1
|
Banerjee K, Saha S, Das S, Ghosal S, Ghosh I, Basu A, Jana SS. Expression of nonmuscle myosin IIC is regulated by non-canonical binding activity of miRNAs. iScience 2023; 26:108384. [PMID: 38047082 PMCID: PMC10690570 DOI: 10.1016/j.isci.2023.108384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/27/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023] Open
Abstract
The expression of mechanoresponsive nonmuscle myosin II (NMII)C is found to be inducible during tumor progression, but its mechanism is yet to be explored. Here, we report a group of microRNAs (mmu-miR-200a-5p, mmu-miR-532-3p, mmu-miR-680, and mmu-miR-1901) can significantly repress the expression of nonmuscle myosin IIC (NMIIC). Interestingly, these microRNAs have both canonical and non-canonical binding sites at 3/UTR and coding sequence (CDS) of NMIIC's heavy chain (HC) mRNA. Each of the miRNA downregulates NMHC-IIC to a different degree as assessed by dual-luciferase and immunoblot analyses. When we abolish the complementary base pairing at canonical binding site, mmu-miR-532-3p can still bind at non-canonical binding site and form Argonaute2 (AGO2)-miRNA complex to downregulate the expression of NMIIC. Modulating the expression of NMIIC by miR-532-3p in mouse mammary tumor cells, 4T1, increases its tumorigenic potential both in vitro and in vivo. Together, these studies provide the functional role of miRNA's non-canonical binding mediated NMIIC regulation in tumor cells.
Collapse
Affiliation(s)
- Kumarjeet Banerjee
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Shekhar Saha
- Department of Microbiology, Immunology, and Cancer Biology, Charlottesville, VA, USA
| | - Shaoli Das
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Suman Ghosal
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Indranil Ghosh
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Abhimanyu Basu
- Department of General Surgery, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Siddhartha S. Jana
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| |
Collapse
|
2
|
Weißenbruch K, Fladung M, Grewe J, Baulesch L, Schwarz US, Bastmeyer M. Nonmuscle myosin IIA dynamically guides regulatory light chain phosphorylation and assembly of nonmuscle myosin IIB. Eur J Cell Biol 2022; 101:151213. [DOI: 10.1016/j.ejcb.2022.151213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/16/2022] [Accepted: 02/28/2022] [Indexed: 01/27/2023] Open
|
3
|
Reid KM, Singh AK, Bikash CR, Wei J, Tal-Gan Y, Vinh NQ, Leitner DM. The origin and impact of bound water around intrinsically disordered proteins. Biophys J 2022; 121:540-551. [PMID: 35074392 PMCID: PMC8874019 DOI: 10.1016/j.bpj.2022.01.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/14/2021] [Accepted: 01/13/2022] [Indexed: 12/29/2022] Open
Abstract
Proteins and water couple dynamically over a wide range of time scales. Motivated by their central role in protein function, protein-water dynamics and thermodynamics have been extensively studied for structured proteins, where correspondence to structural features has been made. However, properties controlling intrinsically disordered protein (IDP)-water dynamics are not yet known. We report results of megahertz-to-terahertz dielectric spectroscopy and molecular dynamics simulations of a group of IDPs with varying charge content along with structured proteins of similar size. Hydration water around IDPs is found to exhibit more heterogeneous rotational and translational dynamics compared with water around structured proteins of similar size, yielding on average more restricted dynamics around individual residues of IDPs, charged or neutral, compared with structured proteins. The on-average slower water dynamics is found to arise from excess tightly bound water in the first hydration layer, which is related to greater exposure to charged groups. The more tightly bound water to IDPs correlates with the smaller hydration shell found experimentally, and affects entropy associated with protein-water interactions, the contribution of which we estimate based on the dielectric measurements and simulations. Water-IDP dynamic coupling at terahertz frequencies is characterized by the dielectric measurements and simulations.
