1
|
Tate JJ, Rai R, Cooper TG. TorC1 and nitrogen catabolite repression control of integrated GABA shunt and retrograde pathway gene expression. Yeast 2023; 40:318-332. [PMID: 36960709 PMCID: PMC10518031 DOI: 10.1002/yea.3849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/25/2023] Open
Abstract
Despite our detailed understanding of how the lower GABA shunt and retrograde genes are regulated, there is a paucity of validated information concerning control of GAD1, the glutamate decarboxylase gene which catalyzes the first reaction of the GABA shunt. Further, integration of glutamate degradation via the GABA shunt has not been investigated. Here, we show that while GAD1 shares a response to rapamycin-inhibition of the TorC1 kinase, it does so independently of the Gln3 and Gat1 NCR-sensitive transcriptional activators that mediate transcription of the lower GABA shunt genes. We also show that GABA shunt gene expression increases dramatically in response to nickel ions. The α-ketoglutarate needed for the GABA shunt to cycle, thereby producing reduced pyridine nucleotides, derives from the retrograde pathway as shown by a similar high increase in the retrograde reporter, CIT2 when nickel is present in the medium. These observations demonstrate high integration of the GABA shunt, retrograde, peroxisomal glyoxylate cycle, and β-oxidation pathways.
Collapse
Affiliation(s)
- Jennifer J. Tate
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, U.S.A
| | - Rajendra Rai
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, U.S.A
| | - Terrance G. Cooper
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, U.S.A
| |
Collapse
|
2
|
Rai R, Tate JJ, Nelson DR, Cooper TG. gln3 mutations dissociate responses to nitrogen limitation (nitrogen catabolite repression) and rapamycin inhibition of TorC1. J Biol Chem 2012; 288:2789-804. [PMID: 23223232 DOI: 10.1074/jbc.m112.421826] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The GATA family transcription activator, Gln3 responds to the nitrogen requirements and environmental resources of the cell. When rapidly utilized, "good" nitrogen sources, e.g., glutamine, are plentiful, Gln3 is completely sequestered in the cytoplasm, and the transcription it mediates is minimal. In contrast, during nitrogen-limiting conditions, Gln3 quickly relocates to the nucleus and activates transcription of genes required to scavenge alternative, "poor" nitrogen sources, e.g., proline. This physiological response has been designated nitrogen catabolite repression (NCR). Because rapamycin treatment also elicits nuclear Gln3 localization, TorC1 has been thought to be responsible for NCR-sensitive Gln3 regulation. However, accumulating evidence now suggests that GATA factor regulation may occur by two separate pathways, one TorC1-dependent and the other NCR-sensitive. Therefore, the present experiments were initiated to identify Gln3 amino acid substitutions capable of dissecting the individual contributions of these pathways to overall Gln3 regulation. The rationale was that different regulatory pathways might be expected to operate through distinct Gln3 sensor residues. We found that C-terminal truncations or amino acid substitutions in a 17-amino acid Gln3 peptide with a predicted propensity to fold into an α-helix partially abolished the ability of the cell to sequester Gln3 in the cytoplasm of glutamine-grown cells and eliminated the rapamycin response of Gln3 localization, but did not adversely affect its response to limiting nitrogen. However, overall wild type control of intracellular Gln3 localization requires the contributions of both individual regulatory systems. We also found that Gln3 possesses at least one Tor1-interacting site in addition to the one previously reported.
Collapse
Affiliation(s)
- Rajendra Rai
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | |
Collapse
|
3
|
Weirauch MT, Hughes TR. A catalogue of eukaryotic transcription factor types, their evolutionary origin, and species distribution. Subcell Biochem 2011; 52:25-73. [PMID: 21557078 DOI: 10.1007/978-90-481-9069-0_3] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Transcription factors (TFs) play key roles in the regulation of gene expression by binding in a sequence-specific manner to genomic DNA. In eukaryotes, DNA binding is achieved by a wide range of structural forms and motifs. TFs are typically classified by their DNA-binding domain (DBD) type. In this chapter, we catalogue and survey 91 different TF DBD types in metazoa, plants, fungi, and protists. We briefly discuss well-characterized TF families representing the major DBD superclasses. We also examine the species distributions and inferred evolutionary histories of the various families, and the potential roles played by TF family expansion and dimerization.
