1
|
Schreckenberg R, Schulz R, Itani N, Ferdinandy P, Bencsik P, Szabados T, Rohrbach S, Niemann B, Schlüter KD. Inhibition of MMP2 activity mitigates N-omega-nitro-l-arginine-methyl ester (l-NAME)-induced right heart failure. Redox Biol 2024; 76:103308. [PMID: 39167912 PMCID: PMC11381879 DOI: 10.1016/j.redox.2024.103308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024] Open
Abstract
In rats decreased bioavailability of nitric oxide induces oxidative stress and right heart failure. Oxidative stress can activate matrix metalloproteinase-2 (MMP2). We addressed the question whether increasing oxidative defense by administration of the SOD mimetic Tempol or direct inhibition of MMP2 activity by SB-3CT mitigates right heart failure. Rats received l-NAME for four weeks and during week three and four treatment groups received either Tempol or SB-3CT in addition. After four weeks heart function was analyzed by echocardiography, organ weights and expression of NPPB and COL1A1 were analyzed, oxidative stress was monitored by DHE-staining and MMP2 activity was quantified by proteolytic auto-activation, zymography, and troponin I degradation. l-NAME induced oxidative stress and MMP2 activity stronger in the right ventricle than in the left ventricle. Troponin I, a MMP2 substrate, was degraded in right ventricles. Tempol reduced oxidative stress and preferentially affected the expression of fibrotic genes (i.e. COL1A1) and fibrosis. Tempol and SB-3CT mitigated right but not left ventricular hypertrophy. Neither SB-3CT nor Tempol alone strongly improved right ventricular function. In conclusion, both MMP2 activity and oxidative stress contribute to right ventricular failure but neither is MMP2 activation linked to oxidative stress nor does oxidative stress and MMP2 activity have common targets.
Collapse
Affiliation(s)
| | - Rainer Schulz
- Institute of Physiology, JLU Giessen, 35392, Giessen, Germany.
| | - Nadja Itani
- Institute of Physiology, JLU Giessen, 35392, Giessen, Germany.
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary.
| | - Peter Bencsik
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary.
| | - Tamara Szabados
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary.
| | | | - Bernd Niemann
- Universitätsklinikum Gießen, Klinik für Herz-, Kinderherz- und Gefäßchirurgie, 35392, Gießen, Germany.
| | | |
Collapse
|
2
|
Post-translational activation of Mmp2 correlates with patterns of active collagen degradation during the development of the zebrafish tail. Dev Biol 2021; 477:155-163. [PMID: 34058190 DOI: 10.1016/j.ydbio.2021.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 11/23/2022]
Abstract
Matrix metalloproteinase-2 (a.k.a. Gelatinase A, or Mmp2 in zebrafish) is known to have roles in pathologies such as arthritis, in which its function is protective, as well as in cancer metastasis, in which it is activated as part of the migration and invasion of metastatic cells. It is also required during development and the regeneration of tissue architecture after wound healing, but its roles in tissue remodelling are not well understood. Gelatinase A is activated post-translationally by proteolytic cleavage, making information about its transcription and even patterns of protein accumulation difficult to relate to biologically relevant activity. Using a transgenic reporter of endogenous Mmp2 activation in zebrafish, we describe its accumulation and post-translational proteolytic activation during the embryonic development of the tail. Though Mmp2 is expressed relatively ubiquitously, it seems to be active only at specific locations and times. Mmp2 is activated robustly in the neural tube and in maturing myotome boundaries. It is also activated in the notochord during body axis straightening, in patches scattered throughout the epidermal epithelium, in the gut, and on cellular protrusions extending from mesenchymal cells in the fin folds. The activation of Mmp2 in the notochord, somite boundaries and fin folds associates with collagen remodelling in the notochord sheath, myotome boundary ECM and actinotrichia respectively. Mmp2 is likely an important effector of ECM remodelling during the morphogenesis of the notochord, a driving structure in vertebrate development. It also appears to function in remodelling the ECM associated with growing epithelia and the maturation of actinotrichia in the fin folds, mediated by mesenchymal cell podosomes.
