1
|
Cotino-Nájera S, García-Villa E, Cruz-Rosales S, Gariglio P, Díaz-Chávez J. Resveratrol inhibits Lin28A expression and induces its degradation via the proteasomal pathway in NCCIT cells. Oncol Lett 2024; 28:577. [PMID: 39397804 PMCID: PMC11467847 DOI: 10.3892/ol.2024.14710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/14/2024] [Indexed: 10/15/2024] Open
Abstract
Lin28A is an oncoprotein overexpressed in several cancer types such as testicular, ovarian, colon, breast and lung cancers. As a pluripotency factor that promotes tumorigenesis, Lin28A is associated with more undifferentiated and aggressive tumors phenotypes. Moreover, Lin28A is a highly stable protein that is difficult to downregulate. The compound resveratrol (RSV) has anticancer effects. The present study aimed to elucidate the mechanisms underlying the downregulation of Lin28A protein expression by RSV in the NCCIT cell line. NCCIT cells were treated with different concentrations of RSV to investigate its effects on Lin28A expression. The mRNA expression levels of Lin28A and ubiquitin-specific protease 28 (USP28) were assessed using reverse transcription-quantitative PCR. Western blot analysis was employed to evaluate the protein levels of Lin28A, USP28 and phosphorylated Lin28A. In addition, in some experiments, cells were treated with a MAPK/ERK pathway inhibitor, and other experiments involved transfecting cells with small interfering RNAs targeting USP28. The results demonstrated that RSV significantly reduced Lin28A expression by destabilizing the protein; this effect was mediated by the ability of RSV to suppress the expression of USP28, a deubiquitinase that normally protects Lin28A from ubiquitination and degradation. Additionally, RSV inhibited phosphorylation of Lin28A via the MAPK/ERK pathway; this phosphorylation event has previously been shown to enhance the stability of Lin28A by increasing its half-life. This resulted in Lin28A degradation through the proteasomal pathway in NCCIT cells. The results provide further evidence of the anticancer activity of RSV, and identified Lin28A and USP28 as promising therapeutic targets. As a stable oncoprotein, downregulating Lin28A expression is challenging. However, the present study demonstrated that RSV can overcome this hurdle by inhibiting USP28 expression and MAPK/ERK signaling to promote Lin28A degradation. Furthermore, elucidating these mechanisms provides avenues for developing targeted cancer therapies.
Collapse
Affiliation(s)
- Sandra Cotino-Nájera
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies of The National Polytechnic Institute, Mexico City 07360, Mexico
| | - Enrique García-Villa
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies of The National Polytechnic Institute, Mexico City 07360, Mexico
| | - Samantha Cruz-Rosales
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies of The National Polytechnic Institute, Mexico City 07360, Mexico
| | - Patricio Gariglio
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies of The National Polytechnic Institute, Mexico City 07360, Mexico
| | - José Díaz-Chávez
- Biomedical Cancer Research Unit, Biomedical Research Institute, National Autonomous University of Mexico/National Cancer Institute, Mexico City 14080, Mexico
- Department of Cellular Biology, Faculty of Sciences, National Autonomous University of Mexico, Mexico City 04510, Mexico
- School of Medicine and Health Sciences, Monterrey Institute of Technology, Mexico City 14380, Mexico
| |
Collapse
|
2
|
Usha Satheesan S, Chowdhury S, Kolthur-Seetharam U. Metabolic and circadian inputs encode anticipatory biogenesis of hepatic fed microRNAs. Life Sci Alliance 2024; 7:e202302180. [PMID: 38408795 PMCID: PMC10897495 DOI: 10.26508/lsa.202302180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 02/28/2024] Open
Abstract
Starvation and refeeding are mostly unanticipated in the wild in terms of duration, frequency, and nutritional value of the refed state. Notwithstanding this, organisms mount efficient and reproducible responses to restore metabolic homeostasis. Hence, it is intuitive to invoke expectant molecular mechanisms that build anticipatory responses to enable physiological toggling during fed-fast cycles. In this regard, we report anticipatory biogenesis of oscillatory hepatic microRNAs that peak during a fed state and inhibit starvation-responsive genes. Our results clearly demonstrate that the levels of primary and precursor microRNA transcripts increase during a fasting state, in anticipation of a fed response. We delineate the importance of both metabolic and circadian cues in orchestrating hepatic fed microRNA homeostasis in a physiological setting. Besides illustrating metabo-endocrine control, our findings provide a mechanistic basis for the overarching influence of starvation on anticipatory biogenesis. Importantly, by using pharmacological agents that are widely used in clinics, we point out the high potential of interventions to restore homeostasis of hepatic microRNAs, whose deregulated expression is otherwise well established to cause metabolic diseases.
