1
|
Proteau S, Krossa I, Husser C, Guéguinou M, Sella F, Bille K, Irondelle M, Dalmasso M, Barouillet T, Cheli Y, Pisibon C, Arrighi N, Nahon‐Estève S, Martel A, Gastaud L, Lassalle S, Mignen O, Brest P, Mazure NM, Bost F, Baillif S, Landreville S, Turcotte S, Hasson D, Carcamo S, Vandier C, Bernstein E, Yvan‐Charvet L, Levesque MP, Ballotti R, Bertolotto C, Strub T. LKB1-SIK2 loss drives uveal melanoma proliferation and hypersensitivity to SLC8A1 and ROS inhibition. EMBO Mol Med 2023; 15:e17719. [PMID: 37966164 PMCID: PMC10701601 DOI: 10.15252/emmm.202317719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/16/2023] Open
Abstract
Metastatic uveal melanomas are highly resistant to all existing treatments. To address this critical issue, we performed a kinome-wide CRISPR-Cas9 knockout screen, which revealed the LKB1-SIK2 module in restraining uveal melanoma tumorigenesis. Functionally, LKB1 loss enhances proliferation and survival through SIK2 inhibition and upregulation of the sodium/calcium (Na+ /Ca2+ ) exchanger SLC8A1. This signaling cascade promotes increased levels of intracellular calcium and mitochondrial reactive oxygen species, two hallmarks of cancer. We further demonstrate that combination of an SLC8A1 inhibitor and a mitochondria-targeted antioxidant promotes enhanced cell death efficacy in LKB1- and SIK2-negative uveal melanoma cells compared to control cells. Our study also identified an LKB1-loss gene signature for the survival prognostic of patients with uveal melanoma that may be also predictive of response to the therapy combination. Our data thus identify not only metabolic vulnerabilities but also new prognostic markers, thereby providing a therapeutic strategy for particular subtypes of metastatic uveal melanoma.
Collapse
Affiliation(s)
- Sarah Proteau
- University Côte d'AzurNiceFrance
- Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020, and Equipe labellisée ARC 2022, Mediterranean Centre for Molecular MedicineNiceFrance
| | - Imène Krossa
- University Côte d'AzurNiceFrance
- Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020, and Equipe labellisée ARC 2022, Mediterranean Centre for Molecular MedicineNiceFrance
| | - Chrystel Husser
- University Côte d'AzurNiceFrance
- Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020, and Equipe labellisée ARC 2022, Mediterranean Centre for Molecular MedicineNiceFrance
| | | | - Federica Sella
- Department of Dermatology, University Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - Karine Bille
- University Côte d'AzurNiceFrance
- Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020, and Equipe labellisée ARC 2022, Mediterranean Centre for Molecular MedicineNiceFrance
| | | | - Mélanie Dalmasso
- University Côte d'AzurNiceFrance
- Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020, and Equipe labellisée ARC 2022, Mediterranean Centre for Molecular MedicineNiceFrance
| | - Thibault Barouillet
- Inserm, Hematometabolism and metainflammation, team 13, Mediterranean Centre for Molecular MedicineNiceFrance
| | - Yann Cheli
- University Côte d'AzurNiceFrance
- Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020, and Equipe labellisée ARC 2022, Mediterranean Centre for Molecular MedicineNiceFrance
| | - Céline Pisibon
- University Côte d'AzurNiceFrance
- Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020, and Equipe labellisée ARC 2022, Mediterranean Centre for Molecular MedicineNiceFrance
| | - Nicole Arrighi
- University Côte d'AzurNiceFrance
- Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020, and Equipe labellisée ARC 2022, Mediterranean Centre for Molecular MedicineNiceFrance
| | - Sacha Nahon‐Estève
- University Côte d'AzurNiceFrance
- Department of OphthalmologyCentre Hospitalier Universitaire of NiceNiceFrance
| | - Arnaud Martel
- University Côte d'AzurNiceFrance
- Department of OphthalmologyCentre Hospitalier Universitaire of NiceNiceFrance
| | | | - Sandra Lassalle
- University Côte d'AzurNiceFrance
- Laboratory of Clinical and Experimental Pathology, University Hospital of Nice, FHU OncoAge, Cote d'Azur University, Biobank BB‐0033‐00025, IRCAN team 4, OncoAge FHUNiceFrance