Collapse
|
3
|
Bendall L. Extracellular molecules in hematopoietic stem cell mobilisation. Int J Hematol 2016; 105:118-128. [PMID: 27826715 DOI: 10.1007/s12185-016-2123-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/01/2016] [Indexed: 01/11/2023]
Abstract
Hematopoietic stem cells are a remarkable resource currently used for the life saving treatment, hematopoietic stem cell transplantation. Today, hematopoietic stem cells are primarily obtained from mobilized peripheral blood following treatment of the donor with the cytokine G-CSF, and in some settings, chemotherapy and/or the CXCR4 antagonist plerixafor. The collection of hematopoietic stem cells is contingent on adequate and timely mobilization of these cells into the peripheral blood. The use of healthy donors, particularly when unrelated to the patient, requires mobilization strategies be safe for the donor. While current mobilization strategies are largely successful, adequate mobilization fails to occur in a significant portion of donors. Understanding the mechanisms involved in the egress of stem cells from the bone marrow provides opportunities to further improve the process of collecting hematopoietic stem cells. Here, the role extracellular components of the blood and bone marrow in the mobilization process are discussed.
Collapse
Affiliation(s)
- Linda Bendall
- Centre for Cancer Research, Westmead Institute for Medical Research, University of Sydney, 176 Hawkesbury Rd, Westmead, Sydney, NSW, 2145, Australia.
| |
Collapse
|
4
|
Othman H, Wieninger SA, ElAyeb M, Nilges M, Srairi-Abid N. In Silico prediction of the molecular basis of ClTx and AaCTx interaction with matrix metalloproteinase-2 (MMP-2) to inhibit glioma cell invasion. J Biomol Struct Dyn 2016; 35:2815-2829. [DOI: 10.1080/07391102.2016.1231633] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Houcemeddine Othman
- Laboratory of venoms and therapeutic biomolecules (LR11IPT08), Institut Pasteur de Tunis, Tunis, Tunisia
- Faculté des Sciences de Bizerte, Université de Carthage, Bizerte, Tunisia
| | - Silke Andrea Wieninger
- Département de Biologie Structurale et Chimie, Institut Pasteur, Unité de Bioinformatique Structurale, Paris, France
| | - Mohamed ElAyeb
- Laboratory of venoms and therapeutic biomolecules (LR11IPT08), Institut Pasteur de Tunis, Tunis, Tunisia
| | - Michael Nilges
- Département de Biologie Structurale et Chimie, Institut Pasteur, Unité de Bioinformatique Structurale, Paris, France
| | - Najet Srairi-Abid
- Laboratory of venoms and therapeutic biomolecules (LR11IPT08), Institut Pasteur de Tunis, Tunis, Tunisia
| |
Collapse
|
5
|
Amer LD, Bryant SJ. The In Vitro and In Vivo Response to MMP-Sensitive Poly(Ethylene Glycol) Hydrogels. Ann Biomed Eng 2016; 44:1959-69. [PMID: 27080375 PMCID: PMC5577801 DOI: 10.1007/s10439-016-1608-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/02/2016] [Indexed: 12/28/2022]
Abstract
Enzyme-sensitive hydrogels are a promising class of materials for cell encapsulation and tissue engineering because their ability to be degraded by cell-secreted factors. However, it is well known that nearly all synthetic biomaterials elicit a foreign body response (FBR) upon implantation. Therefore, this study aimed to evaluate the in vitro and in vivo response to an enzyme-sensitive hydrogel. Hydrogels were formed from poly(ethylene glycol) with the peptide crosslinker, C-VPLS↓LYSG-C, which is susceptible to matrix metalloproteinases 2 and 9. We evaluated the hydrogel by exogenously delivered enzymes, encapsulated mesenchymal stem cells as a tissue engineering relevant cell type, and by macrophage-secreted factors in vitro and for the FBR through macrophage attachment in vitro and in a subcutaneous mouse model. These hydrogels rapidly degraded upon exposure to exogenous MMP-2 and to lesser degree with MMP-9. Encapsulated mesenchymal stem cells were capable of degrading the hydrogels via matrix metalloproteinases. Inflammatory macrophages were confirmed to attach to the hydrogels, but were not capable of rapidly degrading the hydrogels. In vivo, these hydrogels remained intact after 4 weeks and exhibited a classic FBR with inflammatory cells at the hydrogel surface and a fibrous capsule. In summary, these findings suggest that while this MMP-2/9 sensitive hydrogel is readily degraded in vitro, it does not undergo rapid degradation by the FBR. Thus, the long term stability of these hydrogels in vivo coupled with the ability for encapsulated cells to degrade the hydrogel makes them promising materials for tissue engineering.
Collapse
Affiliation(s)
- Luke D Amer
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Ave, UCB 596, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| | - Stephanie J Bryant
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Ave, UCB 596, Boulder, CO, 80303, USA.
