1
|
Tsevelkhoroloo M, Dhakshnamoorthy V, Hong YS, Lee CR, Hong SK. Bifunctional and monofunctional α-neoagarooligosaccharide hydrolases from Streptomyces coelicolor A3(2). Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12552-x. [PMID: 37184654 DOI: 10.1007/s00253-023-12552-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 05/16/2023]
Abstract
Agar is a galactan and a major component of the red algal cell wall. Agar is metabolized only by specific microorganisms. The final step of the β-agarolytic pathway is mediated by α-neoagarooligosaccharide hydrolase (α-NAOSH), which cleaves neoagarobiose to D-galactose and 3,6-anhydro-α-L-galactose. In the present study, two α-NAOSHs, SCO3481 and SCO3479, were identified in Streptomyces coelicolor A3(2). SCO3481 (370 amino acids, 41.12 kDa) and SCO3479 (995 amino acids, 108.8 kDa) catalyzed the hydrolysis of the α-(1,3) glycosidic bonds of neoagarobiose, neoagarotetraose, and neoagarohexaose at the nonreducing ends, releasing 3,6-anhydro-α-L-galactose. Both were intracellular proteins without any signal peptides for secretion. Similar to all α-NAOSHs reported to date, SCO3481 belonged to the glycosyl hydrolase (GH) 117 family and formed dimers. On the other hand, SCO3479 was a large monomeric α-NAOSH belonging to the GH2 family with a β-galactosidase domain. SCO3479 also clearly showed β-galactosidase activity toward lactose and artificial substrates, but SCO3481 did not. The optimum conditions for α-NAOSH were pH 6.0 and 25 °C for SCO3481, and pH 6.0 and 30 °C for SCO3479. Enzymatic activity was enhanced by Co2+ for SCO3481 and Mg2+ for SCO3479. The β-galactosidase activity of SCO3479 was maximum at pH 7.0 and 50 °C and was increased by Mg2+. Many differences were evident in the kinetic parameters of each enzyme. Although SCO3481 is typical of the GH117 family, SCO3479 is a novel α-NAOSH that was first reported in the GH2 family. SCO3479, a unique bifunctional enzyme with α-NAOSH and β-galactosidase activities, has many advantages for industrial applications. KEY POINTS: • SCO3481 is a dimeric α-neoagarooligosaccharide hydrolase belonging to GH117. • SCO3479 is a monomeric α-neoagarooligosaccharide hydrolase belonging to GH2. • SCO3479 is a novel and unique bifunctional enzyme that also acts as a β-galactosidase.
Collapse
Affiliation(s)
- Maral Tsevelkhoroloo
- Department of Bioscience and Bioinformatics, Myongji University, 116 Myongji-Ro, Yongin, Gyeonggido, 17058, Republic of Korea
| | - Vijayalakshmi Dhakshnamoorthy
- Department of Bioscience and Bioinformatics, Myongji University, 116 Myongji-Ro, Yongin, Gyeonggido, 17058, Republic of Korea
| | - Young-Soo Hong
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-Ro, Cheongju, Chungbuk, 28116, Republic of Korea
| | - Chang-Ro Lee
- Department of Bioscience and Bioinformatics, Myongji University, 116 Myongji-Ro, Yongin, Gyeonggido, 17058, Republic of Korea
| | - Soon-Kwang Hong
- Department of Bioscience and Bioinformatics, Myongji University, 116 Myongji-Ro, Yongin, Gyeonggido, 17058, Republic of Korea.
| |
Collapse
|
2
|
Comparative Genomics of the Aeromonadaceae Core Oligosaccharide Biosynthetic Regions. Int J Mol Sci 2017; 18:ijms18030519. [PMID: 28264491 PMCID: PMC5372535 DOI: 10.3390/ijms18030519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 02/23/2017] [Accepted: 02/26/2017] [Indexed: 01/25/2023] Open
Abstract
Lipopolysaccharides (LPSs) are an integral part of the Gram-negative outer membrane, playing important organizational and structural roles and taking part in the bacterial infection process. In Aeromonas hydrophila, piscicola, and salmonicida, three different genomic regions taking part in the LPS core oligosaccharide (Core-OS) assembly have been identified, although the characterization of these clusters in most aeromonad species is still lacking. Here, we analyse the conservation of these LPS biosynthesis gene clusters in the all the 170 currently public Aeromonas genomes, including 30 different species, and characterise the structure of a putative common inner Core-OS in the Aeromonadaceae family. We describe three new genomic organizations for the inner Core-OS genomic regions, which were more evolutionary conserved than the outer Core-OS regions, which presented remarkable variability. We report how the degree of conservation of the genes from the inner and outer Core-OS may be indicative of the taxonomic relationship between Aeromonas species.
