1
|
Zhu L, Wang Z, Gao L, Chen X. Unraveling the Potential of γ-Aminobutyric Acid: Insights into Its Biosynthesis and Biotechnological Applications. Nutrients 2024; 16:2760. [PMID: 39203897 PMCID: PMC11357613 DOI: 10.3390/nu16162760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
γ-Aminobutyric acid (GABA) is a widely distributed non-protein amino acid that serves as a crucial inhibitory neurotransmitter in the brain, regulating various physiological functions. As a result of its potential benefits, GABA has gained substantial interest in the functional food and pharmaceutical industries. The enzyme responsible for GABA production is glutamic acid decarboxylase (GAD), which catalyzes the irreversible decarboxylation of glutamate. Understanding the crystal structure and catalytic mechanism of GAD is pivotal in advancing our knowledge of GABA production. This article provides an overview of GAD's sources, structure, and catalytic mechanism, and explores strategies for enhancing GABA production through fermentation optimization, metabolic engineering, and genetic engineering. Furthermore, the effects of GABA on the physiological functions of animal organisms are also discussed. To meet the increasing demand for GABA, various strategies have been investigated to enhance its production, including optimizing fermentation conditions to facilitate GAD activity. Additionally, metabolic engineering techniques have been employed to increase the availability of glutamate as a precursor for GABA biosynthesis. By fine-tuning fermentation conditions and utilizing metabolic and genetic engineering techniques, it is possible to achieve higher yields of GABA, thus opening up new avenues for its application in functional foods and pharmaceuticals. Continuous research in this field holds immense promise for harnessing the potential of GABA in addressing various health-related challenges.
Collapse
Affiliation(s)
- Lei Zhu
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China;
| | - Zhefeng Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center for Synthetic Biology, Tianjin 300308, China;
| | - Le Gao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center for Synthetic Biology, Tianjin 300308, China;
| | - Xiaoyi Chen
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China;
| |
Collapse
|
2
|
Villalobo A, Ishida H, Vogel HJ, Berchtold MW. Calmodulin as a protein linker and a regulator of adaptor/scaffold proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1865:507-521. [PMID: 29247668 DOI: 10.1016/j.bbamcr.2017.12.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 01/29/2023]
Abstract
Calmodulin (CaM) is a universal regulator for a huge number of proteins in all eukaryotic cells. Best known is its function as a calcium-dependent modulator of the activity of enzymes, such as protein kinases and phosphatases, as well as other signaling proteins including membrane receptors, channels and structural proteins. However, less well known is the fact that CaM can also function as a Ca2+-dependent adaptor protein, either by bridging between different domains of the same protein or by linking two identical or different target proteins together. These activities are possible due to the fact that CaM contains two independently-folded Ca2+ binding lobes that are able to interact differentially and to some degree separately with targets proteins. In addition, CaM can interact with and regulates several proteins that function exclusively as adaptors. This review provides an overview over our present knowledge concerning the structural and functional aspects of the role of CaM as an adaptor protein and as a regulator of known adaptor/scaffold proteins.
Collapse
Affiliation(s)
- Antonio Villalobo
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, E-28029 Madrid, Spain.
| | - Hiroaki Ishida
- Department of Biological Sciences, University of Calgary, 2500 University Dr. N.W., Calgary, Alberta T2N 1N4, Canada
| | - Hans J Vogel
- Department of Biological Sciences, University of Calgary, 2500 University Dr. N.W., Calgary, Alberta T2N 1N4, Canada.
| | - Martin W Berchtold
- Department of Biology, University of Copenhagen, 13 Universitetsparken, DK-2100 Copenhagen Ø, Denmark.
