Amitai S, Kolodkin-Gal I, Hananya-Meltabashi M, Sacher A, Engelberg-Kulka H. Escherichia coli MazF leads to the simultaneous selective synthesis of both "death proteins" and "survival proteins".
PLoS Genet 2009;
5:e1000390. [PMID:
19282968 PMCID:
PMC2646832 DOI:
10.1371/journal.pgen.1000390]
[Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 01/21/2009] [Indexed: 12/02/2022] Open
Abstract
The Escherichia coli mazEF module is one of the most thoroughly studied toxin–antitoxin systems. mazF encodes a stable toxin, MazF, and mazE encodes a labile antitoxin, MazE, which prevents the lethal effect of MazF. MazF is an endoribonuclease that leads to the inhibition of protein synthesis by cleaving mRNAs at ACA sequences. Here, using 2D-gels, we show that in E. coli, although MazF induction leads to the inhibition of the synthesis of most proteins, the synthesis of an exclusive group of proteins, mostly smaller than about 20 kDa, is still permitted. We identified some of those small proteins by mass spectrometry. By deleting the genes encoding those proteins from the E. coli chromosome, we showed that they were required for the death of most of the cellular population. Under the same experimental conditions, which induce mazEF-mediated cell death, other such proteins were found to be required for the survival of a small sub-population of cells. Thus, MazF appears to be a regulator that induces downstream pathways leading to death of most of the population and the continued survival of a small sub-population, which will likely become the nucleus of a new population when growth conditions become less stressful.
The enteric bacterium E. coli, as most other bacteria, carries a pair of genes on its chromosome; one of them specifies a toxin and the other one an antitoxin. Previously, we have shown that that the mazEF toxin–antitoxin system in E. coli is responsible for bacterial cell death under stressful conditions. Clearly, a system that causes any given cell to die is not advantageous to that particular cell. On the other hand, the death of an individual cell may be advantageous for the bacterial population as a whole. Here, for the first time, we report that MazF activates a complex network of proteins. Moreover, we also show, for the first time, that MazF affects two opposite processes: cell death and cell survival. We suggest that this dual effect may provide an evolutionary rational for mazEF-mediated cell death. When exposed to stressful conditions, most of the cell population undergoes programmed cell death; however, there appears to be an active process that keeps a small fraction of the population alive. When growth conditions become less stressful, it is probably this small sub-population of survivors that becomes the basis of a new cell population.
Collapse