Collapse
Affiliation(s)
- Korey M. Reid
- Department of Chemistry, University of Nevada, Reno, Nevada
| | - Abhishek K. Singh
- Department of Physics and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia
| | | | - Jessica Wei
- Department of Chemistry, University of Nevada, Reno, Nevada
| | - Yftah Tal-Gan
- Department of Chemistry, University of Nevada, Reno, Nevada
| | - Nguyen Q. Vinh
- Department of Physics and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia,Corresponding author
| | - David M. Leitner
- Department of Chemistry, University of Nevada, Reno, Nevada,Corresponding author
| |
Collapse
|
4
|
Menard LM, Wood NB, Vigoreaux JO. Secondary Structure of the Novel Myosin Binding Domain WYR and Implications within Myosin Structure. BIOLOGY 2021; 10:603. [PMID: 34209926 PMCID: PMC8301185 DOI: 10.3390/biology10070603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 01/05/2023]
Abstract
Structural changes in the myosin II light meromyosin (LMM) that influence thick filament mechanical properties and muscle function are modulated by LMM-binding proteins. Flightin is an LMM-binding protein indispensable for the function of Drosophila indirect flight muscle (IFM). Flightin has a three-domain structure that includes WYR, a novel 52 aa domain conserved throughout Pancrustacea. In this study, we (i) test the hypothesis that WYR binds the LMM, (ii) characterize the secondary structure of WYR, and (iii) examine the structural impact WYR has on the LMM. Circular dichroism at 260-190 nm reveals a structural profile for WYR and supports an interaction between WYR and LMM. A WYR-LMM interaction is supported by co-sedimentation with a stoichiometry of ~2.4:1. The WYR-LMM interaction results in an overall increased coiled-coil content, while curtailing ɑ helical content. WYR is found to be composed of 15% turns, 31% antiparallel β, and 48% 'other' content. We propose a structural model of WYR consisting of an antiparallel β hairpin between Q92-K114 centered on an ASX or β turn around N102, with a G1 bulge at G117. The Drosophila LMM segment used, V1346-I1941, encompassing conserved skip residues 2-4, is found to possess a traditional helical profile but is interpreted as having <30% helical content by multiple methods of deconvolution. This low helicity may be affiliated with the dynamic behavior of the structure in solution or the inclusion of a known non-helical region in the C-terminus. Our results support the hypothesis that WYR binds the LMM and that this interaction brings about structural changes in the coiled-coil. These studies implicate flightin, via the WYR domain, for distinct shifts in LMM secondary structure that could influence the structural properties and stabilization of the thick filament, scaling to modulation of whole muscle function.
Collapse
Affiliation(s)
| | | | - Jim O. Vigoreaux
- Department of Biology, University of Vermont, Burlington, VT 05405, USA; (L.M.M.); (N.B.W.)
| |
Collapse
|
5
|
Surcel A, Schiffhauer ES, Thomas DG, Zhu Q, DiNapoli KT, Herbig M, Otto O, West-Foyle H, Jacobi A, Kräter M, Plak K, Guck J, Jaffee EM, Iglesias PA, Anders RA, Robinson DN. Targeting Mechanoresponsive Proteins in Pancreatic Cancer: 4-Hydroxyacetophenone Blocks Dissemination and Invasion by Activating MYH14. Cancer Res 2019; 79:4665-4678. [PMID: 31358530 PMCID: PMC6744980 DOI: 10.1158/0008-5472.can-18-3131] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 06/11/2019] [Accepted: 07/22/2019] [Indexed: 12/16/2022]
Abstract
Metastasis is complex, involving multiple genetic, epigenetic, biochemical, and physical changes in the cancer cell and its microenvironment. Cells with metastatic potential are often characterized by altered cellular contractility and deformability, lending them the flexibility to disseminate and navigate through different microenvironments. We demonstrate that mechanoresponsiveness is a hallmark of pancreatic cancer cells. Key mechanoresponsive proteins, those that accumulate in response to mechanical stress, specifically nonmuscle myosin IIA (MYH9) and IIC (MYH14), α-actinin 4, and filamin B, were highly expressed in pancreatic cancer as compared with healthy ductal