- BioFrontiers Institute, University of Colorado, 3415 Colorado Avenue, Boulder, CO, 80303, USA.
- Material Science and Engineering Program, University of Colorado, 3415 Colorado Avenue, Boulder, CO, 80303, USA.
| |
Collapse
|
6
|
Sarkar J, Chowdhury A, Chakraborti T, Chakraborti S. Cross-talk between NADPH oxidase-PKCα-p(38)MAPK and NF-κB-MT1MMP in activating proMMP-2 by ET-1 in pulmonary artery smooth muscle cells. Mol Cell Biochem 2016; 415:13-28. [PMID: 26910780 DOI: 10.1007/s11010-016-2673-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 02/17/2016] [Indexed: 12/27/2022]
Abstract
Treatment of bovine pulmonary artery smooth muscle cells with endothelin-1 (ET-1) caused an increase in the expression and activation of proMMP-2 in the cells. The present study was undertaken to determine the underlying mechanisms involved in this scenario. We demonstrated that (i) pretreatment with NADPH oxidase inhibitor, apocynin; PKC-α inhibitor, Go6976; p(38)MAPK inhibitor SB203580 and NF-κB inhibitor, Bay11-7082 inhibited the expression and activation of proMMP-2 induced by ET-1; (ii) ET-1 treatment to the cells stimulated NADPH oxidase and PKCα activity, p(38)MAPK phosphorylation as well as NF-κB activation by translocation of NF-κBp65 subunit from cytosol to the nucleus, and subsequently by increasing its DNA-binding activity; (iii) ET-1 increases MT1-MMP expression, which was inhibited upon pretreatment with apocynin, Go6976, SB293580, and Bay 11-7082; (iv) ET-1 treatment to the cells downregulated TIMP-2 level. Although apocynin and Go6976 pretreatment reversed ET-1 effect on TIMP-2 level, yet pretreatment of the cells with SB203580 and Bay 11-7082 did not show any discernible change in TIMP-2 level by ET-1. Overall, our results suggest that ET-1-induced activation of proMMP-2 is mediated via cross-talk between NADPH oxidase-PKCα-p(38)MAPK and NFκB-MT1MMP signaling pathways along with a marked decrease in TIMP-2 expression in the cells.
Collapse
Affiliation(s)
- Jaganmay Sarkar
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Animesh Chowdhury
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Tapati Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Sajal Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, 741235, India.
| |
Collapse
|
7
|
Thrombin decreases expression of the glutamate transporter GLAST and inhibits glutamate uptake in primary cortical astrocytes via the Rho kinase pathway. Exp Neurol 2015; 273:288-300. [PMID: 26391563 DOI: 10.1016/j.expneurol.2015.09.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/17/2015] [Indexed: 01/08/2023]
Abstract
Astrocyte glutamate transporters GLAST and GLT1 play a key role in regulating neuronal excitation and their levels are altered in patients with epilepsy, and after traumatic brain injury. The mechanisms which regulate their expression are not well understood. We tested the hypothesis that exposure of astrocytes to high levels of thrombin, as may occur after a compromise of the blood-brain barrier, would reduce astrocyte glutamate transporter levels. In isolated rat cortical astrocytes we examined the effects of thrombin on the expression and function of glutamate transporters, and the signaling pathways involved in these responses by using Western blotting and selective inhibitors. Thrombin induced a selective decrease in the expression of GLAST but not GLT1, with a corresponding decrease in the capacity of astrocytes to take up glutamate. Activation of the thrombin receptor PAR-1 with an activating peptide induced a similar decrease in the expression of GLAST and compromise of glutamate uptake. The downregulation of GLAST induced by thrombin was mediated by the mitogen activated protein kinases p38 MAPK, ERK and JNK, but inhibition of these kinases did not prevent the decrease in glutamate uptake induced by thrombin. In contrast, inhibition of the Rho kinase pathway using the specific inhibitor, Y27632, suppressed both the decrease in the expression of GLAST and the decrease in glutamate uptake induced by thrombin. In hippocampal astrocyte cultures, thrombin caused a decrease in both GLAST and GLT1. In tissue resected from brains of children with intractable epilepsy, we found a decrease in the integrity of the blood-brain barrier along with a reduction in immunoreactivity for both transporters which was associated with an increase in cleaved thrombin and reactive astrogliosis. The in vitro results suggest a specific mechanism by which thrombin may lead to a compromise of astrocyte function and enhanced synaptic excitability after the blood-brain barrier is compromised. The human in vivo results provide indirect support evidence linking the compromise of the blood-brain barrier to thrombin-induced reduction in glutamate transporter expression and an increase in neuronal excitation.
