcvB, MicA, MicC, MicF, RprA, RyhB, SgrS and Spot42), we observed highly specific translation repression/activation of target fusions under various growth conditions. Target regulation was also tested in mutants that lacked Hfq or RNase III, or which expressed a truncated RNase E (rne701). We found that translational regulation by these sRNAs was largely independent of full-length RNase E, e.g. despite the fact that ompA fusion mRNA decay could no longer be promoted by MicA. This is the first study in which multiple well-defined E.coli sRNA target pairs have been studied in a uniform manner in vivo. We expect our GFP fusion approach to be applicable to sRNA targets of other bacteria, and also demonstrate that Vibrio RyhB sRNA represses a Vibrio sodB fusion when co-expressed in E.coli.
Collapse
Affiliation(s)
| | - Jörg Vogel
- To whom correspondence should be addressed. Tel: +49 30 28460 265; Fax: +49 30 28460 244;
| |
Collapse
|
14
|
Faridani OR, Nikravesh A, Pandey DP, Gerdes K, Good L. Competitive inhibition of natural antisense Sok-RNA interactions activates Hok-mediated cell killing in Escherichia coli. Nucleic Acids Res 2006; 34:5915-22. [PMID: 17065468 PMCID: PMC1635323 DOI: 10.1093/nar/gkl750] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Short regulatory RNAs are widespread in bacteria, and many function through antisense recognition of mRNA. Among the best studied antisense transcripts are RNA antitoxins that repress toxin mRNA translation. The hok/sok locus of plasmid R1 from Escherichia coli is an established model for RNA antitoxin action. Base-pairing between hok mRNA and Sok-antisense-RNA increases plasmid maintenance through post-segregational-killing of plasmid-free progeny cells. To test the model and the idea that sequestration of Sok-RNA activity could provide a novel antimicrobial strategy, we designed anti Sok peptide nucleic acid (PNA) oligomers that, according to the model, would act as competitive inhibitors of hok mRNA::Sok-RNA interactions. In hok/sok-carrying cells, anti Sok PNAs were more bactericidal than rifampicin. Also, anti Sok PNAs induced ghost cell morphology and an accumulation of mature hok mRNA, consistent with cell killing through synthesis of Hok protein. The results support the sense/antisense model for hok mRNA repression by Sok-RNA and demonstrate that antisense agents can be used to out-compete RNA::RNA interactions in bacteria. Finally, BLAST analyses of approximately 200 prokaryotic genomes revealed that many enteric bacteria have multiple hok/sok homologous and analogous RNA-regulated toxin-antitoxin loci. Therefore, it is possible to activate suicide in bacteria by targeting antitoxins.
Collapse
Affiliation(s)
| | | | - Deo Prakash Pandey
- Département de Biologie Cellulaire Université de GenèveSciences III 30 Quai Ernest-Ansermet 1211 Genève 4, Switzerland
| | - Kenn Gerdes
- Department of Biochemistry and Molecular Biology, University of Southern DenmarkDK-5230 Odense M, Denmark
- Institute for Cell and Molecular Biosciences, Newcastle UniversityNewcastle, NE2 4HH, UK
| | - Liam Good
- To whom correspondence should be addressed. Tel: +46 8 5248 6385; Fax: +46 8 32 39 50;
| |
Collapse
|
15
|
Pertzev AV, Nicholson AW. Characterization of RNA sequence determinants and antideterminants of processing reactivity for a minimal substrate of Escherichia coli ribonuclease III. Nucleic Acids Res 2006; 34:3708-21. [PMID: 16896014 PMCID: PMC1540722 DOI: 10.1093/nar/gkl459] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Members of the ribonuclease III family are the primary agents of double-stranded (ds) RNA processing in prokaryotic and eukaryotic cells. Bacterial RNase III orthologs cleave their substrates in a highly site-specific manner, which is necessary for optimal RNA function or proper decay rates. The processing reactivities of Escherichia coli RNase III substrates are determined in part by the sequence content of two discrete double-helical elements, termed the distal box (db) and proximal box (pb). A minimal substrate of E.coli RNase III, μR1.1 RNA, was characterized and used to define the db and pb sequence requirements for reactivity and their involvement in cleavage site selection. The reactivities of μR1.1 RNA sequence variants were examined in assays of cleavage and binding in vitro. The ability of all examined substitutions in the db to inhibit cleavage by weakening RNase III binding indicates that the db is a positive determinant of RNase III recognition, with the canonical UA/UG sequence conferring optimal recognition. A similar analysis showed that the pb also functions as a positive recognition determinant. It also was shown that the ability of the GC or CG bp substitution at a specific position in the pb to inhibit RNase III binding is due to the purine 2-amino group, which acts as a minor groove recognition antideterminant. In contrast, a GC or CG bp at the pb position adjacent to the scissile bond can suppress cleavage without inhibiting binding, and thus act as a catalytic antideterminant. It is shown that a single pb+db ‘set’ is sufficient to specify a cleavage site, supporting the primary function of the two boxes as positive recognition determinants. The base pair sequence control of reactivity is discussed within the context of new structural information on a post-catalytic complex of a bacterial RNase III bound to the cleaved minimal substrate.