| | | | - Patrick Brest
- University Côte d'AzurNiceFrance
- IRCAN team 4, Inserm, CNRS, FHU‐oncoAge, IHU‐RESPIRera NiceNiceFrance
| | - Nathalie M Mazure
- University Côte d'AzurNiceFrance
- Inserm, Cancer, Metabolism and environment, team, Equipe labellisée Ligue 2022, Mediterranean Centre for Molecular MedicineNiceFrance
| | - Frédéric Bost
- University Côte d'AzurNiceFrance
- Inserm, Cancer, Metabolism and environment, team, Equipe labellisée Ligue 2022, Mediterranean Centre for Molecular MedicineNiceFrance
| | - Stéphanie Baillif
- University Côte d'AzurNiceFrance
- Department of OphthalmologyCentre Hospitalier Universitaire of NiceNiceFrance
| | - Solange Landreville
- Département d'ophtalmologie et d'ORL‐CCF, Faculté de médecineUniversité LavalQuebec CityQCCanada
- CUO‐Recherche and Axe médecine régénératriceCentre de recherche du CHU de Québec‐Université LavalQuebec CityQCCanada
- Centre de recherche sur le cancer de l'Université LavalQuebec CityQCCanada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEXQuebec CityQCCanada
| | - Simon Turcotte
- Cancer AxisCentre de recherche du Centre Hospitalier de l'Université de Montréal/Institut du cancer de MontréalMontréalQCCanada
- Hepato‐Pancreato‐Biliary Surgery and Liver Transplantation ServiceCentre hospitalier de l'Université de MontréalMontréalQCCanada
| | - Dan Hasson
- Department of Oncological Sciences, Tisch Cancer InstituteIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Tisch Cancer Institute Bioinformatics for Next Generation Sequencing (BiNGS) FacilityIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Saul Carcamo
- Department of Oncological Sciences, Tisch Cancer InstituteIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Tisch Cancer Institute Bioinformatics for Next Generation Sequencing (BiNGS) FacilityIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | | | - Emily Bernstein
- Department of Oncological Sciences, Tisch Cancer InstituteIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Laurent Yvan‐Charvet
- University Côte d'AzurNiceFrance
- Inserm, Hematometabolism and metainflammation, team 13, Mediterranean Centre for Molecular MedicineNiceFrance
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - Robert Ballotti
- University Côte d'AzurNiceFrance
- Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020, and Equipe labellisée ARC 2022, Mediterranean Centre for Molecular MedicineNiceFrance
| | - Corine Bertolotto
- University Côte d'AzurNiceFrance
- Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020, and Equipe labellisée ARC 2022, Mediterranean Centre for Molecular MedicineNiceFrance
| | - Thomas Strub
- University Côte d'AzurNiceFrance
- Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020, and Equipe labellisée ARC 2022, Mediterranean Centre for Molecular MedicineNiceFrance
| |
Collapse
|
2
|
p38 MAPK Pathway in the Heart: New Insights in Health and Disease. Int J Mol Sci 2020; 21:ijms21197412. [PMID: 33049962 PMCID: PMC7582802 DOI: 10.3390/ijms21197412] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
The p38 mitogen-activated kinase (MAPK) family controls cell adaptation to stress stimuli. p38 function has been studied in depth in relation to cardiac development and function. The first isoform demonstrated to play an important role in cardiac development was p38α; however, all p38 family members are now known to collaborate in different aspects of cardiomyocyte differentiation and growth. p38 family members have been proposed to have protective and deleterious actions in the stressed myocardium, with the outcome of their action in part dependent on the model system under study and the identity of the activated p38 family member. Most studies to date have been performed with inhibitors that are not isoform-specific, and, consequently, knowledge remains very limited about how the different p38s control cardiac physiology and respond to cardiac stress. In this review, we summarize the current understanding of the role of the p38 pathway in cardiac physiology and discuss recent advances in the field.