Collapse
Affiliation(s)
- Matthew T Weirauch
- Banting and Best Department of Medical Research, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada,
| | | |
Collapse
|
4
|
Boban M, Ljungdahl PO. Dal81 enhances Stp1- and Stp2-dependent transcription necessitating negative modulation by inner nuclear membrane protein Asi1 in Saccharomyces cerevisiae. Genetics 2007; 176:2087-97. [PMID: 17603098 PMCID: PMC1950616 DOI: 10.1534/genetics.107.075077] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The yeast transcription factors Stp1 and Stp2 are synthesized as latent cytoplasmic precursors. In response to extracellular amino acids, the plasma membrane SPS sensor endoproteolytically excises the N-terminal domains that mediate cytoplasmic retention, enabling the processed forms to efficiently enter the nucleus and induce gene expression. Cytoplasmic retention is not absolute, low levels of full-length Stp1 and Stp2 "leak" into the nucleus, and the concerted action of inner nuclear membrane proteins Asi1, Asi2, and Asi3 restricts their promoter access. In cells lacking Asi function, the precursor forms bind promoters and constitutively induce gene expression. To understand the requirement of Asi-dependent repression, spontaneous mutations in Required for Latent Stp1/2-mediated transcription (RLS) genes that abolish the constitutive expression of SPS sensor-regulated genes in an asi1Delta strain were selected. A single gene, allelic with DAL81, was identified. We show that Dal81 indiscriminately amplifies the transactivation potential of both full-length and processed Stp1 and Stp2 by facilitating promoter binding. In dal81Delta mutants, the repressing activity of the Asi proteins is dispensable, demonstrating that without amplification, the levels of full-length Stp1 and Stp2 that escape cytoplasmic retention are insufficient to activate transcription. Conversely, the high levels of processed Stp1 and Stp2 that accumulate in the nucleus of induced cells activate transcription in the absence of Dal81.
Collapse
Affiliation(s)
- Mirta Boban
- Ludwig Institute for Cancer Research, Box 240, S-171 77 Stockholm, Sweden
| | | |
Collapse
|
5
|
Kulkarni AA, Abul-Hamd AT, Rai R, El Berry H, Cooper TG. Gln3p nuclear localization and interaction with Ure2p in Saccharomyces cerevisiae. J Biol Chem 2001; 276:32136-44. [PMID: 11408486 PMCID: PMC4384441 DOI: 10.1074/jbc.m104580200] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gln3p is one of two well characterized GATA family transcriptional activation factors whose function is regulated by the nitrogen supply of the cell. When nitrogen is limiting, Gln3p and Gat1p are concentrated in the nucleus where they bind GATA sequences upstream of nitrogen catabolite repression (NCR)-sensitive genes and activate their transcription. Conversely, in excess nitrogen, these GATA sequences are unoccupied by Gln3p and Gat1p because these transcription activators are excluded from the nucleus. Ure2p binds to Gln3p and Gat1p and is required for NCR-sensitive transcription to be repressed and for nuclear exclusion of these transcription factors. Here we show the following. (i) Gln3p residues 344-365 are required for nuclear localization. (ii) Replacing Ser-344, Ser-347, and Ser-355 with alanines has minimal effects on GFP-Gln3p localization. However, replacing Gln3p Ser-344, Ser-347, and Ser-355 with aspartates results in significant loss of its ability to be concentrated in the nucleus. (iii) N and C termini of the Gln3p region required for it to complex with Ure2p and be excluded from the nucleus are between residues 1-103 and 301-365, respectively. (iv) N and C termini of the Ure2p region required for it to interact with Gln3p are situated between residues 101-151 and 330-346, respectively. (v) Loss of Ure2p residues participating in either dimer or prion formation diminishes its ability to carry out NCR-sensitive regulation of Gln3p activity.