Collapse
Affiliation(s)
| | - Allen W. Nicholson
- To whom correspondence should be addressed. Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, PA 19122, USA. Tel: +1 215 204 9048; Fax: +1 215 204 1532;
| |
Collapse
|
16
|
Zer C, Chanfreau G. Regulation and surveillance of normal and 3'-extended forms of the yeast aci-reductone dioxygenase mRNA by RNase III cleavage and exonucleolytic degradation. J Biol Chem 2005; 280:28997-9003. [PMID: 15967792 DOI: 10.1074/jbc.m505913200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aci-reductone dioxygenases are key enzymes in the methionine salvage pathway. The mechanisms by which the expression of this important class of enzymes is regulated are poorly understood. Here we show that the expression of the mRNA encoding the yeast aci-reductone dioxygenase ADI1 is controlled post-transcriptionally by RNase III cleavage. Cleavage occurs in a large bipartite stem loop structure present in the open reading frame region of the ADI1 mRNA. The ADI1 mRNA is up-regulated in the absence of the yeast orthologue of RNase III Rnt1p or of the 5' --> 3' exonucleases Xrn1p and Rat1p. 3'-Extended forms of this mRNA, including a polycistronic mRNA ADI1-YMR010W mRNA, also accumulate in cells lacking Rnt1p, Xrn1p, and Rat1p or the nuclear exosome component Rrp6p, suggesting that these 3'-extended forms are subject to nuclear surveillance. We show that the ADI1 mRNA is up-regulated under heat shock conditions in a Rnt1p-independent manner. We propose that Rnt1p cleavage targets degradation of the ADI1 mRNA to prevent its expression prior to heat shock conditions and that RNA surveillance by multiple ribonucleases helps prevent accumulation of aberrant 3'-extended forms of this mRNA that arise from intrinsically inefficient 3'-processing signals.
Collapse
Affiliation(s)
- Cindy Zer
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | | |
Collapse
|
17
|
Affiliation(s)
- Susan Gottesman
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892, USA.
| |
Collapse
|
18
|
Møller T, Franch T, Udesen C, Gerdes K, Valentin-Hansen P. Spot 42 RNA mediates discoordinate expression of the E. coli galactose operon. Genes Dev 2002; 16:1696-706. [PMID: 12101127 PMCID: PMC186370 DOI: 10.1101/gad.231702] [Citation(s) in RCA: 235] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The physiological role of Escherichia coli Spot 42 RNA has remained obscure, even though the 109-nucleotide RNA was discovered almost three decades ago. Structural features of Spot 42 RNA and previous work suggested to us that the RNA might be a regulator of discoordinate gene expression of the galactose operon, a control that is only understood at the phenomenological level. The effects of controlled expression of Spot 42 RNA or deleting the gene (spf) encoding the RNA supported this hypothesis. Down-regulation of galK expression, the third gene in the gal operon, was only observed in the presence of Spot 42 RNA and required growth conditions that caused derepression of the spf gene. Subsequent biochemical studies showed that Spot 42 RNA specifically bound at the galK Shine-Dalgarno region of the galETKM mRNA, thereby blocking ribosome binding. We conclude that Spot 42 RNA is an antisense RNA that acts to differentially regulate genes that are expressed from the same transcription unit. Our results reveal an interesting mechanism by which the expression of a promoter distal gene in an operon can be modulated and underline the importance of antisense control in bacterial gene regulation.