epithelia. Their less responsive sister paralogs-myosin IIB (MYH10), α-actinin 1, and filamin A-had lower expression differential or disappeared with cancer progression. We demonstrate that proteins whose cellular contributions are often overlooked because of their low abundance can have profound impact on cell architecture, behavior, and mechanics. Here, the low abundant protein MYH14 promoted metastatic behavior and could be exploited with 4-hydroxyacetophenone (4-HAP), which increased MYH14 assembly, stiffening cells. As a result, 4-HAP decreased dissemination, induced cortical actin belts in spheroids, and slowed retrograde actin flow. 4-HAP also reduced liver metastases in human pancreatic cancer-bearing nude mice. Thus, increasing MYH14 assembly overwhelms the ability of cells to polarize and invade, suggesting targeting the mechanoresponsive proteins of the actin cytoskeleton as a new strategy to improve the survival of patients with pancreatic cancer. SIGNIFICANCE: This study demonstrates that mechanoresponsive proteins become upregulated with pancreatic cancer progression and that this system of proteins can be pharmacologically targeted to inhibit the metastatic potential of pancreatic cancer cells.
Collapse
Affiliation(s)
- Alexandra Surcel
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Eric S Schiffhauer
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Dustin G Thomas
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Qingfeng Zhu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kathleen T DiNapoli
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Electrical and Computer Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland
| | - Maik Herbig
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Oliver Otto
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Hoku West-Foyle
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Angela Jacobi
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Martin Kräter
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Katarzyna Plak
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Jochen Guck
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Elizabeth M Jaffee
- Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins, The Skip Viragh Pancreatic Cancer Center, and the Bloomberg Kimmel Institute, Johns Hopkins University, Baltimore, Maryland
| | - Pablo A Iglesias
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Electrical and Computer Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland
| | - Robert A Anders
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Douglas N Robinson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
6
|
Gabizon R, Friedler A. Allosteric modulation of protein oligomerization: an emerging approach to drug design. Front Chem 2014; 2:9. [PMID: 24790978 PMCID: PMC3982530 DOI: 10.3389/fchem.2014.00009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 02/22/2014] [Indexed: 01/05/2023] Open
Abstract
Many disease-related proteins are in equilibrium between different oligomeric forms. The regulation of this equilibrium plays a central role in maintaining the activity of these proteins in vitro and in vivo. Modulation of the oligomerization equilibrium of proteins by molecules that bind preferentially to a specific oligomeric state is emerging as a potential therapeutic strategy that can be applied to many biological systems such as cancer and viral infections. The target proteins for such compounds are diverse in structure and sequence, and may require different approaches for shifting their oligomerization equilibrium. The discovery of such oligomerization-modulating compounds is thus achieved based on existing structural knowledge about the specific target proteins, as well as on their interactions with partner proteins or with ligands. In silico design and combinatorial tools such as peptide arrays and phage display are also used for discovering compounds that modulate protein oligomerization. The current review highlights some of the recent developments in the design of compounds aimed at modulating the oligomerization equilibrium of proteins, including the "shiftides" approach developed in our lab.