Collapse
|
8
|
Rubens CE, Sadovsky Y, Muglia L, Gravett MG, Lackritz E, Gravett C. Prevention of preterm birth: Harnessing science to address the global epidemic. Sci Transl Med 2014; 6:262sr5. [DOI: 10.1126/scitranslmed.3009871] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Garcia-Saldivia M, Lopez-Mendez G, Berrueta L, Salmen S, Donis JH, Davila DF. Metalloproteinases 2 and 9 in different stages of chronic Chagas disease. Int J Cardiol 2014; 179:79-81. [PMID: 25464419 DOI: 10.1016/j.ijcard.2014.10.061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 10/20/2014] [Indexed: 01/04/2023]
Affiliation(s)
- Marianna Garcia-Saldivia
- Instituto de Investigaciones Cardiovasculares, Universidad de Los Andes, Hospital Universitario de Los Andes, Mérida, Venezuela
| | - Gabriel Lopez-Mendez
- Instituto de Investigaciones Cardiovasculares, Universidad de Los Andes, Hospital Universitario de Los Andes, Mérida, Venezuela
| | - Lisbeth Berrueta
- Instituto de Inmunologia Clinica, Universidad de Los Andes, Hospital Universitario de Los Andes, Mérida, Venezuela; Division of Preventive Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Siham Salmen
- Instituto de Inmunologia Clinica, Universidad de Los Andes, Hospital Universitario de Los Andes, Mérida, Venezuela
| | - Jose H Donis
- Instituto de Investigaciones Cardiovasculares, Universidad de Los Andes, Hospital Universitario de Los Andes, Mérida, Venezuela
| | - Diego F Davila
- Instituto de Investigaciones Cardiovasculares, Universidad de Los Andes, Hospital Universitario de Los Andes, Mérida, Venezuela.
| |
Collapse
|
10
|
Podoplanin requires sialylated O-glycans for stable expression on lymphatic endothelial cells and for interaction with platelets. Blood 2014; 124:3656-65. [PMID: 25336627 DOI: 10.1182/blood-2014-04-572107] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
O-glycosylation of podoplanin (PDPN) on lymphatic endothelial cells is critical for the separation of blood and lymphatic systems by interacting with platelet C-type lectin-like receptor 2 during development. However, how O-glycosylation controls endothelial PDPN function and expression remains unclear. In this study, we report that core 1 O-glycan-deficient or desialylated PDPN was highly susceptible to proteolytic degradation by various proteases, including metalloproteinases (MMP)-2/9. We found that the lymph contained activated MMP-2/9 and incubation of the lymph reduced surface levels of PDPN on core 1 O-glycan-deficient endothelial cells, but not on wild-type ECs. The lymph from mice with sepsis induced by cecal ligation and puncture, which contained bacteria-derived sialidase, reduced PDPN levels on wild-type ECs. The MMP inhibitor, GM6001, rescued these reductions. Additionally, GM6001 treatment rescued the reduction of PDPN level on lymphatic endothelial cells in mice lacking endothelial core 1 O-glycan or cecal ligation and puncture-treated mice. Furthermore, core 1 O-glycan-deficient or desialylated PDPN impaired platelet interaction under physiological flow. These data indicate that sialylated O-glycans of PDPN are essential for platelet adhesion and prevent PDPN from proteolytic degradation primarily mediated by MMPs in the lymph.
Collapse
|
11
|
Thrombin weakens the amnion extracellular matrix (ECM) directly rather than through protease activated receptors. Placenta 2013; 34:924-31. [PMID: 23953865 DOI: 10.1016/j.placenta.2013.07.064] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/08/2013] [Accepted: 07/19/2013] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Preterm premature rupture of fetal membranes (pPROM) is a major cause of preterm birth. Abruption associated thrombin production, and infection-inflammation associated cytokine production reportedly play major roles in pPROM. Utilizing an in vitro model-system we have confirmed that both thrombin and inflammatory cytokines remodel and biomechanically weaken amnion, the load-bearing component of FM. Also, we have shown thrombin directly weakens isolated amnion but cytokines weaken amnion only indirectly by initially interacting with choriodecidua and releasing unidentified soluble activator(s). This study's purpose was to determine whether thrombin weakens the isolated amnion through thrombin receptor-protease activated receptors (PARs 1,2,3,4), activation of previously secreted extracellular matrix (ECM) enzymes, or by direct action on the ECM. METHODS Primary amnion cells and isolated amnion were tested for PARs by immunohistochemistry, Western Blot and rtPCR. Cell-free amnion ECM was produced by devitalizing isolated amnion by exposure to UV light and subsequent freeze-thaw cycles. Devitalized amnion membrane explants were incubated with thrombin and biomechanically tested. RESULTS PARs were not found in amnion or amnion cells. Thrombin induced dose-dependent weakening of devitalized amnion explants. Preincubation with the thrombin inhibitor hirudin prevented thrombin-induced weakening. Thrombin converted pro-MMP2 embedded in the devitalized amnion ECM to multiple active forms. Thrombin also directly digested gelatin gels in zymograms suggesting the possibility of direct degradation of amnion ECM components. DISCUSSION Thrombin appears to directly weaken the amnion ECM and additionally activates stored pro-MMP2 to active forms that may further enhance amnion ECM degradation. CONCLUSION Thrombin weakens amnion directly rather than through PARs.