Collapse
|
3
|
Watanabe Y. Cardiac Na +/Ca 2+ exchange stimulators among cardioprotective drugs. J Physiol Sci 2019; 69:837-849. [PMID: 31664641 PMCID: PMC10717683 DOI: 10.1007/s12576-019-00721-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/18/2019] [Indexed: 02/06/2023]
Abstract
We previously reviewed our study of the pharmacological properties of cardiac Na+/Ca2+ exchange (NCX1) inhibitors among cardioprotective drugs, such as amiodarone, bepridil, dronedarone, cibenzoline, azimilide, aprindine, and benzyl-oxyphenyl derivatives (Watanabe et al. in J Pharmacol Sci 102:7-16, 2006). Since then we have continued our studies further and found that some cardioprotective drugs are NCX1 stimulators. Cardiac Na+/Ca2+ exchange current (INCX1) was stimulated by nicorandil (a hybrid ATP-sensitive K+ channel opener), pinacidil (a non-selective ATP-sensitive K+ channel opener), flecainide (an antiarrhythmic drug), and sodium nitroprusside (SNP) (an NO donor). Sildenafil (a phosphodiesterase-5 inhibitor) further increased the pinacidil-induced augmentation of INCX1. In paper, here I review the NCX stimulants that enhance NCX function among the cardioprotective agents we examined such as nicorandil, pinacidil, SNP, sildenafil and flecainide, in addition to atrial natriuretic (ANP) and dofetilide, which were reported by other investigators.
Collapse
Affiliation(s)
- Yasuhide Watanabe
- Division of Pharmacological Science, Department of Health Science, Hamamatsu University School of Medicine, 1-20-1 Handa-yama, Higashi-ku, Hamamatsu, 431-3192, Japan.
| |
Collapse
|
4
|
Zhang Y, Wang Y, Yanni J, Qureshi MA, Logantha SJRJ, Kassab S, Boyett MR, Gardiner NJ, Sun H, Howarth FC, Dobrzynski H. Electrical Conduction System Remodeling in Streptozotocin-Induced Diabetes Mellitus Rat Heart. Front Physiol 2019; 10:826. [PMID: 31338036 PMCID: PMC6628866 DOI: 10.3389/fphys.2019.00826] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 06/13/2019] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular complications are common in type 1 diabetes mellitus (TIDM) and there is an increased risk of arrhythmias as a result of dysfunction of the cardiac conduction system (CCS). We have previously shown that, in vivo, there is a decrease in the heart rate and prolongation of the QRS complex in streptozotocin-induced type 1 diabetic rats indicating dysfunction of the CCS. The aim of this study was to investigate the function of the ex vivo CCS and key proteins that are involved in pacemaker mechanisms in TIDM. RR interval, PR interval and QRS complex duration were significantly increased in diabetic rats. The beating rate of the isolated sinoatrial node (SAN) preparation was significantly decreased in diabetic rats. The funny current density and cell capacitance were significantly decreased in diabetic nodal cells. Western blot showed that proteins involved in the function of the CCS were significantly decreased in diabetic rats, namely: HCN4, Cav1.3, Cav3.1, Cx45, and NCX1 in the SAN; RyR2 and NCX1 in the atrioventricular junction and Cx40, Cx43, Cx45, and RyR2 in the Purkinje network. We conclude that there are complex functional and cellular changes in the CCS in TIDM. The changes in the proteins involved in the function of this electrical system are expected to adversely affect action potential generation and propagation, and these changes are likely to be arrhythmogenic.
Collapse
Affiliation(s)
- Yu Zhang
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom.,Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Yanwen Wang
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Joseph Yanni
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Mohammed Anwar Qureshi
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sunil Jit R J Logantha
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Sarah Kassab
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Mark R Boyett
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Natalie J Gardiner
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Hong Sun
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Frank Christopher Howarth
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Halina Dobrzynski
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
5
|
Sogorb-Esteve A, García-Ayllón MS, Llansola M, Felipo V, Blennow K, Sáez-Valero J. Inhibition of γ-Secretase Leads to an Increase in Presenilin-1. Mol Neurobiol 2017; 55:5047-5058. [PMID: 28815510 PMCID: PMC5948247 DOI: 10.1007/s12035-017-0705-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/01/2017] [Indexed: 12/27/2022]
Abstract
γ-Secretase inhibitors (GSIs) are potential therapeutic agents for Alzheimer’s disease (AD); however, trials have proven disappointing. We addressed the possibility that γ-secretase inhibition can provoke a rebound effect, elevating the levels of the catalytic γ-secretase subunit, presenilin-1 (PS1). Acute treatment of SH-SY5Y cells with the GSI LY-374973 (N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester, DAPT) augments PS1, in parallel with increases in other γ-secretase subunits nicastrin, presenilin enhancer 2, and anterior pharynx-defective 1, yet with no increase in messenger RNA expression. Over-expression of the C-terminal fragment (CTF) of APP, C99, also triggered an increase in PS1. Similar increases in PS1 were evident in primary neurons treated repeatedly (4 days) with DAPT or with the GSI BMS-708163 (avagacestat). Likewise, rats examined after 21 days administered with avagacestat (40 mg/kg/day) had more brain PS1. Sustained γ-secretase inhibition did not exert a long-term effect on PS1 activity, evident through the decrease in CTFs of APP and ApoER2. Prolonged avagacestat treatment of rats produced a subtle impairment in anxiety-like behavior. The rebound increase in PS1 in response to GSIs must be taken into consideration for future drug development.