Collapse
Affiliation(s)
| | - Assaf Friedler
- Institute of Chemistry, The Hebrew University of JerusalemJerusalem, Israel
| |
Collapse
|
7
|
Rosenberg MM, Ronen D, Lahav N, Nazirov E, Ravid S, Friedler A. High resolution characterization of myosin IIC protein tailpiece and its effect on filament assembly. J Biol Chem 2013; 288:9779-9789. [PMID: 23426373 DOI: 10.1074/jbc.m112.430173] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The motor protein nonmuscle myosin II (NMII) must undergo dynamic oligomerization into filaments to perform its cellular functions. A small nonhelical region at the tail of the long coiled-coil region (tailpiece) is a common feature of all dynamically assembling myosin II proteins. This tailpiece is a key regulatory domain affecting NMII filament assembly properties and is subject to phosphorylation in vivo. We previously demonstrated that the positively charged region of the tailpiece binds to assembly-incompetent NMII-C fragments, inducing filament assembly. In the current study, we investigated the molecular mechanisms by which the tailpiece regulates NMII-C self-assembly. Using alanine scan, we found that specific positive and aromatic residues within the positively charged region of the tailpiece are important for inducing NMII-C filament assembly and for filament elongation. Combining peptide arrays with deletion studies allowed us to identify the tailpiece binding sites in the coiled-coil rod. Elucidation of the mechanism by which the tailpiece induces filament assembly permitted us further investigation into the role of tailpiece phosphorylation. Sedimentation and CD spectroscopy identified that phosphorylation of Thr(1957) or Thr(1960) inhibited the ability of the tailpiece to bind the coiled-coil rod and to induce NMII-C filament formation. This study provides molecular insight into the role of specific residues within the NMII-C tailpiece that are responsible for shifting the oligomeric equilibrium of NMII-C toward filament assembly and determining its morphology.
Collapse
Affiliation(s)
- Masha M Rosenberg
- Institute of Chemistry, The Hebrew University of Jerusalem, Safra Campus Givat Ram, Jerusalem 91904
| | - Daniel Ronen
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Noa Lahav
- Institute of Chemistry, The Hebrew University of Jerusalem, Safra Campus Givat Ram, Jerusalem 91904
| | - Elvira Nazirov
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Shoshana Ravid
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | - Assaf Friedler
- Institute of Chemistry, The Hebrew University of Jerusalem, Safra Campus Givat Ram, Jerusalem 91904.
| |
Collapse
|
8
|
Orfanos Z, Sparrow JC. Myosin isoform switching during assembly of the Drosophila flight muscle thick filament lattice. J Cell Sci 2012. [PMID: 23178940 DOI: 10.1242/jcs.110361] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During muscle development myosin molecules form symmetrical thick filaments, which integrate with the thin filaments to produce the regular sarcomeric lattice. In Drosophila indirect flight muscles (IFMs) the details of this process can be studied using genetic approaches. The weeP26 transgenic line has a GFP-encoding exon inserted into the single Drosophila muscle myosin heavy chain gene, Mhc. The weeP26 IFM sarcomeres have a unique MHC-GFP-labelling pattern restricted to the sarcomere core, explained by non-translation of the GFP exon following alternative splicing. Characterisation of wild-type IFM MHC mRNA confirmed the presence of an alternately spliced isoform, expressed earlier than the major IFM-specific isoform. The two wild-type IFM-specific MHC isoforms differ by the presence of a C-terminal 'tailpiece' in the minor isoform. The sequential expression and assembly of these two MHCs into developing thick filaments suggest a role for the tailpiece in initiating A-band formation. The restriction of the MHC-GFP sarcomeric pattern in weeP26 is lifted when the IFM lack the IFM-specific myosin binding protein flightin, suggesting that it limits myosin dissociation from thick filaments. Studies of flightin binding to developing thick filaments reveal a progressive binding at the growing thick filament tips and in a retrograde direction to earlier assembled, proximal filament regions. We propose that this flightin binding restricts myosin molecule incorporation/dissociation during thick filament assembly and explains the location of the early MHC isoform pattern in the IFM A-band.