Collapse
|
12
|
Roy S, Chakraborti T, Chowdhury A, Chakraborti S. Role of PKC-α in NF-κB-MT1-MMP-mediated activation of proMMP-2 by TNF-α in pulmonary artery smooth muscle cells. J Biochem 2012; 153:289-302. [PMID: 23266860 DOI: 10.1093/jb/mvs150] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We sought to evaluate the mechanism(s) associated with pro matrix metalloprotease 2 (proMMP-2) activation in bovine pulmonary artery smooth muscle cells. Preincubation of cells with anti-TNFR1 antibody prevented tumour necrosis factor-α (TNF-α)-induced proMMP-2 activation and increase in membrane type 1 matrix metalloprotease (MT1-MMP) expression as well as inhibition of tissue inhibitor of metalloproteinase 2 (TIMP-2) expression, indicating the role of TNFR1 receptor during TNF-α stimulation. Anti-MT1-MMP antibody abrogated proMMP-2 activation by TNF-α-stimulated cell membrane, suggesting the involvement of MT1-MMP in proMMP-2 activation. Induction of MT1-MMP expression in response to TNF-α occurs via activation of nuclear factor (NF)-κB on inhibitory κB kinase (IKK) activation and subsequently phosphorylation/degradation of IκB-α. Inhibition of protein kinase C (PKC)-α activity by Go6976 and PKC-α siRNA prevented TNF-α-induced IKK activity, IκB-α phosphorylation/degradation and NF-κB activation. Inhibition of PKC-α activity also prevented TNF-α-induced MT1-MMP expression and proMMP-2 activation as well as down regulation of TIMP-2 expression. Inhibition of IκB-α phosphorylation by PS-1145, an IKK selective inhibitor, prevented TNF-α-induced increase in MT1-MMP expression and proMMP-2 activation, which although did not alter inhibition of TIMP-2 expression. Overall, we unravelled a hitherto unknown mechanism of the involvement of PKC-α in proMMP-2 activation and inhibition of TIMP-2 expression by NF-κB-MT1-MMP-dependent and -independent pathway, respectively, during TNF-α stimulation in pulmonary artery smooth muscle cells.
Collapse
Affiliation(s)
- Soumitra Roy
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | | | | | | |
Collapse
|
13
|
Koo BH, Kim YH, Han JH, Kim DS. Dimerization of matrix metalloproteinase-2 (MMP-2): functional implication in MMP-2 activation. J Biol Chem 2012; 287:22643-53. [PMID: 22577146 DOI: 10.1074/jbc.m111.337949] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Matrix metalloproteinase-2 (MMP-2) functions in diverse biological processes through the degradation of extracellular and non-extracellular matrix molecules. Because of its potential for tissue damage, there are several ways to regulate MMP-2 activity, including gene expression, compartmentalization, zymogen activation, and enzyme inactivation by extracellular inhibitors. Enzyme regulation through zymogen activation is important for the regulation of MMP-2 activity. In our previous studies, we showed that thrombin directly cleaved the propeptide of MMP-2 at specific sites for enzyme activation. We also demonstrated that heparan sulfate was required for thrombin-mediated activation of pro-MMP-2 by binding to thrombin, presumably through conformational changes at the active site of the enzyme. This suggests a regulatory mechanism for thrombin-mediated activation of pro-MMP-2. In this study, we found that MMP-2 formed a reduction-sensitive homodimer in a controlled manner and that Ca(2+) ion was essential for homodimerization of MMP-2. Homodimerization was not associated with protein kinase C-mediated phosphorylation of MMP-2. MMP-2 formed a homodimer through an intermolecular disulfide bond between Cys(102) and the neighboring Cys(102). Homodimerization of MMP-2 enhanced thrombin-mediated activation of pro-MMP-2. Moreover, the MMP-2 homodimer could cleave a small peptide substrate without removal of the propeptide. Taken together, our experimental data suggest a novel regulatory mechanism for pro-MMP-2 activation that is modulated through homodimerization of MMP-2.