Collapse
Affiliation(s)
- Sandra Usha Satheesan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Shreyam Chowdhury
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Ullas Kolthur-Seetharam
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
- Tata Institute of Fundamental Research- Hyderabad (TIFR-H), Hyderabad, India
| |
Collapse
|
3
|
Subramanian M, Mills WT, Paranjpe MD, Onuchukwu US, Inamdar M, Maytin AR, Li X, Pomerantz JL, Meffert MK. Growth-suppressor microRNAs mediate synaptic overgrowth and behavioral deficits in Fragile X mental retardation protein deficiency. iScience 2024; 27:108676. [PMID: 38235335 PMCID: PMC10792201 DOI: 10.1016/j.isci.2023.108676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/20/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024] Open
Abstract
Abnormal neuronal and synapse growth is a core pathology resulting from deficiency of the Fragile X mental retardation protein (FMRP), but molecular links underlying the excessive synthesis of key synaptic proteins remain incompletely defined. We find that basal brain levels of the growth suppressor let-7 microRNA (miRNA) family are selectively lowered in FMRP-deficient mice and activity-dependent let-7 downregulation is abrogated. Primary let-7 miRNA transcripts are not altered in FMRP-deficiency and posttranscriptional misregulation occurs downstream of MAPK pathway induction and elevation of Lin28a, a let-7 biogenesis inhibitor. Neonatal restoration of brain let-7 miRNAs corrects hallmarks of FMRP-deficiency, including dendritic spine overgrowth and social and cognitive behavioral deficits, in adult mice. Blockade of MAPK hyperactivation normalizes let-7 miRNA levels in both brain and peripheral blood plasma from Fmr1 KO mice. These results implicate dysregulated let-7 miRNA biogenesis in the pathogenesis of FMRP-deficiency, and highlight let-7 miRNA-based strategies for future biomarker and therapeutic development.
Collapse
Affiliation(s)
- Megha Subramanian
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - William T. Mills
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Manish D. Paranjpe
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Uche S. Onuchukwu
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Manasi Inamdar
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Amanda R. Maytin
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xinbei Li
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joel L. Pomerantz
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mollie K. Meffert
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
4
|
Lekka E, Kokanovic A, Mosole S, Civenni G, Schmidli S, Laski A, Ghidini A, Iyer P, Berk C, Behera A, Catapano CV, Hall J. Pharmacological inhibition of Lin28 promotes ketogenesis and restores lipid homeostasis in models of non-alcoholic fatty liver disease. Nat Commun 2022; 13:7940. [PMID: 36572670 PMCID: PMC9792516 DOI: 10.1038/s41467-022-35481-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/06/2022] [Indexed: 12/27/2022] Open
Abstract
Lin28 RNA-binding proteins are stem-cell factors that play key roles in development. Lin28 suppresses the biogenesis of let-7 microRNAs and regulates mRNA translation. Notably, let-7 inhibits Lin28, establishing a double-negative feedback loop. The Lin28/let-7 axis resides at the interface of metabolic reprogramming and oncogenesis and is therefore a potential target for several diseases. In this study, we use compound-C1632, a drug-like Lin28 inhibitor, and show that the Lin28/let-7 axis regulates the balance between ketogenesis and lipogenesis in liver cells. Hence, Lin28 inhibition activates synthesis and secretion of ketone bodies whilst suppressing lipogenesis. This occurs at least partly via let-7-mediated inhibition of nuclear receptor co-repressor 1, which releases ketogenesis gene expression mediated by peroxisome proliferator-activated receptor-alpha. In this way, small-molecule Lin28 inhibition protects against lipid accumulation in multiple cellular and male mouse models of hepatic steatosis. Overall, this study highlights Lin28 inhibitors as candidates for the treatment of hepatic disorders of abnormal lipid deposition.
Collapse
Affiliation(s)
- Evangelia Lekka
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Aleksandra Kokanovic
- Tumor Biology and Experimental Therapeutics, Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Simone Mosole
- Tumor Biology and Experimental Therapeutics, Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Gianluca Civenni
- Tumor Biology and Experimental Therapeutics, Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Sandro Schmidli
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Artur Laski
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Alice Ghidini
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Pavithra Iyer
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Christian Berk
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Alok Behera
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Carlo V Catapano
- Tumor Biology and Experimental Therapeutics, Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona, Switzerland.
