1
|
Chowdhury D, Jang CE, Lajoie P, Renaud SJ. A stress paradox: the dual role of the unfolded protein response in the placenta. Front Endocrinol (Lausanne) 2024; 15:1525189. [PMID: 39758342 PMCID: PMC11695235 DOI: 10.3389/fendo.2024.1525189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025] Open
Abstract
The placenta is a temporary organ that forms during pregnancy and is essential for fetal development and maternal health. As an endocrine organ, proper placental function requires continual production, folding, and transport of proteins and lipids. Central to these processes is the endoplasmic reticulum (ER), a dynamic organelle responsible for maintaining cellular protein and lipid synthesis and processing. ER stress occurs when there is an accumulation of unfolded or misfolded proteins, which triggers the activation of cellular pathways collectively called the unfolded protein response. Unfolded protein response pathways act to alleviate the misfolded protein burden and restore ER homeostasis, or if unresolved, initiate cell death. While prolonged ER stress has been linked to deficient placental function and adverse pregnancy outcomes, basal activation of unfolded protein response pathways is required for placental development and function. This review explores the importance of ER homeostasis in placental development and function, examining how disruptions in ER stress responses may contribute to adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Diba Chowdhury
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Chloe E. Jang
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Children’s Health Research Institute, Lawson Health Research Institute, London, ON, Canada
| | - Patrick Lajoie
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Children’s Health Research Institute, Lawson Health Research Institute, London, ON, Canada
| | - Stephen J. Renaud
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Children’s Health Research Institute, Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
2
|
Zimmermann G, Ackermann W, Alexander H. Epithelial human chorionic gonadotropin is expressed and produced in human secretory endometrium during the normal menstrual cycle. Biol Reprod 2009; 80:1053-65. [PMID: 19164178 DOI: 10.1095/biolreprod.108.069575] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The objective of this study was to determine whether beta human chorionic gonadotropin (hCG) (CGB) subunits and alpha hCG (CGA) subunits are expressed and the hCG dimer is produced in normal human cyclic endometrium. Endometrial specimens were collected for histological dating from women undergoing treatment in our division of human reproduction. RNA from normal secretory endometrium was extracted, and CGB and CGA gene expression was assessed by semiquantitative PCR. Adequate secretory endometrial specimens were homogenized using protease inhibitors. Proteins present in the supernatant were separated electrophoretically, and molecular hCG isoforms were detected by Western blot. The supernatant hCG concentrations were measured by ELISA. We characterized hCG and leukocytes in endometrial specimens by immunohistochemistry. Uterine flushing was performed to confirm endometrial hCG secretion into the uterine fluid. A full-length CGB mRNA encompassing the exon 1 promoter region and the structure exons 2 and 3 (including the C-terminal peptide) was expressed in normal secretory endometrial specimens (similar to CGA) during the early secretory phase of the menstrual cycle, up to an optimum at the midsecretory to late secretory phases. In homogenate supernatants obtained from normal secretory endometrium, hormone concentrations of dimeric hCG were approximately 5 mU per 10 mg of tissue, compared with considerably smaller concentrations of corresponding single free CGB subunit. Single chains of CGB, CGA, and dimeric molecular hCG isoforms were found in endometrial specimens by Western blot. Glandular endometrial hCG production is demonstrated immunohistochemically, with an increase toward the late secretory phase vs. the early secretory phase of the normal secretory menstrual cycle. However, glandular hCG release is diminished or absent in the dyssynchronous or missing endometrial secretory transformation. Endogenous endometrial hCG may be important for implantation and maintenance of pregnancy.