Collapse
Affiliation(s)
- Bon-Hun Koo
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea.
| | | | | | | |
Collapse
|
14
|
Thrombin-induced shedding of tumour endothelial marker 5 and exposure of its RGD motif are regulated by cell-surface protein disulfide-isomerase. Biochem J 2012; 441:937-44. [DOI: 10.1042/bj20111682] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
TEM5 (tumour endothelial marker 5; also known as GPR124) is an adhesion G-protein-coupled receptor containing a cryptic RGD motif in its extracellular domain. TEM5 is expressed in endothelial cells and pericytes during angiogenesis. In the present paper, we report that thrombin mediates shedding of an N-terminal TEM5 fragment of 60 kDa (termed N60) containing the RGD motif in an open conformation. Thrombin directly cleaved rsTEM5 (recombinant soluble TEM5) 5 and 34 residues downstream of the RGD motif, resulting in formation of N60 and its C-terminal counterpart (termed C50). Interestingly, N60 derived from thrombin cleavage of rsTEM5 was covalently linked to C50 by disulfide bonds, whereas N60 shed from thrombin-treated cells was not associated with its membrane-bound C-terminal counterpart. Inhibition of the reducing function of cell-surface PDI (protein disulfide-isomerase) abrogated thrombin-induced N60 shedding. Conversely, addition of reduced PDI enhanced N60 shedding. Furthermore, thrombin cleavage of rsTEM5 was increased by reduced PDI and resulted in dissociation of the N60–C50 heterodimer. We conclude that PDI regulates thrombin-induced shedding of N60 and exposure of the TEM5 RGD motif by catalysing the reduction of crucial disulfide bonds of TEM5 on the cell surface. Binding of N60 to RGD-dependent integrins may modulate cellular functions such as adhesion and migration during angiogenesis.
Collapse
|
15
|
Fujita-Hamabe W, Tokuyama S. The Involvement of Cleavage of Neural Cell Adhesion Molecule in Neuronal Death under Oxidative Stress Conditions in Cultured Cortical Neurons. Biol Pharm Bull 2012; 35:624-8. [DOI: 10.1248/bpb.35.624] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Wakako Fujita-Hamabe
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University
| | - Shogo Tokuyama
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University
| |
Collapse
|
16
|
Findeisen P, Neumaier M. Functional protease profiling for diagnosis of malignant disease. Proteomics Clin Appl 2011; 6:60-78. [PMID: 22213637 DOI: 10.1002/prca.201100058] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 09/27/2011] [Accepted: 10/19/2011] [Indexed: 12/24/2022]
Abstract
Clinical proteomic profiling by mass spectrometry (MS) aims at uncovering specific alterations within mass profiles of clinical specimens that are of diagnostic value for the detection and classification of various diseases including cancer. However, despite substantial progress in the field, the clinical proteomic profiling approaches have not matured into routine diagnostic applications so far. Their limitations are mainly related to high-abundance proteins and their complex processing by a multitude of endogenous proteases thus making rigorous standardization difficult. MS is biased towards the detection of low-molecular-weight peptides. Specifically, in serum specimens, the particular fragments of proteolytically degraded proteins are amenable to MS analysis. Proteases are known to be involved in tumour progression and tumour-specific proteases are released into the blood stream presumably as a result of invasive progression and metastasis. Thus, the determination of protease activity in clinical specimens from patients with malignant disease can offer diagnostic and also therapeutic options. The identification of specific substrates for tumour proteases in complex biological samples is challenging, but proteomic screens for proteases/substrate interactions are currently experiencing impressive progress. Such proteomic screens include peptide-based libraries, differential isotope labelling in combination with MS, quantitative degradomic analysis of proteolytically generated neo-N-termini, monitoring the degradation of exogenous reporter peptides with MS, and activity-based protein profiling. In the present article, we summarize and discuss the current status of proteomic techniques to identify tumour-specific protease-substrate interactions for functional protease profiling. Thereby, we focus on the potential diagnostic use of the respective approaches.