Collapse
Affiliation(s)
- Thorleif Møller
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | | | | | | | | |
Collapse
|
19
|
Abstract
RNases play an important role in the processing of precursor RNAs, creating the mature, functional RNAs. The ribonuclease III family currently is one of the most interesting families of endoribonucleases. Surprisingly, RNase III is involved in the maturation of almost every class of prokaryotic and eukaryotic RNA. We present an overview of the various substrates and their processing. RNase III contains one of the most prominent protein domains used in RNA-protein recognition, the double-stranded RNA binding domain (dsRBD). Progress in the understanding of this domain is summarized. Furthermore, RNase III only recently emerged as a key player in the new exciting biological field of RNA silencing, or RNA interference. The eukaryotic RNase III homologues which are likely involved in this process are compared with the other members of the RNase III family.
Collapse
Affiliation(s)
- Christian Conrad
- Institut für Mikro- und Molekularbiologie, Justus Liebig Universität Giessen, Heinrich Buff Ring 26-32, 35392 Giessen, Germany.
| | | |
Collapse
|
20
|
Møller T, Franch T, Højrup P, Keene DR, Bächinger HP, Brennan RG, Valentin-Hansen P. Hfq: a bacterial Sm-like protein that mediates RNA-RNA interaction. Mol Cell 2002; 9:23-30. [PMID: 11804583 DOI: 10.1016/s1097-2765(01)00436-1] [Citation(s) in RCA: 427] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The bacterial Hfq protein modulates the stability or the translation of mRNAs and has recently been shown to interact with small regulatory RNAs in E. coli. Here we show that Hfq belongs to the large family of Sm and Sm-like proteins: it contains a conserved sequence motif, known as the Sm1 motif, forms a doughnut-shaped structure, and has RNA binding specificity very similar to the Sm proteins. Moreover, we provide evidence that Hfq strongly cooperates in intermolecular base pairing between the antisense regulator Spot 42 RNA and its target RNA. We speculate that Sm proteins in general cooperate in bimolecular RNA-RNA interaction and that protein-mediated complex formation permits small RNAs to interact with a broad range of target RNAs.
Collapse
Affiliation(s)
- Thorleif Møller
- Department of Biochemistry and Molecular Biology, University of Southern Denmark-Odense, Campusvej 55, DK-5230 M, Odense, Denmark
| | | | | | | | | | | | | |
Collapse
|
21
|
Wu CY, Fu JF, Liu ST. The replicon of pSW800 from Pantoea stewartii. MICROBIOLOGY (READING, ENGLAND) 2001; 147:2757-2767. [PMID: 11577155 DOI: 10.1099/00221287-147-10-2757] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A 2019 bp DNA fragment containing the replicon of pSW800 from Pantoea stewartii SW2 was cloned and characterized. This replicon contains two genes--repA and repB, which encode a 36.5 kDa replication initiation protein (RepA) and a peptide of 18 aa, respectively. These two genes overlap by 8 bases with repB situated upstream. The replicon also transcribes an antisense RNA (RNAI) that inhibits the expression of repA and repB. The ribosome-binding sequence (RBS) of repA is likely to be hidden in a stem-loop structure, inhibiting the translation of repA. Furthermore, translation of repB is likely to disrupt the stem-loop structure, which is one of the criteria allowing the translation of repA to begin. A mutagenesis study revealed that a sequence (5'-GCACGGG-3') located 111 nt upstream from repA is crucial; mutation of this sequence prevented the translation of repA. Additionally, this region and the stem-loop structure containing the RBS of repA may form an RNA pseudoknot. Results in this study demonstrate that a mechanism similar to that regulating plasmid replication in the IncB, IncIalpha and IncL/M groups also regulates pSW800 replication.
Collapse
Affiliation(s)
- Cheng-Yeu Wu
- Department of Microbiology and Immunology, Chang-Gung University, Kwei-Shan, 333, Taiwan2
- Graduate Institute of Microbiology and Immunology, National Yang-Ming University, Shih-Pai, Taipei, 112, Taiwan1
| | - Jen-Fen Fu
- Department of Microbiology and Immunology, Chang-Gung University, Kwei-Shan, 333, Taiwan2
| | - Shih-Tung Liu
- Department of Microbiology and Immunology, Chang-Gung University, Kwei-Shan, 333, Taiwan2
| |
Collapse
|
22
|
Erdmann VA, Barciszewska MZ, Szymanski M, Hochberg A, de Groot N, Barciszewski J. The non-coding RNAs as riboregulators. Nucleic Acids Res 2001; 29:189-93. [PMID: 11125087 PMCID: PMC29806 DOI: 10.1093/nar/29.1.189] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The non-coding RNAs database (http://biobases.ibch.poznan.pl/ncRNA/) contains currently available data on RNAs, which do not have long open reading frames and act as riboregulators. Non-coding RNAs are involved in the specific recognition of cellular nucleic acid targets through complementary base pairing to control cell growth and differentiation. Some of them are connected with several well known developmental and neuro-behavioral disorders. We have divided them into four groups. This paper is a short introduction to the database and presents its latest, updated edition.