Collapse
Affiliation(s)
- Aitana Sogorb-Esteve
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Av. Ramón y Cajal s/n, 03550, Sant Joan d'Alacant, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d'Alacant, Spain
| | - María-Salud García-Ayllón
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Av. Ramón y Cajal s/n, 03550, Sant Joan d'Alacant, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d'Alacant, Spain. .,Unidad de Investigación, Hospital General Universitario de Elche, FISABIO, 03203, Elche, Spain.
| | - Marta Llansola
- Laboratory of Neurobiology, Fundación Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Fundación Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal Campus, Sweden
| | - Javier Sáez-Valero
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Av. Ramón y Cajal s/n, 03550, Sant Joan d'Alacant, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d'Alacant, Spain.
| |
Collapse
|
6
|
Cuchillo-Ibáñez I, Balmaceda V, Botella-López A, Rabano A, Avila J, Sáez-Valero J. Beta-amyloid impairs reelin signaling. PLoS One 2013; 8:e72297. [PMID: 23951306 PMCID: PMC3741172 DOI: 10.1371/journal.pone.0072297] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 07/15/2013] [Indexed: 02/04/2023] Open
Abstract
Reelin is a signaling protein increasingly associated with the pathogenesis of Alzheimer's disease that relevantly modulates tau phosphorylation. We have previously demonstrated that β-amyloid peptide (Aβ) alters reelin expression. We have now attempted to determine whether abnormal reelin triggered by Aβ will result in signaling malfunction, contributing to the pathogenic process. Here, we show that reelin forms induced by β-amyloid are less capable of down-regulating tau phosphorylation via disabled-1 and GSK3β kinase. We also demonstrate that the scaffold protein 14-3-3 that increases tau phosphorylation by modulating GSK3β activity, is up-regulated during defective reelin signaling. Binding of reelin to its receptor, mainly ApoER2 in the brain, relays the signal into the cell. We associate the impaired reelin signaling with inefficiency of reelin in forming active homodimers and decreased ability to bind efficiently to its receptor, ApoER2. More remarkably, reelin from Alzheimer cortex shows a tendency to form large complexes instead of homodimers, the active form for signaling. Our results suggest that reelin expression is altered by Aβ leading to impaired reelin signaling.
Collapse
Affiliation(s)
- Inmaculada Cuchillo-Ibáñez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Sant Joan d’Alacant, Alicante, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Valeria Balmaceda
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Sant Joan d’Alacant, Alicante, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Arancha Botella-López
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Sant Joan d’Alacant, Alicante, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Alberto Rabano
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
- Banco de Tejidos de la Fundación CIEN, CIEN Foundation, Carlos III Institute of Health, Alzheimer Center Reina Sofia Foundation, Madrid, Spain
| | - Jesus Avila
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, Cantoblanco, Madrid, Spain
| | - Javier Sáez-Valero
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Sant Joan d’Alacant, Alicante, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
- * E-mail:
| |
Collapse
|
7
|
Aurora AB, Mahmoud AI, Luo X, Johnson BA, van Rooij E, Matsuzaki S, Humphries KM, Hill JA, Bassel-Duby R, Sadek HA, Olson EN. MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca²⁺ overload and cell death. J Clin Invest 2012; 122:1222-32. [PMID: 22426211 PMCID: PMC3314458 DOI: 10.1172/jci59327] [Citation(s) in RCA: 315] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 02/01/2012] [Indexed: 12/17/2022] Open
Abstract
Early reperfusion of ischemic cardiac tissue remains the most effective intervention for improving clinical outcome following myocardial infarction. However, abnormal increases in intracellular Ca²⁺ during myocardial reperfusion can cause cardiomyocyte death and consequent loss of cardiac function, referred to as ischemia/reperfusion (IR) injury. Therapeutic modulation of Ca²⁺ handling provides some cardioprotection against the paradoxical effects of restoring blood flow to the heart, highlighting the significance of Ca²⁺ overload to IR injury. Cardiac IR is also accompanied by dynamic changes in the expression of microRNAs (miRNAs); for example, miR-214 is upregulated during ischemic injury and heart failure, but its potential role in these processes is unknown. Here, we show that genetic deletion of miR-214 in mice causes loss of cardiac contractility, increased apoptosis, and excessive fibrosis in response to IR injury. The cardioprotective roles of miR-214 during IR injury were attributed to repression of the mRNA encoding sodium/calcium exchanger 1 (Ncx1), a key regulator of Ca²⁺ influx; and to repression of several downstream effectors of Ca²⁺ signaling that mediate cell death. These findings reveal a pivotal role for miR-214 as a regulator of cardiomyocyte Ca²⁺ homeostasis and survival during cardiac injury.