Collapse
|
9
|
Heissler SM, Manstein DJ. Nonmuscle myosin-2: mix and match. Cell Mol Life Sci 2012; 70:1-21. [PMID: 22565821 PMCID: PMC3535348 DOI: 10.1007/s00018-012-1002-9] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 04/16/2012] [Accepted: 04/17/2012] [Indexed: 12/31/2022]
Abstract
Members of the nonmuscle myosin-2 (NM-2) family of actin-based molecular motors catalyze the conversion of chemical energy into directed movement and force thereby acting as central regulatory components of the eukaryotic cytoskeleton. By cyclically interacting with adenosine triphosphate and F-actin, NM-2 isoforms promote cytoskeletal force generation in established cellular processes like cell migration, shape changes, adhesion dynamics, endo- and exo-cytosis, and cytokinesis. Novel functions of the NM-2 family members in autophagy and viral infection are emerging, making NM-2 isoforms regulators of nearly all cellular processes that require the spatiotemporal organization of cytoskeletal scaffolding. Here, we assess current views about the role of NM-2 isoforms in these activities including the tight regulation of NM-2 assembly and activation through phosphorylation and how NM-2-mediated changes in cytoskeletal dynamics and mechanics affect cell physiological functions in health and disease.
Collapse
Affiliation(s)
- Sarah M. Heissler
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Dietmar J. Manstein
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
10
|
Furth N, Gertman O, Shiber A, Alfassy OS, Cohen I, Rosenberg MM, Doron NK, Friedler A, Ravid T. Exposure of bipartite hydrophobic signal triggers nuclear quality control of Ndc10 at the endoplasmic reticulum/nuclear envelope. Mol Biol Cell 2011; 22:4726-39. [PMID: 21998200 PMCID: PMC3237617 DOI: 10.1091/mbc.e11-05-0463] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Proper functioning of the protein-folding quality control network depends on the network's ability to discern diverse structural perturbations to the native states of its protein substrates. Despite the centrality of the detection of misfolded states to cell home-ostasis, very little is known about the exact sequence and structural features that mark a protein as being misfolded. To investigate these features, we studied the requirements for the degradation of the yeast kinetochore protein Ndc10p. Mutant Ndc10p is a substrate of a protein-folding quality control pathway mediated by the E3 ubiquitin (Ub) ligase Doa10p at the endoplasmic reticulum (ER)/nuclear envelope membrane. Analysis of Ndc10p mutant derivatives, employing a reverse genetics approach, identified an autonomous quality control-associated degradation motif near the C-terminus of the protein. This motif is composed of two indispensable hydrophobic elements: a hydrophobic surface of an amphipathic helix and a loosely structured hydrophobic C-terminal tail. Site-specific point mutations expose these elements, triggering ubiquitin-mediated and HSP70 chaperone-dependent degradation of Ndc10p. These findings substantiate the ability of the ER quality control system to recognize subtle perturbation(s) in the native structure of a nuclear protein.
Collapse
Affiliation(s)
- Noa Furth
- Department of Biological Chemistry, A Silberman Institute of Life Sciences, Jerusalem 91904, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Lawrence SH, Selwood T, Jaffe EK. Diverse clinical compounds alter the quaternary structure and inhibit the activity of an essential enzyme. ChemMedChem 2011; 6:1067-73. [PMID: 21506274 DOI: 10.1002/cmdc.201100009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 02/24/2011] [Indexed: 11/10/2022]
Abstract
An in vitro evaluation of the Johns Hopkins Clinical Compound Library demonstrates that certain drugs can alter the quaternary structure of an essential human protein. Human porphobilinogen synthase (HsPBGS) is an essential enzyme involved in heme biosynthesis; it exists as an equilibrium of high-activity octamers, low-activity hexamers, and alternate dimer configurations that dictate the stoichiometry and architecture of further assembly. Decreased HsPBGS activity is implicated in toxicities associated with lead poisoning and 5-aminolevulinate dehydratase (ALAD) porphyria, the latter of which involves hexamer-favoring HsPBGS variants. A medium-throughput native PAGE mobility-shift screen coupled with evaluation of hits as HsPBGS inhibitors revealed 12 drugs that stabilize the HsPBGS hexamer and inhibit HsPBGS activity in vitro. A detailed characterization of these effects is presented. Drug inhibition of HsPBGS in vivo by inducing hexamer formation would constitute an unprecedented mechanism for side effects. We suggest that small-molecule perturbation of quaternary structure equilibria be considered as a general mechanism for drug action and side effects.