Collapse
Affiliation(s)
- V A Erdmann
- Institute of Biochemistry, Freie Universitat Berlin, Thielallee 63, 14195 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
Conventional antisense RNAs, such as those controlling plasmid replication and maintenance, inhibit the function of their target RNAs rapidly and efficiently. Novel findings show that a common U-turn loop structure mediates fast RNA pairing in the majority of these RNA controlled systems. Usually, an antisense RNA regulates a single, cognate target RNA only. Recent reports, however, show that antisense RNAs can act as promiscuous regulators that control multiple genes in concert to integrate complex physiological responses in Escherichia coli.
Collapse
MESH Headings
- Base Pairing/genetics
- Base Sequence
- Escherichia coli/genetics
- Gene Expression Regulation, Bacterial/genetics
- Genes, Bacterial/genetics
- Genes, Regulator/genetics
- Genes, Regulator/physiology
- Nucleic Acid Conformation
- RNA, Antisense/chemistry
- RNA, Antisense/genetics
- RNA, Antisense/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
Collapse
Affiliation(s)
- T Franch
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, 5230, Denmark
| | | |
Collapse
|
24
|
Franch T, Petersen M, Wagner EG, Jacobsen JP, Gerdes K. Antisense RNA regulation in prokaryotes: rapid RNA/RNA interaction facilitated by a general U-turn loop structure. J Mol Biol 1999; 294:1115-25. [PMID: 10600370 DOI: 10.1006/jmbi.1999.3306] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Efficient gene control by antisense RNA requires rapid bi-molecular interaction with a cognate target RNA. A comparative analysis revealed that a YUNR motif (Y=pyrimidine, R=purine) is ubiquitous in RNA recognition loops in antisense RNA-regulated gene systems. The (Y)UNR sequence motif specifies two intraloop hydrogen bonds forming U-turn structures in many anticodon-loops and all T-loops of tRNAs, the hammerhead ribozyme and in other conserved RNA loops. This structure creates a sharp bend in the RNA phosphate-backbone and presents the following three to four bases in a solvent-exposed, stacked configuration providing a scaffold for rapid interaction with complementary RNA. Sok antisense RNA from plasmid R1 inhibits translation of the hok mRNA by preventing ribosome entry at the mok Shine & Dalgarno element. The 5' single-stranded region of Sok-RNA recognizes a loop in the hok mRNA. We show here, that the initial pairing between Sok antisense RNA and its target in hok mRNA occurs with an observed second-order rate-constant of 2 x 10(6) M(-1) s(-1). Mutations that eliminate the YUNR motif in the target loop of hok mRNA resulted in reduced antisense RNA pairing kinetics, whereas mutations maintaining the YUNR motif were silent. In addition, RNA phosphate-backbone accessibility probing by ethylnitrosourea was consistent with a U-turn structure formation promoted by the YUNR motif. Since the YUNR U-turn motif is present in the recognition units of many antisense/target pairs, the motif is likely to be a generally employed enhancer of RNA pairing rates. This suggestion is consistent with the re-interpretation of the mutational analyses of several antisense control systems including RNAI/RNAII of ColE1, CopA/CopT of R1 and RNA-IN/RNA-OUT of IS10.
Collapse
MESH Headings
- Bacterial Proteins/genetics
- Bacterial Toxins
- Base Pairing/genetics
- Base Sequence
- Escherichia coli Proteins
- Ethylnitrosourea/metabolism
- Gene Expression Regulation, Bacterial/genetics
- Hydrogen Bonding
- Kinetics
- Models, Molecular
- Mutation/genetics
- Nucleic Acid Conformation
- Prokaryotic Cells/metabolism
- RNA
- RNA, Antisense/chemistry
- RNA, Antisense/genetics
- RNA, Antisense/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Regulatory Sequences, Nucleic Acid/genetics
- Sequence Alignment
Collapse
Affiliation(s)
- T Franch
- Department of Molecular Biology, Odense University Campusvej, Denmark
| | | | | | | | | |
Collapse
|