Collapse
Affiliation(s)
- Gerolf Zimmermann
- Department of Obstetrics and Gynaecology, University of Leipzig, Leipzig, Germany
| | | | | |
Collapse
|
3
|
Merz WE, Krause JM, Roig J, Singh V, Berger P. Nonassembled human chorionic gonadotropin subunits and alphaalpha-homodimers use fast-track processing in the secretory pathway in contrast to alphabeta-heterodimers. Endocrinology 2007; 148:5831-41. [PMID: 17761764 DOI: 10.1210/en.2007-0789] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In multimeric glycoproteins, like glycoprotein hormones, mutual subunit interactions are required for correct folding, assembly, and transport in the secretory pathway. However, character and time course of these interactions need further elucidation. The influence of the glycoprotein hormone alpha-subunit (GPHalpha) on the folding of the human chorionic gonadotropin (hCG) beta-subunit (hCGbeta) in hCG alphabeta-heterodimers was investigated in [(35)S]Met/Cys-labeled JEG-3 cells. Completeness of disulfide bridge formation during the time course of folding was estimated by labeling with [(3)H]N-ethylmaleinimide of free thiol groups not yet consumed. Subunit association took place between immature hCGbeta (high (3)H/(35)S ratio) and almost completely folded GPHalpha. Analysis revealed a highly dynamic maturation process comprising of at least eight main hCGbeta folding intermediates (molecular masses from 107 to 28 kDa) that could be micro-preparatively isolated and characterized. These hCGbeta variants developed while being associated with GPHalpha. The 107-kDa variant was identified as a complex with calnexin. In contrast to hCG alphabeta-heterodimers, free nonassociated hCGbeta, free large GPHalpha, and GPHalphaalpha homodimers showed a fast-track-like processing in the secretory pathway. At 10 min before hCG secretion, sialylation of these variants had already been completed in the late Golgi, whereas hCG alphabeta-heterodimers had still not arrived medial Golgi. This shows that the GPHalpha in the hCG alphabeta-heterodimers decelerates the maturation of the hCGbeta portion in the heterodimer complex. This results in a postponed approval of hCG alphabeta-heterodimers by the endoplasmic reticulum quality control unlike GPHalphaalpha homodimers, free hCGbeta, and GPHalpha subunits.
Collapse
Affiliation(s)
- Wolfgang E Merz
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Federal Republic of Germany.
| | | | | | | | | |
Collapse
|
4
|
Krause JM, Berger P, Roig J, Singh V, Merz WE. Rapid Maturation of Glycoprotein Hormone Free α-Subunit (GPHα) and GPHαα Homodimers. Mol Endocrinol 2007; 21:2551-64. [PMID: 17609437 DOI: 10.1210/me.2007-0051] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
AbstractThe dynamics of glycoprotein hormone α-subunit (GPHα) maturation and GPHαα homodimer formation were studied in presence (JEG-3 choriocarcinoma cells) and absence (HeLa cells) of hCGβ. In both cases, the major initially occurring GPHα variant in [35S]Met/Cys-labeled cells carried two N-glycans (Mr app = 22 kDa). Moreover, a mono-N-glycosylated in vivo association-incompetent GPHα variant (Mr app = 18 kDa) was observed. In JEG-3 cells the early 22-kDa GPHα either associated with hCGβ, or showed self-association to yield GPHαα homodimers, or was later converted into heavily glycosylated large free GPHα (Mr app = 24 kDa). Micro-preparative isolation of intracellular GPHαα homodimers of JEG-3 cells and their conversion by reduction revealed that they consisted of 22-kDa GPHα monomers and not of large free GPHα. In HeLa cells, the large free GPHα variant was not observed, whereas GPHαα homodimers were present. Intracellularly, early GPHαα homodimers (35 kDa) and late variants (JEG-3: 44 kDa, HeLa: 39 kDa) were found. Both cell types secreted 45 kDa GPHαα homodimers. Large free GPHα and GPHαα homodimers were more rapidly sialylated than hCG αβ-heterodimers indicating a sequestration mechanism in the secretory pathway. In GPHαα homo- as well as hCG αβ-heterodimers the subunit interaction site, located on loop 2 of GPHα (amino acids 33–42), became immunologically inaccessible indicating similar spatial orientation of GPHα in both types of dimers. The studies demonstrate the formation, in vivo dynamics of GPHαα homodimers, and the pathways of the cellular metabolism of variants of GPHα, monoglycosylated GPHα and large free GPHα.
Collapse
Affiliation(s)
- Jean-Michel Krause
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
5
|
Roig J, Krause JM, Berger P, Merz WE. Time-dependent folding of immunological epitopes of the human chorionic gonadotropin beta-subunit. Mol Cell Endocrinol 2007; 260-262:12-22. [PMID: 17059865 DOI: 10.1016/j.mce.2005.10.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Accepted: 10/29/2005] [Indexed: 11/21/2022]
Abstract
We have explored the possibility to use 14 different monoclonal antibodies in order to follow the formation of the respective epitopes during the biosynthesis of hCG subunits and their association in JEG-3 choriocarcinoma cells using pulse (30s to 5 min)-chase (0-180 min) experiments. We found central cystine knot epitope structures (epitope beta1) to be formed immediately and simultaneously with epitopes on the protruding hCG-beta loops 1 and 3. We found also differences in the time-dependent folding of beta2 and beta4 epitopes, which are highly overlapping structures on the loops 1+3. These differences were reinforced by decreasing the temperature during the pulse-chase experiments to 25 degrees C. Moreover, we describe for the first time an intracellular intact hCG beta-subunit form that showed the transient expression of the hCG-beta-core fragment epitope beta11 in the course of the maturation of this subunit which casts new light on the presence of hCG-beta-core fragment in Down's syndrome, tumors and pregnancy.