Collapse
Affiliation(s)
- Peter Findeisen
- Institute for Clinical Chemistry, Medical Faculty Mannheim of the University of Heidelberg, Heidelberg, Germany.
| | | |
Collapse
|
17
|
Morrison C, Mancini S, Cipollone J, Kappelhoff R, Roskelley C, Overall C. Microarray and proteomic analysis of breast cancer cell and osteoblast co-cultures: role of osteoblast matrix metalloproteinase (MMP)-13 in bone metastasis. J Biol Chem 2011; 286:34271-85. [PMID: 21784845 PMCID: PMC3190775 DOI: 10.1074/jbc.m111.222513] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 07/20/2011] [Indexed: 12/20/2022] Open
Abstract
Dynamic reciprocal interactions between a tumor and its microenvironment impact both the establishment and progression of metastases. These interactions are mediated, in part, through proteolytic sculpting of the microenvironment, particularly by the matrix metalloproteinases, with both tumors and stroma contributing to the proteolytic milieu. Because bone is one of the predominant sites of breast cancer metastases, we used a co-culture system in which a subpopulation of the highly invasive human breast cancer cell line MDA-MB-231, with increased propensity to metastasize to bone, was overlaid onto a monolayer of differentiated osteoblast MC3T3-E1 cells in a mineralized osteoid matrix. CLIP-CHIP® microarrays identified changes in the complete protease and inhibitor expression profile of the breast cancer and osteoblast cells that were induced upon co-culture. A large increase in osteoblast-derived MMP-13 mRNA and protein was observed. Affymetrix analysis and validation showed induction of MMP-13 was initiated by soluble factors produced by the breast tumor cells, including oncostatin M and the acute response apolipoprotein SAA3. Significant changes in the osteoblast secretomes upon addition of MMP-13 were identified by degradomics from which six novel MMP-13 substrates with the potential to functionally impact breast cancer metastasis to bone were identified and validated. These included inactivation of the chemokines CCL2 and CCL7, activation of platelet-derived growth factor-C, and cleavage of SAA3, osteoprotegerin, CutA, and antithrombin III. Hence, the influence of breast cancer metastases on the bone microenvironment that is executed via the induction of osteoblast MMP-13 with the potential to enhance metastases growth by generating a microenvironmental amplifying feedback loop is revealed.
Collapse
Affiliation(s)
- Charlotte Morrison
- From the Centre for Blood Research and
- Departments of Oral Biological and Medical Sciences
| | - Stephanie Mancini
- Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jane Cipollone
- Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Reinhild Kappelhoff
- From the Centre for Blood Research and
- Departments of Oral Biological and Medical Sciences
| | - Calvin Roskelley
- Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Christopher Overall
- From the Centre for Blood Research and
- Departments of Oral Biological and Medical Sciences
- Biochemistry and Molecular Biology, and
| |
Collapse
|
18
|
Negaard HFS, Sandset PM, Kolset SO, Svennevig K, Østenstad B, Iversen PO. Associations between regulators of extracellular matrix and hemostatic factors in hematologic neoplasias. Leuk Lymphoma 2011; 52:1157-9. [PMID: 21463121 DOI: 10.3109/10428194.2011.563886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Koo BH, Han JH, Yeom YI, Kim DS. Thrombin-dependent MMP-2 activity is regulated by heparan sulfate. J Biol Chem 2010; 285:41270-9. [PMID: 21041295 DOI: 10.1074/jbc.m110.171595] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Like most metalloproteases, matrix metalloprotease 2 (MMP-2) is synthesized as a zymogen. MMP-2 propeptide plays a role in inhibition of catalytic activity through a cysteine-zinc ion pairing, disruption of which results in full enzyme activation. A variety of proteases have been shown to be involved in the activation of pro-MMP-2, including metalloproteases and serine proteases. In the previous study we showed that MMP-2 activation occurred via specific cleavages of the propeptide by thrombin followed by intermolecular autoproteolytic processing for full enzymatic activity. Thrombin also degraded MMP-2, but this degradation was reduced greatly under cell-associated conditions with a concomitant increase in activation, prompting us to elucidate the molecular mechanisms underlying thrombin-mediated MMP-2 activation. In the present study we demonstrate that heparan sulfate is essential for thrombin-mediated activation of pro-MMP-2. Binding of heparan sulfate to thrombin is primarily responsible for this activation process, presumably through conformational changes at the active site. Furthermore, interaction of MMP-2 with exosites 1 and 2 of thrombin is crucial for thrombin-mediated MMP-2 degradation, and inhibition of this interaction by heparan sulfate or hirudin fragment results in a decrease in MMP-2 degradation. Finally, we demonstrated interaction between exosite 1 and hemopexin-like domain of MMP-2, suggesting a regulatory role of hemopexin-like domain in MMP-2 degradation. Taken together, our experimental data suggest a novel regulatory mechanism of thrombin-dependent MMP-2 enzymatic activity by heparan sulfate proteoglycans.