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
Ghosh S, Kumar V, Mukherjee H, Lahiri D, Roy P. Nutraceutical regulation of miRNAs involved in neurodegenerative diseases and brain cancers. Heliyon 2021; 7:e07262. [PMID: 34195404 PMCID: PMC8225984 DOI: 10.1016/j.heliyon.2021.e07262] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/24/2021] [Accepted: 06/05/2021] [Indexed: 12/12/2022] Open
Abstract
The human brain is a well-connected, intricate network of neurons and supporting glial cells. Neurodegenerative diseases arise as a consequence of extensive loss of neuronal cells leading to disruption of their natural structure and function. On the contrary, rapid proliferation and growth of glial as well as neuronal cells account for the occurrence of malignancy in brain. In both cases, the molecular microenvironment holds pivotal importance in the progression of the disease. MicroRNAs (miRNA) are one of the major components of the molecular microenvironment. miRNAs are small, noncoding RNAs that control gene expression post-transcriptionally. As compared to other tissues, the brain expresses a substantially high number of miRNAs. In the early stage of neurodegeneration, miRNA expression upregulates, while in oncogenesis, miRNA expression is gradually lost. Neurodegeneration and brain cancer is presumed to be under the influence of identical pathways of cell proliferation, differentiation and cell death which are tightly regulated by miRNAs. It has been confirmed experimentally that miRNA expression can be regulated by nutraceuticals - macronutrients, micronutrients or natural products derived from food; thereby making dietary supplements immensely significant for targeting miRNAs having altered expression patterns during neurodegeneration or oncogenesis. In this review, we will discuss in detail, about the common miRNAs involved in brain cancers and neurodegenerative diseases along with the comprehensive list of miRNAs involved separately in both pathological conditions. We will also discuss the role of nutraceuticals in the regulation of those miRNAs which are involved in both of these pathological conditions.
Collapse
Affiliation(s)
- Souvik Ghosh
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
- Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
- Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Viney Kumar
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Haimanti Mukherjee
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Debrupa Lahiri
- Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
- Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Partha Roy
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| |
Collapse
|
6
|
Jimenez T, Barrios A, Tucker A, Collazo J, Arias N, Fazel S, Baker M, Halim M, Huynh T, Singh R, Pervin S. DUSP9-mediated reduction of pERK1/2 supports cancer stem cell-like traits and promotes triple negative breast cancer. Am J Cancer Res 2020; 10:3487-3506. [PMID: 33163285 PMCID: PMC7642669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023] Open
Abstract
Breast cancer remains a complex disease resulting in high mortality in women. A subset of cancer stem cell (CSC)-like cells expressing aldehyde dehydrogenase 1 (ALDH1) and SOX2/OCT4 are implicated in aggressive biology of specific subtypes of breast cancer. Targeting these populations in breast tumors remain challenging. We examined xenografts from three poorly studied triple negative (TN) breast cancer cells (MDA-MB-468, HCC70 and HCC1806) as well as HMLEHRASV12 for stem cell (SC)-specific proteins, proliferation pathways and dual-specific phosphatases (DUSPs) by quantitative real-time PCR (qRT-PCR), immunoblot analysis and immunohistochemistry. We found that pERK1/2 remained suppressed in TN xenografts examined at various stages of growth, while the levels of pp38 MAPK and pAKT was upregulated. We found that DUSP was involved in the suppression of pERK1/2, which was MEK1/2 independent. Our in vitro assays, using HMLEHRASV12 xenografts as a positive control, confirmed increased phosphatase activity that specifically influenced pERK1/2 but not pp38MAPK or pJNK levels. Family members of DUSPs examined, showed increase in DUSP9 expression in TN xenografts. Increased DUSP9 expression in xenografts was consistently associated with upregulation of SC-specific proteins, ALDH1 and SOX2/OCT4. HRAS driven HMLEHRASV12 xenografts as well as mammospheres from TN breast cancer cells showed inverse relationship between pERK1/2 and increased expression of DUSP9 and CSC traits. In addition, treatment in vitro, with MEK1/2 inhibitor, PD 98059, reduced pERK1/2 levels and increased DUSP9 and SC-specific proteins. Depletion of subsets of SOX2/OCT4 by fluorescence-activated cell sorting (FACS), as well as pharmacological and genetic reduction of DUSP9 levels influenced ALDH1 and SOX2/OCT4 expression and reduced mammosphere growth in vitro as well as tumor growth in vivo. Collectively our data support the possibility that DUSP9 contributed to stem cell-like cells that could influence TN breast tumor growth. Conclusion: Our study shows that subsets of TN breast cancers with MEK1/2 independent reduced pERK1/2 levels will respond less to MEK1/2 inhibitors, thereby questioning their therapeutic efficacy. Our study also demonstrates context-dependent DUSP9-mediated reduced pERK1/2 levels could influence stem cell-like traits in TN breast tumors. Therefore, targeting DUSP9 could be an attractive target for improved clinical outcome in a subset of basal-like breast cancers.