Collapse
MESH Headings
- Antibodies, Monoclonal/immunology
- Chorionic Gonadotropin, beta Subunit, Human/chemistry
- Chorionic Gonadotropin, beta Subunit, Human/immunology
- Chorionic Gonadotropin, beta Subunit, Human/metabolism
- Dimerization
- Epitopes/chemistry
- Epitopes/immunology
- Epitopes/metabolism
- Glycoprotein Hormones, alpha Subunit/chemistry
- Glycoprotein Hormones, alpha Subunit/metabolism
- HeLa Cells
- Humans
- Immunoprecipitation
- Protein Folding
- Protein Processing, Post-Translational
- Protein Subunits/chemistry
- Protein Subunits/immunology
- Protein Subunits/metabolism
- Time Factors
Collapse
Affiliation(s)
- J Roig
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Federal Republic of Germany
| | | | | | | |
Collapse
|
6
|
Szkudlinski MW, Fremont V, Ronin C, Weintraub BD. Thyroid-stimulating hormone and thyroid-stimulating hormone receptor structure-function relationships. Physiol Rev 2002; 82:473-502. [PMID: 11917095 DOI: 10.1152/physrev.00031.2001] [Citation(s) in RCA: 307] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This review focuses on recent advances in the structure-function relationships of thyroid-stimulating hormone (TSH) and its receptor. TSH is a member of the glycoprotein hormone family constituting a subset of the cystine-knot growth factor superfamily. TSH is produced by the pituitary thyrotrophs and released to the circulation in a pulsatile manner. It stimulates thyroid functions using specific membrane TSH receptor (TSHR) that belongs to the superfamily of G protein-coupled receptors (GPCRs). New insights into the structure-function relationships of TSH permitted better understanding of the role of specific protein and carbohydrate domains in the synthesis, bioactivity, and clearance of this hormone. Recent progress in studies on TSHR as well as studies on the other GPCRs provided new clues regarding the molecular mechanisms of receptor activation. Such advances are a result of extensive site-directed mutagenesis, peptide and antibody approaches, detailed sequence analyses, and molecular modeling as well as studies on naturally occurring gain- and loss-of-function mutations. This review integrates expanding information on TSH and TSHR structure-function relationships and summarizes current concepts on ligand-dependent and -independent TSHR activation. Special emphasis has been placed on TSH domains involved in receptor recognition, constitutive activity of TSHR, new insights into the evolution of TSH bioactivity, and the development of high-affinity TSH analogs. Such structural, physiological, pathophysiological, evolutionary, and therapeutic implications of TSH-TSHR structure-function studies are frequently discussed in relation to concomitant progress made in studies on gonadotropins and their receptors.
Collapse
Affiliation(s)
- Mariusz W Szkudlinski
- Section of Protein Engineering, Laboratory of Molecular Endocrinology, Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, Maryland, USA.
| | | | | | | |
Collapse
|
7
|
Negroiu G, Dwek RA, Petrescu SM. Folding and maturation of tyrosinase-related protein-1 are regulated by the post-translational formation of disulfide bonds and by N-glycan processing. J Biol Chem 2000; 275:32200-7. [PMID: 10915799 DOI: 10.1074/jbc.m005186200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study we have explored the endoplasmic reticulum associated events accompanying the maturation of the tyrosinase-related protein-1 (TRP-1) nascent chain synthesized in mouse melanoma cells. We show that TRP-1 folding process occurs much more rapidly than for tyrosinase, a highly homologous protein, being completed post-translationally by the formation of critical disulfide bonds. In cells pretreated with dithiothreitol (DTT), unfolded TRP-1 is retained in the endoplasmic reticulum by a prolonged interaction with calnexin and BiP before being targeted for degradation. The TRP-1 chain was able to fold into DTT-resistant conformations both in the presence or absence of alpha-glucosidase inhibitors, but folding occurred through different pathways. During the normal folding pathway, TRP-1 interacts with calnexin. In the presence of alpha-glucosidase inhibitors, the interaction with calnexin is prevented, with TRP-1 folding being assisted by BiP. In this case, the process has similar kinetics to that of untreated TRP-1 and yields a compact form insensitive to DTT as well. However, this form has different thermal denaturation properties than the native conformation. We conclude that disulfide bridge burring is crucial for the TRP-1 export. This suggests that although various folding pathways may complete this process, the native form may be acquired only through the normal unperturbed pathway.
Collapse
Affiliation(s)
- G Negroiu
- Institute of Biochemistry of the Romanian Academy, Splaiul Independentei 296, 77700 Bucharest, Romania
| | | | | |
Collapse
|