| |
Collapse
|
3
|
Chyan CL, Irene D, Lin SM. The Recognition of Calmodulin to the Target Sequence of Calcineurin-A Novel Binding Mode. Molecules 2017; 22:E1584. [PMID: 28934144 PMCID: PMC6151454 DOI: 10.3390/molecules22101584] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 11/22/2022] Open
Abstract
Calcineurin (CaN) is a Ca2+/calmodulin-dependent Ser/Thr protein phosphatase, which plays essential roles in many cellular and developmental processes. CaN comprises two subunits, a catalytic subunit (CaN-A, 60 kDa) and a regulatory subunit (CaN-B, 19 kDa). CaN-A tightly binds to CaN-B in the presence of minimal levels of Ca2+, but the enzyme is inactive until activated by CaM. Upon binding to CaM, CaN then undergoes a conformational rearrangement, the auto inhibitory domain is displaced and thus allows for full activity. In order to elucidate the regulatory role of CaM in the activation processes of CaN, we used NMR spectroscopy to determine the structure of the complex of CaM and the target peptide of CaN (CaNp). The CaM/CaNp complex shows a compact ellipsoidal shape with 8 α-helices of CaM wrapping around the CaNp helix. The RMSD of backbone and heavy atoms of twenty lowest energy structures of CaM/CaNp complex are 0.66 and 1.14 Å, respectively. The structure of CaM/CaNp complex can be classified as a novel binding mode family 1-18 with major anchor residues Ile396 and Leu413 to allocate the largest space between two domains of CaM. The relative orientation of CaNp to CaM is similar to the CaMKK peptide in the 1-16 binding mode with N- and C-terminal hydrophobic anchors of target sequence engulfed in the hydrophobic pockets of the N- and C-domain of CaM, respectively. In the light of the structural model of CaM/CaNp complex reported here, we provide new insight in the activation processes of CaN by CaM. We propose that the hydrophobic interactions between the Ca2+-saturated C-domain and C-terminal half of the target sequence provide driving forces for the initial recognition. Subsequent folding in the target sequence and structural readjustments in CaM enhance the formation of the complex and affinity to calcium. The electrostatic repulsion between CaM/CaNp complex and AID may result in the displacement of AID from active site for full activity.
Collapse
Affiliation(s)
- Chia-Lin Chyan
- Department of Chemistry, National Dong Hwa University, Hualien 974, Taiwan.
| | - Deli Irene
- Department of Chemistry, National Dong Hwa University, Hualien 974, Taiwan.
| | - Sin-Mao Lin
- Department of Chemistry, National Dong Hwa University, Hualien 974, Taiwan.
| |
Collapse
|
4
|
Gulerez IE, Gehring K. X-ray crystallography and NMR as tools for the study of protein tyrosine phosphatases. Methods 2014; 65:175-83. [DOI: 10.1016/j.ymeth.2013.07.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/19/2013] [Accepted: 07/23/2013] [Indexed: 10/26/2022] Open
|
5
|
Poovaiah B, Du L, Wang H, Yang T. Recent advances in calcium/calmodulin-mediated signaling with an emphasis on plant-microbe interactions. PLANT PHYSIOLOGY 2013; 163:531-42. [PMID: 24014576 PMCID: PMC3793035 DOI: 10.1104/pp.113.220780] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 08/28/2013] [Indexed: 05/18/2023]
Abstract
Calcium/calmodulin-mediated signaling contributes in diverse roles in plant growth, development, and response to environmental stimuli .
Collapse
Affiliation(s)
| | | | - Huizhong Wang
- Department of Horticulture, Washington State University, Pullman, Washington 99164–6414 (B.W.P., L.D.)
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036, People’s Republic of China (L.D., H.W.); and
- Food Quality Laboratory, Beltsville Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service, Beltsville, Maryland 20705 (T.Y.)
| | - Tianbao Yang
- Department of Horticulture, Washington State University, Pullman, Washington 99164–6414 (B.W.P., L.D.)
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036, People’s Republic of China (L.D., H.W.); and
- Food Quality Laboratory, Beltsville Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service, Beltsville, Maryland 20705 (T.Y.)