Collapse
Affiliation(s)
- Arin B. Aurora
- Department of Molecular Biology and
Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.
miRagen Therapeutics, Boulder, Colorado, USA.
Free Radical Biology and Aging Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Ahmed I. Mahmoud
- Department of Molecular Biology and
Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.
miRagen Therapeutics, Boulder, Colorado, USA.
Free Radical Biology and Aging Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Xiang Luo
- Department of Molecular Biology and
Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.
miRagen Therapeutics, Boulder, Colorado, USA.
Free Radical Biology and Aging Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Brett A. Johnson
- Department of Molecular Biology and
Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.
miRagen Therapeutics, Boulder, Colorado, USA.
Free Radical Biology and Aging Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Eva van Rooij
- Department of Molecular Biology and
Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.
miRagen Therapeutics, Boulder, Colorado, USA.
Free Radical Biology and Aging Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Satoshi Matsuzaki
- Department of Molecular Biology and
Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.
miRagen Therapeutics, Boulder, Colorado, USA.
Free Radical Biology and Aging Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Kenneth M. Humphries
- Department of Molecular Biology and
Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.
miRagen Therapeutics, Boulder, Colorado, USA.
Free Radical Biology and Aging Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Joseph A. Hill
- Department of Molecular Biology and
Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.
miRagen Therapeutics, Boulder, Colorado, USA.
Free Radical Biology and Aging Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology and
Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.
miRagen Therapeutics, Boulder, Colorado, USA.
Free Radical Biology and Aging Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Hesham A. Sadek
- Department of Molecular Biology and
Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.
miRagen Therapeutics, Boulder, Colorado, USA.
Free Radical Biology and Aging Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Eric N. Olson
- Department of Molecular Biology and
Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.
miRagen Therapeutics, Boulder, Colorado, USA.
Free Radical Biology and Aging Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| |
Collapse
|
8
|
Rose BA, Force T, Wang Y. Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale. Physiol Rev 2010; 90:1507-46. [PMID: 20959622 PMCID: PMC3808831 DOI: 10.1152/physrev.00054.2009] [Citation(s) in RCA: 574] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Among the myriad of intracellular signaling networks that govern the cardiac development and pathogenesis, mitogen-activated protein kinases (MAPKs) are prominent players that have been the focus of extensive investigations in the past decades. The four best characterized MAPK subfamilies, ERK1/2, JNK, p38, and ERK5, are the targets of pharmacological and genetic manipulations to uncover their roles in cardiac development, function, and diseases. However, information reported in the literature from these efforts has not yet resulted in a clear view about the roles of specific MAPK pathways in heart. Rather, controversies from contradictive results have led to a perception that MAPKs are ambiguous characters in heart with both protective and detrimental effects. The primary object of this review is to provide a comprehensive overview of the current progress, in an effort to highlight the areas where consensus is established verses the ones where controversy remains. MAPKs in cardiac development, cardiac hypertrophy, ischemia/reperfusion injury, and pathological remodeling are the main focuses of this review as these represent the most critical issues for evaluating MAPKs as viable targets of therapeutic development. The studies presented in this review will help to reveal the major challenges in the field and the limitations of current approaches and point to a critical need in future studies to gain better understanding of the fundamental mechanisms of MAPK function and regulation in the heart.