Collapse
|
3
|
Merino S, Tomás JM. The FlgT Protein Is Involved in Aeromonas hydrophila Polar Flagella Stability and Not Affects Anchorage of Lateral Flagella. Front Microbiol 2016; 7:1150. [PMID: 27507965 PMCID: PMC4960245 DOI: 10.3389/fmicb.2016.01150] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 07/11/2016] [Indexed: 12/28/2022] Open
Abstract
Aeromonas hydrophila sodium-driven polar flagellum has a complex stator-motor. Consist of two sets of redundant and non-exchangeable proteins (PomA/PomB and PomA2/PomB2), which are homologs to other sodium-conducting polar flagellum stator motors; and also two essential proteins (MotX and MotY), that they interact with one of those two redundant pairs of proteins and form the T-ring. In this work, we described an essential protein for polar flagellum stability and rotation which is orthologs to Vibrio spp. FlgT and it is encoded outside of the A. hydrophila polar flagellum regions. The flgT was present in all mesophilic Aeromonas strains tested and also in the non-motile Aeromonas salmonicida. The A. hydrophila ΔflgT mutant is able to assemble the polar flagellum but is more unstable and released into the culture supernatant from the cell upon completion assembly. Presence of FlgT in purified polar hook-basal bodies (HBB) of wild-type strain was confirmed by Western blotting and electron microscopy observations showed an outer ring of the T-ring (H-ring) which is not present in the ΔflgT mutant. Anchoring and motility of proton-driven lateral flagella was not affected in the ΔflgT mutant and specific antibodies did not detect FlgT in purified lateral HBB of wild type strain.
Collapse
Affiliation(s)
- Susana Merino
- Departamento de Genética, Microbiología y Estadística, Sección Microbiologia, Virología y Biotecnología, Facultad de Biología, Universidad de Barcelona Barcelona, Spain
| | - Juan M Tomás
- Departamento de Genética, Microbiología y Estadística, Sección Microbiologia, Virología y Biotecnología, Facultad de Biología, Universidad de Barcelona Barcelona, Spain
| |
Collapse
|
4
|
Merino S, Gonzalez V, Tomás JM. The first sugar of the repeat units is essential for the Wzy polymerase activity and elongation of the O-antigen lipopolysaccharide. Future Microbiol 2016; 11:903-18. [PMID: 27357519 DOI: 10.2217/fmb-2015-0028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In the Wzx/Wzy-dependent assembled pathway, the assembled O-antigen repeat units are translocated from the cytosolic to the periplasmic face of the inner membrane by a Wzx translocase and then polymerized by the integral membrane protein Wzy to form a glycan chain. We demonstrate that the activity of the Escherichia coli O-antigen polymerase (Wzy) is dependent on the first sugar of the O-antigen repeat unit to produce the O-antigen polymerization and therefore, there is a need for a concerted action with the enzyme transferring the initial HexNAc to undecaprenyl phosphate (UDP-HexNAc: polyprenol-P HexNAc-1-P transferase). Furthermore, in the case of Aeromonas hydrophila Wzy-O34 polymerization activity, the enzyme is permissive with the sugar at the nonreducing end of the O-antigen repeat unit.