Collapse
Affiliation(s)
| | | | | | | | - Terrance G. Cooper
- To whom correspondence should be addressed. Tel.: 901-448-6179; Fax: 901-448-8462;
| |
Collapse
|
6
|
Distler M, Kulkarni A, Rai R, Cooper TG. Green fluorescent protein-Dal80p illuminates up to 16 distinct foci that colocalize with and exhibit the same behavior as chromosomal DNA proceeding through the cell cycle of Saccharomyces cerevisiae. J Bacteriol 2001; 183:4636-42. [PMID: 11443099 PMCID: PMC95359 DOI: 10.1128/jb.183.15.4636-4642.2001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Four GATA family DNA binding proteins mediate nitrogen catabolite repression-sensitive transcription in Saccharomyces cerevisiae. Gln3p and Gat1p are transcriptional activators, while Dal80p and Deh1p repress Gln3p- and Gat1p-mediated transcription by competing with these activators for binding to DNA. Strong Dal80p binding to DNA is thought to result from C-terminal leucine zipper-mediated dimerization. Many Dal80p binding site-homologous sequences are relatively evenly distributed across the S. cerevisiae genome, raising the possibility that Dal80p might be able to "stain" DNA. We demonstrate that cells containing enhanced green fluorescent protein-Dal80p (EGFP-Dal80p) exhibit up to 16 fluorescent foci that colocalize with DAPI (4',6'-diamidino-2-phenylindole)-positive material and follow DNA movement through the cell cycle, suggesting that EGFP-Dal80p may indeed be useful for monitoring yeast chromosomes in live cells and in real time.
Collapse
Affiliation(s)
- M Distler
- Department of Microbiology and Immunology, University of Tennessee, Memphis, TN 38163, USA
| | | | | | | |
Collapse
|
7
|
Scott S, Abul-Hamd AT, Cooper TG. Roles of the Dal82p domains in allophanate/oxalurate-dependent gene expression in Saccharomyces cerevisiae. J Biol Chem 2000; 275:30886-93. [PMID: 10906145 PMCID: PMC4382018 DOI: 10.1074/jbc.m005624200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Allophanate/oxalurate-induced gene expression in Saccharomyces cerevisiae requires at least five transcription factors, four of which act positively (Gln3p, Gat1p, Dal81p, and Dal82p) and one negatively (Dal80p). Gln3p binds to and Gat1p is proposed to bind to single GATA sequences; Dal80p binds to pairs of specifically oriented and spaced GATA sequences, and Dal82p binds to a pathway-specific element, UIS(ALL). Dal82p consists of at least three domains as follows: (i) UIS(ALL) DNA-binding, (ii) transcriptional activation, and (iii) coiled-coil(DAL82). Here we show that the coiled-coil(DAL82) domain possesses two demonstrable functions. (i) It prevents Dal82p-mediated transcription when inducer is absent. (ii) It is a major, although not exclusive, domain through which the inducer signal is received. Supporting the latter conclusion, a 38-amino acid fragment, containing little more than the coiled-coil(DAL82) domain, supports oxalurate-inducible, Dal81p-dependent, reporter gene transcription. Dal81p is required for inducer responsiveness of LexAp-Dal82p and LexAp coiled-coil(DAL82)-mediated transcription but isn't needed for inducer-dependent activation mediated by a Dal82p containing deletions in both the coiled-coil(DAL82), UIS(ALL)-binding domains. There may be an interaction between Dal81p and the coiled-coil(DAL82) domain since (i) Dal81p is required for transcription mediated by LexA-coiled-coil(DAL82)p and (ii) a Dal81p-Dal82p complex is detected by two-hybrid assay.
Collapse
Affiliation(s)
| | | | - Terrance G. Cooper
- To whom correspondence should be addressed. Tel.: 901-448-6175; Fax: 901-448-8462;
| |
Collapse
|
8
|
Cox KH, Rai R, Distler M, Daugherty JR, Coffman JA, Cooper TG. Saccharomyces cerevisiae GATA sequences function as TATA elements during nitrogen catabolite repression and when Gln3p is excluded from the nucleus by overproduction of Ure2p. J Biol Chem 2000; 275:17611-8. [PMID: 10748041 PMCID: PMC4384688 DOI: 10.1074/jbc.m001648200] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Saccharomyces cerevisiae selectively uses good nitrogen sources (glutamine) in preference to poor ones (proline) by repressing GATA factor-dependent transcription of the genes needed to transport and catabolize poor nitrogen sources, a physiological process designated nitrogen catabolite repression (NCR). We show that some NCR-sensitive genes (CAN1, DAL5, DUR1,2, and DUR3) produce two transcripts of slightly different sizes. Synthesis of the shorter transcript is NCR-sensitive and that of the longer transcript is not. The longer transcript also predominates in gln3Delta mutants irrespective of the nitrogen source provided. We demonstrate that the longer mRNA species arises through the use of an alternative transcription start site generated by Gln3p-binding sites (GATAAs) being able to act as surrogate TATA elements. The ability of GATAAs to serve as surrogate TATAs, i.e. when synthesis of the shorter, NCR-sensitive transcripts are inhibited, correlates with sequestration of enhanced green fluorescent protein (EGFP)-Gln3p in the cytoplasm in a way that is indistinguishable from that seen with EGFP-Ure2p. However, when the shorter, NCR-sensitive DAL5 transcript predominates, EGFP-Gln3p is nuclear. These data suggest that the mechanism underlying NCR involves the cytoplasmic association of Ure2p with Gln3p, an interaction that prevents Gln3p from reaching it is binding sites upstream of NCR-sensitive genes.