Collapse
Affiliation(s)
- Bon-Hun Koo
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea.
| | | | | | | |
Collapse
|
20
|
Ryckman KK, Morken NH, White MJ, Velez DR, Menon R, Fortunato SJ, Magnus P, Williams SM, Jacobsson B. Maternal and fetal genetic associations of PTGER3 and PON1 with preterm birth. PLoS One 2010; 5:e9040. [PMID: 20140262 PMCID: PMC2815792 DOI: 10.1371/journal.pone.0009040] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 01/08/2010] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The purpose of this study was to identify associations between maternal and fetal genetic variants in candidate genes and spontaneous preterm birth (PTB) in a Norwegian population and to determine the effect size of those associations that corroborate a previous study of PTB. METHODS DNA from 434 mother-baby dyads (214 cases and 220 controls) collected from the Norwegian Mother and Child Cohort (MoBa) was examined for association between 1,430 single nucleotide polymorphisms in 143 genes and PTB. These results were compared to a previous study on European Americans (EA) from Centennial Women's Hospital in Nashville, TN, USA. Odds ratios for SNPs that corroborated the Cenntennial study were determined on the combined MoBa and Centennial studies. RESULTS In maternal samples the strongest results that corroborated the Centennial study were in the prostaglandin E receptor 3 gene (PTGER3; rs977214) (combined genotype p = 3x10(-4)). The best model for rs977214 was the AG/GG genotypes relative to the AA genotype and resulted in an OR of 0.55 (95% CI = 0.37-0.82, p = 0.003), indicating a protective effect. In fetal samples the most significant association in the combined data was rs854552 in the paraoxonase 1 gene (PON1) (combined allele p = 8x10(-4)). The best model was the TT genotype relative to the CC/CT genotypes, and resulted in an OR of 1.32 (95% CI = 1.13-1.53, p = 4x10(-4)). CONCLUSIONS These studies identify single locus associations with preterm birth for both maternal and fetal genotypes in two populations of European ancestry.
Collapse
Affiliation(s)
- Kelli K. Ryckman
- Department of Molecular Physiology and Biophysics and Center for Human Genetics Research, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Nils-Halvdan Morken
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
- Norwegian Institute of Public Health, Oslo, Norway
| | - Marquitta J. White
- Department of Molecular Physiology and Biophysics and Center for Human Genetics Research, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Digna R. Velez
- Dr. John T. Macdonald Foundation Department of Human Genetics and Miami Institute of Human Genomics, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Ramkumar Menon
- The Perinatal Research Center, Nashville, Tennessee, United States of America
- Department of Epidemiology, Emory University, Atlanta, Georgia, United States of America
| | - Stephen J. Fortunato
- The Perinatal Research Center, Nashville, Tennessee, United States of America
- Department of Epidemiology, Emory University, Atlanta, Georgia, United States of America
| | - Per Magnus
- Norwegian Institute of Public Health, Oslo, Norway
| | - Scott M. Williams
- Department of Molecular Physiology and Biophysics and Center for Human Genetics Research, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Bo Jacobsson
- Perinatal Center, Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Rikshospitalet, Oslo, Norway
| |
Collapse
|
21
|
Abstract
The mechanisms by which homocysteine contributes to atherothrombosis are complex and their in vivo relevance uncertain. In this issue of the JCI, Jacovina and colleagues report a unique in vivo mechanism by which homocysteine may contribute to vascular disease (see the related article beginning on page 3384). This group had previously reported that homocysteine impairs endothelial cell surface plasminogen activation by posttranslationally modifying annexin A2, the coreceptor for plasminogen and tissue plasminogen activator. They now show that an annexin A2-deficient mouse rendered hyperhomocysteinemic by dietary means has impaired fibrinolysis, perivascular fibrin persistence, and attenuated angiogenesis (angiostasis). Potential mechanisms by which homocysteine-dependent changes in endothelial phenotype link thrombosis to angiostasis are reviewed and their relationship to homocysteine-dependent vascular disease considered.
Collapse
Affiliation(s)
- Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115-2394, USA.
| |
Collapse
|