Collapse
Affiliation(s)
- Beth A Rose
- Departments of Anesthesiology, Physiology, and Medicine, David Geffen School of Medicine, Molecular Biology, Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
9
|
Condrescu M, Reeves JP. Inhibition of sodium–calcium exchange by KB-R7943: Dodecylamine and sphingosine in transfected Chinese hamster ovary cells. Cell Calcium 2010; 47:404-11. [DOI: 10.1016/j.ceca.2010.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 02/05/2010] [Accepted: 02/08/2010] [Indexed: 12/13/2022]
|
10
|
Pulina MV, Zulian A, Berra-Romani R, Beskina O, Mazzocco-Spezzia A, Baryshnikov SG, Papparella I, Hamlyn JM, Blaustein MP, Golovina VA. Upregulation of Na+ and Ca2+ transporters in arterial smooth muscle from ouabain-induced hypertensive rats. Am J Physiol Heart Circ Physiol 2009; 298:H263-74. [PMID: 19897708 DOI: 10.1152/ajpheart.00784.2009] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Prolonged ouabain administration (25 microg kg(-1) day(-1) for 5 wk) induces "ouabain hypertension" (OH) in rats, but the molecular mechanisms by which ouabain elevates blood pressure are unknown. Here, we compared Ca(2+) signaling in mesenteric artery smooth muscle cells (ASMCs) from normotensive (NT) and OH rats. Resting cytosolic free Ca(2+) concentration ([Ca(2+)](cyt); measured with fura-2) and phenylephrine-induced Ca(2+) transients were augmented in freshly dissociated OH ASMCs. Immunoblots revealed that the expression of the ouabain-sensitive alpha(2)-subunit of Na(+) pumps, but not the predominant, ouabain-resistant alpha(1)-subunit, was increased (2.5-fold vs. NT ASMCs) as was Na(+)/Ca(2+) exchanger-1 (NCX1; 6-fold vs. NT) in OH arteries. Ca(2+) entry, activated by sarcoplasmic reticulum (SR) Ca(2+) store depletion with cyclopiazonic acid (SR Ca(2+)-ATPase inhibitor) or caffeine, was augmented in OH ASMCs. This reflected an augmented expression of 2.5-fold in OH ASMCs of C-type transient receptor potential TRPC1, an essential component of store-operated channels (SOCs); two other components of some SOCs were not expressed (TRPC4) or were not upregulated (TRPC5). Ba(2+) entry activated by the diacylglycerol analog 1-oleoyl-2-acetyl-sn-glycerol [a measure of receptor-operated channel (ROC) activity] was much greater in OH than NT ASMCs. This correlated with a sixfold upregulation of TRPC6 protein, a ROC family member. Importantly, in primary cultured mesenteric ASMCs from normal rats, 72-h treatment with 100 nM ouabain significantly augmented NCX1 and TRPC6 protein expression and increased resting [Ca(2+)](cyt) and ROC activity. SOC activity was also increased. Silencer RNA knockdown of NCX1 markedly downregulated TRPC6 and eliminated the ouabain-induced augmentation; silencer RNA knockdown of TRPC6 did not affect NCX1 expression but greatly attenuated its upregulation by ouabain. Clearly, NCX1 and TRPC6 expression are interrelated. Thus, prolonged ouabain treatment upregulates the Na(+) pump alpha(2)-subunit-NCX1-TRPC6 (ROC) Ca(2+) signaling pathway in arterial myocytes in vitro as well as in vivo. This may explain the augmented myogenic responses and enhanced phenylephrine-induced vasoconstriction in OH arteries (83) as well as the high blood pressure in OH rats.
Collapse
Affiliation(s)
- Maria V Pulina
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Dobrev D. Atrial Ca2+ signaling in atrial fibrillation as an antiarrhythmic drug target. Naunyn Schmiedebergs Arch Pharmacol 2009; 381:195-206. [PMID: 19784635 DOI: 10.1007/s00210-009-0457-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 09/11/2009] [Indexed: 12/19/2022]
Abstract
Atrial fibrillation (AF) is the most frequent arrhythmia and is associated with increased morbidity and mortality. Current drugs for AF treatment have moderate efficacy and increase the risk of life-threatening antiarrhythmias, making novel drug development crucial. Newer antiarrhythmic drugs like dronedarone and possibly vernakalant are efficient and may have less proarrhythmic potential. Emerging evidence suggests that abnormal intracellular Ca(2+) signaling is the key contributor to focal firing, substrate evolution, and atrial remodeling during AF. Accordingly, identification of the underlying atrial Ca(2+)-handling abnormalities is expected to discover novel mechanistically based therapeutic targets. This article reviews the molecular mechanisms of altered Ca(2+) signaling in AF and discusses the potential value of novel approaches targeting atrial Ca(2+)-handling abnormalities.
Collapse
Affiliation(s)
- Dobromir Dobrev
- Department of Pharmacology and Toxicology, Dresden University of Technology, Dresden, Germany.
| |
Collapse
|