Collapse
Affiliation(s)
- Sarah H Lawrence
- Developmental Therapeutics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | | | | |
Collapse
|
12
|
Friedler A. From peptides to proteins: lessons from my years at the Centre for Protein Engineering. Protein Eng Des Sel 2010; 24:241-5. [PMID: 21062759 DOI: 10.1093/protein/gzq080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The MRC Centre for Protein Engineering (CPE) hosted and trained many scientists over the years. It is a unique research environment that shaped the career of many scientists in all aspects. These include research directions and methodologies, but even more important--issues such as how to approach scientific problems and how to manage a research team. Alan Fersht was the director of the CPE when I joined it as a postdoc in the year 2000. In the current article for the PEDS special CPE issue, I will review how my scientific research and my approach to science developed from the days I arrived to the CPE as a young peptide chemist and throughout the years I spent at the CPE, and how it shaped my current research interests and attitude. I will focus on two major fields: (i) Using peptides to study and modulate the structure and interactions of proteins; (ii) Using quantitative biophysical methods to study proteins and their interactions at the molecular level.
Collapse
Affiliation(s)
- Assaf Friedler
- Institute of Chemistry, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem 91904, Israel.
| |
Collapse
|
13
|
Levy-Beladev L, Levdansky L, Gaberman E, Friedler A, Gorodetsky R. A family of cell-adhering peptides homologous to fibrinogen C-termini. Biochem Biophys Res Commun 2010; 401:124-30. [PMID: 20833137 DOI: 10.1016/j.bbrc.2010.09.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 09/06/2010] [Indexed: 11/16/2022]
Abstract
A family of cell-adhesive peptides homologous to sequences on different chains of fibrinogen was investigated. These homologous peptides, termed Haptides, include the peptides Cβ, preCγ, and CαE, corresponding to sequences on the C-termini of fibrinogen chains β, γ, and αE, respectively. Haptides do not affect cell survival and rate of proliferation of the normal cell types tested. The use of new sensitive assays of cell adhesion clearly demonstrated the ability of Haptides, bound to inert matrices, to mediate attachment of different matrix-dependent cell types including normal fibroblasts, endothelial, and smooth muscle cells. Here we present new active Haptides bearing homologous sequences derived from the C-termini of other proteins, such as angiopoietin 1&2, tenascins C&X, and microfibril-associated glycoprotein-4. The cell adhesion properties of all the Haptides were found to be associated mainly with their 11 N-terminal residues. Mutated preCγ peptides revealed that positively charged residues account for their attachment effect. These results suggest a mechanism of direct electrostatic interaction of Haptides with the cell membrane. The extended Haptides family may be applied in modulating adhesion of cells to scaffolds for tissue regeneration and for enhancement of nanoparticulate transfection into cells.
Collapse
Affiliation(s)
- Liron Levy-Beladev
- Institute of Chemistry, Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | |
Collapse
|
14
|
Fabritius AS, Ellefson ML, McNally FJ. Nuclear and spindle positioning during oocyte meiosis. Curr Opin Cell Biol 2010; 23:78-84. [PMID: 20708397 DOI: 10.1016/j.ceb.2010.07.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 07/16/2010] [Accepted: 07/19/2010] [Indexed: 10/19/2022]
Abstract
Female meiosis is unique in that an asymmetrically positioned meiotic spindle expels chromosomes into tiny, non-developing polar bodies. The extrusion of chromosomes into polar bodies is always mediated by meiotic spindles that are attached to the oocyte cortex by one pole. The asymmetric, cortical positioning of the oocyte meiotic spindle preserves the volume and contents of the oocyte. Recent work in C. elegans and mouse has provided mechanistic details of spindle positioning in oocytes.
Collapse
Affiliation(s)
- Amy S Fabritius
- Department of Molecular and Cellular Biology, University of California-Davis, Davis, CA 95616, United States
| | | | | |
Collapse
|