| |
Collapse
|
6
|
Kaas Q, Craik DJ. NMR of plant proteins. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2013; 71:1-34. [PMID: 23611313 DOI: 10.1016/j.pnmrs.2013.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 01/21/2013] [Indexed: 06/02/2023]
Affiliation(s)
- Quentin Kaas
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland 4072, Australia
| | | |
Collapse
|
7
|
Structural characterization of the interaction of human lactoferrin with calmodulin. PLoS One 2012; 7:e51026. [PMID: 23236421 PMCID: PMC3516504 DOI: 10.1371/journal.pone.0051026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 10/29/2012] [Indexed: 12/21/2022] Open
Abstract
Lactoferrin (Lf) is an 80 kDa, iron (Fe3+)-binding immunoregulatory glycoprotein secreted into most exocrine fluids, found in high concentrations in colostrum and milk, and released from neutrophil secondary granules at sites of infection and inflammation. In a number of cell types, Lf is internalized through receptor-mediated endocytosis and targeted to the nucleus where it has been demonstrated to act as a transcriptional trans-activator. Here we characterize human Lf’s interaction with calmodulin (CaM), a ubiquitous, 17 kDa regulatory calcium (Ca2+)-binding protein localized in the cytoplasm and nucleus of activated cells. Due to the size of this intermolecular complex (∼100 kDa), TROSY-based NMR techniques were employed to structurally characterize Ca2+-CaM when bound to intact apo-Lf. Both CaM’s backbone amides and the ε-methyl group of key methionine residues were used as probes in chemical shift perturbation and cross-saturation experiments to define the binding interface of apo-Lf on Ca2+-CaM. Unlike the collapsed conformation through which Ca2+-CaM binds the CaM-binding domains of its classical targets, Ca2+-CaM assumes an extended structure when bound to apo-Lf. Apo-Lf appears to interact predominantly with the C-terminal lobe of Ca2+-CaM, enabling the N-terminal lobe to potentially bind another target. Our use of intact apo-Lf has made possible the identification of a secondary interaction interface, removed from CaM’s primary binding domain. Secondary interfaces play a key role in the target’s response to CaM binding, highlighting the importance of studying intact complexes. This solution-based approach can be applied to study other regulatory calcium-binding EF-hand proteins in intact intermolecular complexes.
Collapse
|
8
|
Irene D, Huang JW, Chung TY, Li FY, Tzen JTC, Lin TH, Chyan CL. Binding orientation and specificity of calmodulin to rat olfactory cyclic nucleotide-gated ion channel. J Biomol Struct Dyn 2012; 31:414-25. [PMID: 22877078 DOI: 10.1080/07391102.2012.703069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Calmodulin (CaM), the primary intracellular Ca(2+) receptor, regulates a large number of key enzymes and controls a wide spectrum of important biological responses. Recognition between CaM and its target sequence in rat olfactory cyclic nucleotide-gated ion channel (OLFp) was investigated by circular dichroism (CD), fluorescence, and NMR spectroscopy. Fluorescence data showed the OLFp tightly bound to CaM with a dissociation constant of 12 nM in a 1:1 stoichiometry. Far-UV CD data showed that approximately 60% of OLFp residues formed α-helical structures when associated with CaM. NMR data showed that most of the (15)N-(1)H HSQC cross-peaks of the (15)N-labeled CaM not only shifted but also split into two sets of peaks upon association with the OLFp. Our data indicated that the two distinct CaM/OLFp complexes existed simultaneously with stable structures that were not interexchangeable within the NMR time scale. In light of the palindromic sequence of OLFp (FQRIVRLVGVIRDW) for CaM targeting, we proposed that the helical OLFp with C2 symmetry may bind to CaM in two orientations. This hypothesis is supported by the observation that only one set of (15)N-(1)H HSQC cross-peaks of the (15)N-labeled CaM was detected upon association with OLFp-M13 chimeric peptide (OLFMp), a mutated OLFp lacking the palindromic feature. The binding specificity of OLFMp to CaM was restored when the palindromic feature was destroyed. Binding modes of CaM/OLFp and CaM/OLFMp simulated by molecular docking were in accord with their distinct patterns observed in HSQC spectra. Our studies suggest that the palindromic residues in OLFp are crucial for the orientation-specific recognition by CaM.