Collapse
Affiliation(s)
- Susana Merino
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 643, 08071 Barcelona, Spain
| | - Victor Gonzalez
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Juan M Tomás
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 643, 08071 Barcelona, Spain
| |
Collapse
|
5
|
Polar Glycosylated and Lateral Non-Glycosylated Flagella from Aeromonas hydrophila Strain AH-1 (Serotype O11). Int J Mol Sci 2015; 16:28255-69. [PMID: 26633358 PMCID: PMC4691044 DOI: 10.3390/ijms161226097] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 01/25/2023] Open
Abstract
Polar and but not lateral flagellin proteins from Aeromonas hydrophila strain AH-1 (serotype O11) were found to be glycosylated. Top-down mass spectrometry studies of purified polar flagellins suggested the presence of a 403 Da glycan of mass. Bottom-up mass spectrometry studies showed the polar flagellin peptides to be modified with 403 Da glycans in O-linkage. The MS fragmentation pattern of this putative glycan was similar to that of pseudaminic acid derivative. Mutants lacking the biosynthesis of pseudaminic acid (pseB and pseI homologues) were unable to produce polar flagella but no changes were observed in lateral flagella by post-transcriptional regulation of the flagellin. Complementation was achieved by reintroduction of the wild-type pseB and pseI. We compared two pathogenic features (adhesion to eukaryotic cells and biofilm production) between the wild-type strain and two kinds of mutants: mutants lacking polar flagella glycosylation and lacking the O11-antigen lipopolysaccharide (LPS) but with unaltered polar flagella glycosylation. Results suggest that polar flagella glycosylation is extremely important for A. hydrophila AH-1 adhesion to Hep-2 cells and biofilm formation. In addition, we show the importance of the polar flagella glycosylation for immune stimulation of IL-8 production via toll-"like" receptor 5 (TLR5).
Collapse
|
6
|
Merino S, Gonzalez V, Tomás JM. The Polymerization of Aeromonas hydrophila AH-3 O-Antigen LPS: Concerted Action of WecP and Wzy. PLoS One 2015; 10:e0131905. [PMID: 26161781 PMCID: PMC4498686 DOI: 10.1371/journal.pone.0131905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 06/08/2015] [Indexed: 02/04/2023] Open
Abstract
The repeat units of heteropolymeric O antigen are synthesized at the cytosolic side of the inner bacterial membrane via the Wzx/Wzy-dependent assembly pathway. After being translocated across the membrane by Wzx, each repeat unit is polymerized by Wzy to form a glycan chain. In this study, we demonstrate the need of the corresponding enzyme transferring the initial HexNAc to undecaprenol phosphate (lipid carrier), together with the corresponding O-antigen polymerase (Wzy), to produce the Aeromonas hydrophila O:34-antigen. We suggest, the concerted action of WecA or P enzyme (UDP-HexNAc: polyprenol-P HexNAc-1-P transferase) and Wzy is involved in the mechanism responsible for the A. hydrophila O-antigen polymerization.
Collapse
Affiliation(s)
- Susana Merino
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 643, 08071, Barcelona, Spain
| | - Victor Gonzalez
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 643, 08071, Barcelona, Spain
| | - Juan M. Tomás
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 643, 08071, Barcelona, Spain
- * E-mail:
| |
Collapse
|
7
|
Merino S, Aquilini E, Fulton KM, Twine SM, Tomás JM. The polar and lateral flagella from Plesiomonas shigelloides are glycosylated with legionaminic acid. Front Microbiol 2015; 6:649. [PMID: 26167161 PMCID: PMC4481668 DOI: 10.3389/fmicb.2015.00649] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 06/15/2015] [Indexed: 12/30/2022] Open
Abstract
Plesiomonas shigelloides is the unique member of the Enterobacteriaceae family able to produce polar flagella when grow in liquid medium and lateral flagella when grown in solid or semisolid media. In this study on P. shigelloides 302-73 strain, we found two different gene clusters, one exclusively for the lateral flagella biosynthesis and the other one containing the biosynthetic polar flagella genes with additional putative glycosylation genes. P. shigelloides is the first Enterobacteriaceae were a complete lateral flagella cluster leading to a lateral flagella production is described. We also show that both flagella in P. shigelloides 302-73 strain are glycosylated by a derivative of legionaminic acid (Leg), which explains the presence of Leg pathway genes between the two polar flagella regions in their biosynthetic gene cluster. It is the first bacterium reported with O-glycosylated Leg in both polar and lateral flagella. The flagella O-glycosylation is essential for bacterial flagella formation, either polar or lateral, because gene mutants on the biosynthesis of Leg are non-flagellated. Furthermore, the presence of the lateral flagella cluster and Leg O-flagella glycosylation genes are widely spread features among the P. shigelloides strains tested.