Collapse
Affiliation(s)
- Thalia Jimenez
- Division of Endocrinology and Metabolism, Charles R. Drew University of Medicine and Science1748 118 Street, Los Angeles, CA 90059, USA
| | - Albert Barrios
- Department of Biology, California State University Dominguez HillsLos Angeles, CA 90747, USA
| | - Alexandria Tucker
- Division of Endocrinology and Metabolism, Charles R. Drew University of Medicine and Science1748 118 Street, Los Angeles, CA 90059, USA
| | - Javier Collazo
- Division of Endocrinology and Metabolism, Charles R. Drew University of Medicine and Science1748 118 Street, Los Angeles, CA 90059, USA
| | - Nataly Arias
- Department of Biology, California State University Dominguez HillsLos Angeles, CA 90747, USA
| | - Sayeda Fazel
- Division of Endocrinology and Metabolism, Charles R. Drew University of Medicine and Science1748 118 Street, Los Angeles, CA 90059, USA
| | - Melanie Baker
- Division of Endocrinology and Metabolism, Charles R. Drew University of Medicine and Science1748 118 Street, Los Angeles, CA 90059, USA
| | - Mariza Halim
- Division of Endocrinology and Metabolism, Charles R. Drew University of Medicine and Science1748 118 Street, Los Angeles, CA 90059, USA
| | - Travis Huynh
- Division of Endocrinology and Metabolism, Charles R. Drew University of Medicine and Science1748 118 Street, Los Angeles, CA 90059, USA
| | - Rajan Singh
- Division of Endocrinology and Metabolism, Charles R. Drew University of Medicine and Science1748 118 Street, Los Angeles, CA 90059, USA
- Department of Obstetrics and Gynecology, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLALos Angeles, CA 90095, USA
| | - Shehla Pervin
- Division of Endocrinology and Metabolism, Charles R. Drew University of Medicine and Science1748 118 Street, Los Angeles, CA 90059, USA
- Department of Obstetrics and Gynecology, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLALos Angeles, CA 90095, USA
| |
Collapse
|
7
|
Leszczyński P, Śmiech M, Salam Teeli A, Haque E, Viger R, Ogawa H, Pierzchała M, Taniguchi H. Deletion of the Prdm3 Gene Causes a Neuronal Differentiation Deficiency in P19 Cells. Int J Mol Sci 2020; 21:ijms21197192. [PMID: 33003409 PMCID: PMC7582457 DOI: 10.3390/ijms21197192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 12/29/2022] Open
Abstract
PRDM (PRDI-BF1 (positive regulatory domain I-binding factor 1) and RIZ1 (retinoblastoma protein-interacting zinc finger gene 1) homologous domain-containing) transcription factors are a group of proteins that have a significant impact on organ development. In our study, we assessed the role of Prdm3 in neurogenesis and the mechanisms regulating its expression. We found that Prdm3 mRNA expression was induced during neurogenesis and that Prdm3 gene knockout caused premature neuronal differentiation of the P19 cells and enhanced the growth of non-neuronal cells. Interestingly, we found that Gata6 expression was also significantly upregulated during neurogenesis. We further studied the regulatory mechanism of Prdm3 expression. To determine the role of GATA6 in the regulation of Prdm3 mRNA expression, we used a luciferase-based reporter assay and found that Gata6 overexpression significantly increased the activity of the Prdm3 promoter. Finally, the combination of retinoic acid receptors α and β, along with Gata6 overexpression, further increased the activity of the luciferase reporter. Taken together, our results suggest that in the P19 cells, PRDM3 contributed to neurogenesis and its expression was stimulated by the synergism between GATA6 and the retinoic acid signaling pathway.