Collapse
Affiliation(s)
- Deli Irene
- Department of Chemistry, National Dong Hwa University, Hualien 974, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
9
|
Gifford JL, Ishida H, Vogel HJ. Structural insights into calmodulin-regulated L-selectin ectodomain shedding. J Biol Chem 2012; 287:26513-27. [PMID: 22711531 DOI: 10.1074/jbc.m112.373373] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The L-selectin glycoprotein receptor mediates the initial steps of leukocyte migration into secondary lymphoid organs and sites of inflammation. Following cell activation through the engagement of G-protein-coupled receptors or immunoreceptors, the extracellular domains of L-selectin are rapidly shed, a process negatively controlled via the binding of the ubiquitous eukaryotic calcium-binding protein calmodulin to the cytoplasmic tail of L-selectin. Here we present the solution structure of calcium-calmodulin bound to a peptide encompassing the cytoplasmic tail and part of the transmembrane domain of L-selectin. The structure and accompanying biophysical study highlight the importance of both calcium and the transmembrane segment of L-selectin in the interaction between these two proteins, suggesting that by binding this region, calmodulin regulates in an "inside-out" fashion the ectodomain shedding of the receptor. Our structure provides the first molecular insight into the emerging new role for calmodulin as a transmembrane signaling partner.
Collapse
Affiliation(s)
- Jessica L Gifford
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | | | |
Collapse
|
10
|
Sarwat M, Ahmad P, Nabi G, Hu X. Ca(2+) signals: the versatile decoders of environmental cues. Crit Rev Biotechnol 2012; 33:97-109. [PMID: 22568501 DOI: 10.3109/07388551.2012.672398] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Plants are often subjected to various environmental stresses that lead to deleterious effects on growth, production, sustainability, etc. The information of the incoming stress is read by the plants through the mechanism of signal transduction. The plant Ca(2+) serves as secondary messenger during adaptations to stressful conditions and developmental processes. A plethora of Ca(2+) sensors and decoders functions to bring about these changes. The cellular concentrations of Ca(2+), their subcellular localization, and the specific interaction affinities of Ca(2+) decoder proteins all work together to make this process a complex but synchronized signaling network. In this review, we focus on the versatility of these sensors and decoders in the model plant Arabidopsis as well as plants of economical importance. Here, we have also thrown light on the possible mechanism of action of these important components.
Collapse
Affiliation(s)
- Maryam Sarwat
- Pharmaceutical Biotechnology, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India.
| | | | | | | |
Collapse
|
11
|
Liu Z, Vogel HJ. Structural basis for the regulation of L-type voltage-gated calcium channels: interactions between the N-terminal cytoplasmic domain and Ca(2+)-calmodulin. Front Mol Neurosci 2012; 5:38. [PMID: 22518098 PMCID: PMC3324987 DOI: 10.3389/fnmol.2012.00038] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 03/13/2012] [Indexed: 01/07/2023] Open
Abstract
It is well-known that the opening of L-type voltage-gated calcium channels can be regulated by calmodulin (CaM). One of the main regulatory mechanisms is calcium-dependent inactivation (CDI), where binding of apo-CaM to the cytoplasmic C-terminal domain of the channel can effectively sense an increase in the local calcium ion concentration. Calcium-bound CaM can bind to the IQ-motif region of the C-terminal region and block the calcium channel, thereby providing a negative feedback mechanism that prevents the rise of cellular calcium concentrations over physiological limits. Recently, an additional Ca2+/CaM-binding motif (NSCaTE, N-terminal spatial Ca2+ transforming element) was identified in the amino terminal cytoplasmic region of Cav1.2 and Cav1.3. This motif exists only in Cav1.2 and Cav1.3 channels, and a pronounced N-lobe (Ca2+/CaM) CDI effect was found for Cav1.3. To understand the molecular basis of this interaction, the complexes of Ca2+/CaM with the biosynthetically produced N-terminal region (residues 1–68) and NSCaTE peptide (residues 48–68) were investigated. We discovered that the NSCaTE motif in the N-terminal cytoplasmic region adopts an α-helical conformation, most likely due to its high alanine content. Additionally, the complex exhibits an unusual 1:2 protein:peptide stoichiometry when bound to Ca2+-CaM, and the N-lobe of CaM has a much stronger affinity for the peptide than the C-lobe. The complex structures of the isolated N- and C-lobe of Ca2+/CaM and the NSCaTE peptide were determined by nuclear magnetic resonance spectroscopy and data-driven protein-docking methods. Moreover, we also demonstrated that calcium binding protein 1, which competes with CaM for binding to the C-terminal cytoplasmic domain, binds only weakly to the NSCaTE region. The structures provide insights into the possible roles of this motif in the calcium regulatory network. Our study provides structural evidence for the CaM-bridge model proposed in previous studies.