Collapse
Affiliation(s)
- Kathleen H. Cox
- Department of Microbiology and Immunology, University of Tennessee, Memphis, Tennessee 38163
| | - Rajendra Rai
- Department of Microbiology and Immunology, University of Tennessee, Memphis, Tennessee 38163
| | - Mackenzie Distler
- Department of Microbiology and Immunology, University of Tennessee, Memphis, Tennessee 38163
| | | | | | - Terrance G. Cooper
- Department of Microbiology and Immunology, University of Tennessee, Memphis, Tennessee 38163
| |
Collapse
|
9
|
Beeser AE, Cooper TG. The dual-specificity protein phosphatase Yvh1p regulates sporulation, growth, and glycogen accumulation independently of catalytic activity in Saccharomyces cerevisiae via the cyclic AMP-dependent protein kinase cascade. J Bacteriol 2000; 182:3517-28. [PMID: 10852885 PMCID: PMC101947 DOI: 10.1128/jb.182.12.3517-3528.2000] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yvh1p, a dual-specific protein phosphatase induced specifically by nitrogen starvation, regulates cell growth as well as initiation and completion of sporulation. We demonstrate that yvh1 disruption mutants are also unable to accumulate glycogen in stationary phase. A catalytically inactive variant of yvh1 (C117S) and a DNA fragment encoding only the Yvh1p C-terminal 159 amino acids (which completely lacks the phosphatase domain) complement all three phenotypes as well as the wild-type allele; no complementation occurs with a fragment encoding only the C-terminal 74 amino acids. These observations argue that phosphatase activity is not required for the Yvh1p functions we measured. Mutations which decrease endogenous cyclic AMP (cAMP) levels partially suppress the sporulation and glycogen accumulation defects. In addition, reporter gene expression supported by a DRR2 promoter fragment, containing two stress response elements known to respond to cAMP-protein kinase A, decreases in a yvh1 disruption mutant. Therefore, our results identify three cellular processes that both require Yvh1p and respond to alterations in cAMP, and they lead us to suggest that Yvh1p may be a participant in and/or a contributor to regulation of the cAMP-dependent protein kinase cascade. The fact that decreasing the levels of cAMP alleviates the need for Yvh1p function supports this suggestion.
Collapse
Affiliation(s)
- A E Beeser
- Department of Microbiology and Immunology, University of Tennessee, Memphis 38163, USA
| | | |
Collapse
|
10
|
Cunningham TS, Andhare R, Cooper TG. Nitrogen catabolite repression of DAL80 expression depends on the relative levels of Gat1p and Ure2p production in Saccharomyces cerevisiae. J Biol Chem 2000; 275:14408-14. [PMID: 10799523 PMCID: PMC4382002 DOI: 10.1074/jbc.275.19.14408] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GATA family activators (Gln3p and Gat1p) and repressors (Dal80p and Deh1p) regulate nitrogen catabolite repression (NCR)-sensitive transcription in Saccharomyces cerevisiae presumably via their competitive binding to the GATA sequences upstream of NCR-sensitive genes. Ure2p, which is not a GATA family member, inhibits Gln3p/Gat1p from functioning in the presence of good nitrogen sources. We show that NCR-sensitive DAL80 transcription can be influenced by the relative levels of GAT1 and URE2 expression. NCR, normally observed with ammonia or glutamine, is severely diminished when Gat1p is overproduced, and this inhibition is overcome by simultaneously increasing URE2 expression. Further, overproduction of Ure2p nearly eliminates NCR-sensitive transcription under derepressive growth conditions, i.e. with proline as the sole nitrogen source. Enhanced green fluorescent protein-Gat1p is nuclear when Gat1p-dependent transcription is high and cytoplasmic when it is inhibited by overproduction of Ure2p.
Collapse
Affiliation(s)
| | | | - Terrance G. Cooper
- To whom correspondence should be addressed. Tel.: 901-448-6175; Fax: 901-448-8462;
| |
Collapse
|