Collapse
Affiliation(s)
- Paweł Leszczyński
- Institute of Genetics and Animal Biotechnology, Laboratory for Genome Editing and Transcriptional Regulation, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (P.L.); (M.Ś.); (A.S.T.); (E.H.)
| | - Magdalena Śmiech
- Institute of Genetics and Animal Biotechnology, Laboratory for Genome Editing and Transcriptional Regulation, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (P.L.); (M.Ś.); (A.S.T.); (E.H.)
| | - Aamir Salam Teeli
- Institute of Genetics and Animal Biotechnology, Laboratory for Genome Editing and Transcriptional Regulation, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (P.L.); (M.Ś.); (A.S.T.); (E.H.)
| | - Effi Haque
- Institute of Genetics and Animal Biotechnology, Laboratory for Genome Editing and Transcriptional Regulation, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (P.L.); (M.Ś.); (A.S.T.); (E.H.)
| | - Robert Viger
- Reproduction, Mother and Child Health, Centre de Recherche du CHU de Québec-Université Laval and Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Quebec, QC GIV4G2, Canada;
- Department of Obstetrics, Gynecology, and Reproduction, Université Laval, Quebec, QC G1V0A6, Canada
| | - Hidesato Ogawa
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan;
| | - Mariusz Pierzchała
- Institute of Genetics and Animal Biotechnology, Department of Genomics and Biodiversity, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland;
| | - Hiroaki Taniguchi
- Institute of Genetics and Animal Biotechnology, Laboratory for Genome Editing and Transcriptional Regulation, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (P.L.); (M.Ś.); (A.S.T.); (E.H.)
- Correspondence: ; Tel.: +48-22-736-70-95
| |
Collapse
|
8
|
Abstract
Retinoic acid (RA), the biologically active metabolite of vitamin A, regulates a vast spectrum of biological processes, such as cell differentiation, proliferation, apoptosis, and morphogenesis. microRNAs (miRNAs) play a crucial role in regulating gene expression by binding to messenger RNA (mRNA) which leads to mRNA degradation and/or translational repression. Like RA, miRNAs regulate multiple biological processes, including proliferation, differentiation, apoptosis, neurogenesis, tumorigenesis, and immunity. In fact, RA regulates the expression of many miRNAs to exert its biological functions. miRNA and RA regulatory networks have been studied in recent years. In this manuscript, we summarize literature that highlights the impact of miRNAs in RA-regulated molecular networks included in the PubMed.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA, United States
| | - Atharva Piyush Rohatgi
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA, United States
| | - Yu-Jui Yvonne Wan
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA, United States.
| |
Collapse
|
9
|
Chirshev E, Oberg KC, Ioffe YJ, Unternaehrer JJ. Let-7 as biomarker, prognostic indicator, and therapy for precision medicine in cancer. Clin Transl Med 2019; 8:24. [PMID: 31468250 PMCID: PMC6715759 DOI: 10.1186/s40169-019-0240-y] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/16/2019] [Indexed: 12/23/2022] Open
Abstract
Abnormal regulation and expression of microRNAs (miRNAs) has been documented in various diseases including cancer. The miRNA let-7 (MIRLET7) family controls developmental timing and differentiation. Let-7 loss contributes to carcinogenesis via an increase in its target oncogenes and stemness factors. Let-7 targets include genes regulating the cell cycle, cell signaling, and maintenance of differentiation. It is categorized as a tumor suppressor because it reduces cancer aggressiveness, chemoresistance, and radioresistance. However, in rare situations let-7 acts as an oncogene, increasing cancer migration, invasion, chemoresistance, and expression of genes associated with progression and metastasis. Here, we review let-7 function as tumor suppressor and oncogene, considering let-7 as a potential diagnostic and prognostic marker, and a therapeutic target for cancer treatment. We explain the complex regulation and function of different let-7 family members, pointing to abnormal processes involved in carcinogenesis. Let-7 is a promising option to complement conventional cancer therapy, but requires a tumor specific delivery method to avoid toxicity. While let-7 therapy is not yet established, we make the case that assessing its tumor presence is crucial when choosing therapy. Clinical data demonstrate that let-7 can be used as a biomarker for rational precision medicine decisions, resulting in improved patient survival.