Collapse
Affiliation(s)
- Zhihong Liu
- Department of Biological Sciences, University of Calgary, Calgary AB, Canada
| | | |
Collapse
|
12
|
Chagot B, Chazin WJ. Solution NMR structure of Apo-calmodulin in complex with the IQ motif of human cardiac sodium channel NaV1.5. J Mol Biol 2011; 406:106-19. [PMID: 21167176 PMCID: PMC3030672 DOI: 10.1016/j.jmb.2010.11.046] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Revised: 11/22/2010] [Accepted: 11/23/2010] [Indexed: 12/19/2022]
Abstract
The function of the human voltage-gated sodium channel Na(V)1.5 is regulated in part by intracellular calcium signals. The ubiquitous calcium sensor protein calmodulin (CaM) is an important part of the complex calcium-sensing apparatus in Na(V)1.5. CaM interacts with an IQ (isoleucine-glutamine) motif in the large intracellular C-terminal domain of the channel. Using co-expression and co-purification, we have been able to isolate a CaM-IQ motif complex and to determine its high-resolution structure in absence of calcium using multi-dimensional solution NMR. Under these conditions, the Na(V)1.5 IQ motif interacts with the C-terminal domain (C-lobe) of CaM, with the N-terminal domain remaining free in solution. The structure reveals that the C-lobe adopts a semi-open conformation with the IQ motif bound in a narrow hydrophobic groove. Sequence similarities between voltage-gated sodium channels and voltage-gated calcium channels suggest that the structure of the CaM-Na(V)1.5 IQ motif complex can serve as a general model for the interaction between CaM and ion channel IQ motifs under low-calcium conditions. The structure also provides insight into the biochemical basis for disease-associated mutations that map to the IQ motif in Na(V)1.5.
Collapse
Affiliation(s)
| | - Walter J Chazin
- Department of Biochemistry and Chemistry, and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, USA
| |
Collapse
|
13
|
Bigelow DJ, Squier TC. Thioredoxin-dependent redox regulation of cellular signaling and stress response through reversible oxidation of methionines. MOLECULAR BIOSYSTEMS 2011; 7:2101-9. [DOI: 10.1039/c1mb05081h] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Rezvanpour A, Phillips JM, Shaw GS. Design of high-affinity S100-target hybrid proteins. Protein Sci 2010; 18:2528-36. [PMID: 19827097 DOI: 10.1002/pro.267] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
S100B and S100A10 are dimeric, EF-hand proteins. S100B undergoes a calcium-dependent conformational change allowing it to interact with a short contiguous sequence from the actin-capping protein CapZ (TRTK12). S100A10 does not bind calcium but is able to recruit the N-terminus of annexin A2 important for membrane fusion events, and to form larger multiprotein complexes such as that with the cation channel proteins TRPV5/6. In this work, we have designed, expressed, purified, and characterized two S100-target peptide hybrid proteins comprised of S100A10 and S100B linked in tandem to annexin A2 (residues 1-15) and CapZ (TRTK12), respectively. Different protease cleavage sites (tobacco etch virus, PreScission) were incorporated into the linkers of the hybrid proteins. In situ proteolytic cleavage monitored by (1)H-(15)N HSQC spectra showed the linker did not perturb the structures of the S100A10-annexin A2 or S100B-TRTK12 complexes. Furthermore, the analysis of the chemical shift assignments ((1)H, (15)N, and (13)C) showed that residues T102-S108 of annexin A2 formed a well-defined alpha-helix in the S100A10 hybrid while the TRTK12 region was unstructured at the N-terminus with a single turn of alpha-helix from D108-K111 in the S100B hybrid protein. The two S100 hybrid proteins provide a simple yet extremely efficient method for obtaining high yields of intact S100 target peptides. Since cleavage of the S100 hybrid protein is not necessary for structural characterization, this approach may be useful as a scaffold for larger S100 complexes.
Collapse
Affiliation(s)
- Atoosa Rezvanpour
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | | | | |
Collapse
|