Collapse
Affiliation(s)
- Susana Merino
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona Barcelona, Spain
| | - Eleonora Aquilini
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona Barcelona, Spain
| | | | | | - Juan M Tomás
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona Barcelona, Spain
| |
Collapse
|
8
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2009-2010. MASS SPECTROMETRY REVIEWS 2015; 34:268-422. [PMID: 24863367 PMCID: PMC7168572 DOI: 10.1002/mas.21411] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 05/07/2023]
Abstract
This review is the sixth update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2010. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, arrays and fragmentation are covered in the first part of the review and applications to various structural typed constitutes the remainder. The main groups of compound that are discussed in this section are oligo and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Many of these applications are presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis.
Collapse
Affiliation(s)
- David J. Harvey
- Department of BiochemistryOxford Glycobiology InstituteUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
9
|
Merino S, Wilhelms M, Tomás JM. Role of Aeromonas hydrophila flagella glycosylation in adhesion to Hep-2 cells, biofilm formation and immune stimulation. Int J Mol Sci 2014; 15:21935-46. [PMID: 25464381 PMCID: PMC4284686 DOI: 10.3390/ijms151221935] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/13/2014] [Accepted: 11/21/2014] [Indexed: 12/30/2022] Open
Abstract
Abstract: Polar flagellin proteins from Aeromonas hydrophila strain AH-3 (serotype O34) were found to be O-glycosylated with a heterogeneous heptasaccharide glycan. Two mutants with altered (light and strong) polar flagella glycosylation still able to produce flagella were previously obtained, as well as mutants lacking the O34-antigen lipopolysaccharide (LPS) but with unaltered polar flagella glycosylation. We compared these mutants, altogether with the wild type strain, in different studies to conclude that polar flagella glycosylation is extremely important for A. hydrophila adhesion to Hep-2 cells and biofilm formation. Furthermore, the polar flagella glycosylation is an important factor for the immune stimulation of IL-8 production via toll receptor 5 (TLR5).
Collapse
Affiliation(s)
- Susana Merino
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 643, 08071 Barcelona, Spain.
| | - Markus Wilhelms
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 643, 08071 Barcelona, Spain.
| | - Juan M Tomás
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 643, 08071 Barcelona, Spain.
| |
Collapse
|
10
|
A UDP-HexNAc:polyprenol-P GalNAc-1-P transferase (WecP) representing a new subgroup of the enzyme family. J Bacteriol 2011; 193:1943-52. [PMID: 21335454 DOI: 10.1128/jb.01441-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Aeromonas hydrophila AH-3 WecP represents a new class of UDP-HexNAc:polyprenol-P HexNAc-1-P transferases. These enzymes use a membrane-associated polyprenol phosphate acceptor (undecaprenyl phosphate [Und-P]) and a cytoplasmic UDP-d-N-acetylhexosamine sugar nucleotide as the donor substrate. Until now, all the WecA enzymes tested were able to transfer UDP-GlcNAc to the Und-P. In this study, we present in vitro and in vivo proofs that A. hydrophila AH-3 WecP transfers GalNAc to Und-P and is unable to transfer GlcNAc to the same enzyme substrate. The molecular topology of WecP is more similar to that of WbaP (UDP-Gal polyprenol-P transferase) than to that of WecA (UDP-GlcNAc polyprenol-P transferase). WecP is the first UDP-HexNAc:polyprenol-P GalNAc-1-P transferase described.
Collapse
|
11
|
Biochemical analysis of Lgt3, a glycosyltransferase of the bacterium Moraxella catarrhalis. Biochem Biophys Res Commun 2010; 393:609-13. [PMID: 20153730 DOI: 10.1016/j.bbrc.2010.02.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 02/08/2010] [Indexed: 11/21/2022]
Abstract
The lipooligosaccharide (LOS) of Moraxella catarrhalis is unusual in that it lacks heptose. The sugar linking oligosaccharide to Lipid A is a trisubstituted glucose. A single enzyme, Lgt3, is suggested to trisubstitute this core sugar. The lgt3 gene encodes two distinct domains with high similarity to glucosyltransferases of the GT-A superfamily, thus encoding a bidomain, multifunctional glucosyltransferase. To characterise Lgt3, the gene was amplified from M. catarrhalis, expressed in Escherichia coli, and purified. Analysis of its glycosyltransferase catalytic activity ascertained the pH and temperature optima for Lgt3. The donor specificity and acceptor specificity were examined. This study confirms that Lgt3 is a glucosyltransferase which catalyses addition of glucose to its cognate receptor, a terminal glucose presented as the core region of LOS.
Collapse
|