Collapse
Affiliation(s)
- Evgeny Chirshev
- Division of Anatomy, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| | - Kerby C Oberg
- Division of Anatomy and Pediatric Pathology, Loma Linda University, Loma Linda, CA, USA
| | - Yevgeniya J Ioffe
- Gynecology and Obstetrics, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Juli J Unternaehrer
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, 11085 Campus Street, Mortensen Hall 219, Loma Linda, CA, 92354, USA.
| |
Collapse
|
10
|
Shen L, Yang Q, He Y, Zou X, Cao Z. BmK NT1-induced neurotoxicity is mediated by PKC/CaMKⅡ-dependent ERK1/2 and p38 activation in primary cultured cerebellar granule cells. Toxicology 2019; 421:22-29. [PMID: 30940546 DOI: 10.1016/j.tox.2019.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/01/2019] [Accepted: 03/28/2019] [Indexed: 01/08/2023]
Abstract
Voltage-gated sodium channels (VGSCs) represent molecular targets for a number of potent neurotoxins that affect the ion permeation or gating kinetics. BmK NT1, an α-scorpion toxin purified from Buthus martensii Karch (BMK), induces excitatory neurotoxicity by activation of VGSCs with subsequent overloading of intracellular Ca2+ in cerebellar granule cells (CGCs). In the current study, we further investigated signaling pathways responsible for BmK NT1-induced neurotoxicity in CGCs. BmK NT1 exposure induced neuronal death in different development stages of CGCs with similar potencies ranging from 0.21-0.48 μM. The maximal neuronal death induced by BmK NT1 gradually increased from 25.6% at 7 days in vitro (DIVs) to 42.1%, 47.8%, and 67.2% at 10, 13, and 16 DIVs, respectively, suggesting that mature CGCs are more vulnerable to BmK NT1 exposure. Application of Ca2+/calmodulin-dependent protein kinase Ⅱ (CaMKⅡ) inhibitors, KN-62 or KN-93, but not Ca2+/calmodulin-dependent protein kinase kinase (CaMKK) inhibitor, STO-609, completely abolished BmK NT1-induced neuronal death. Moreover, BmK NT1 exposure stimulated CaMKⅡ phosphorylation. BmK NT1 also stimulated extracellular regulated protein kinases 1/2 (ERK1/2) and p38 phosphorylation which was abolished by tetrodotoxin demonstrating the role of VGSCs on BmK NT1-induced ERK1/2 and p38 phosphorylation. However, BmK NT1 didn't affect c-Jun N-terminal kinase (JNK) phosphorylation. In addition, both ERK1/2 inhibitor, U0126 and p38 inhibitor, SB203580 attenuated BmK NT1-induced neuronal death. Both PKC inhibitor, Gö 6983 and CaMKⅡ inhibitor, KN-62 abolished BmK NT1-induced ERK1/2 and p38 phosphorylation. Considered together, these data demonstrate that BmK NT1-induced neurotoxicity is through PKC/CaMKⅡ mediated ERK1/2 and p38 activation.
Collapse
Affiliation(s)
- Liping Shen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Qundi Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Yuwei He
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Xiaohan Zou
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
11
|
Abstract
Intracellular levels of the RNA-binding protein and pluripotency factor, Lin28a, are tightly controlled to govern cellular and organismal growth. Lin28a is extensively regulated at the posttranscriptional level, and can undergo mitogen-activated protein kinase (MAPK)-mediated elevation from low basal levels in differentiated cells by phosphorylation-dependent stabilizing interaction with the RNA-silencing factor HIV TAR RNA-binding protein (TRBP). However, molecular and spatiotemporal details of this critical control mechanism remained unknown. In this work, we dissect the interacting regions of Lin28a and TRBP proteins and develop biosensors to visualize this interaction. We identify truncated domains of Lin28a and of TRBP that are sufficient to support coassociation and mutual elevation of protein levels, and a requirement for MAPK-dependent phosphorylation of TRBP at putative Erk-target serine 152, as well as Lin28a serine 200 phosphorylation, in mediating the increase of Lin28a protein by TRBP. The phosphorylation-dependent association of Lin28a and TRBP truncated constructs is leveraged to develop fluorescence resonance energy transfer (FRET)-based sensors for dynamic monitoring of Lin28a and TRBP interaction. We demonstrate the response of bimolecular and unimolecular FRET sensors to growth factor stimulation in living cells, with coimaging of Erk activation to achieve further understanding of the role of MAPK signaling in Lin28a regulation.
Collapse
Affiliation(s)
- Laurel M Oldach
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Kirill Gorshkov
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205.,Therapeutics for Rare and Neglected Diseases Program, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - William T Mills
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205.,Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093
| | - Mollie K Meffert
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|