1
|
Dalui S, Dasgupta A, Adhikari S, Das C, Roy S. Human testis-specific Y-encoded protein-like protein 5 is a histone H3/H4-specific chaperone that facilitates histone deposition in vitro. J Biol Chem 2022; 298:102200. [PMID: 35772497 PMCID: PMC9305336 DOI: 10.1016/j.jbc.2022.102200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 11/20/2022] Open
Abstract
DNA and core histones are hierarchically packaged into a complex organization called chromatin. The nucleosome assembly protein (NAP) family of histone chaperones is involved in the deposition of histone complexes H2A/H2B and H3/H4 onto DNA and prevents nonspecific aggregation of histones. Testis-specific Y-encoded protein (TSPY)–like protein 5 (TSPYL5) is a member of the TSPY-like protein family, which has been previously reported to interact with ubiquitin-specific protease USP7 and regulate cell proliferation and is thus implicated in various cancers, but its interaction with chromatin has not been investigated. In this study, we characterized the chromatin association of TSPYL5 and found that it preferentially binds histone H3/H4 via its C-terminal NAP-like domain both in vitro and ex vivo. We identified the critical residues involved in the TSPYL5–H3/H4 interaction and further quantified the binding affinity of TSPYL5 toward H3/H4 using biolayer interferometry. We then determined the binding stoichiometry of the TSPYL5–H3/H4 complex in vitro using a chemical cross-linking assay and size-exclusion chromatography coupled with multiangle laser light scattering. Our results indicate that a TSPYL5 dimer binds to either two histone H3/H4 dimers or a single tetramer. We further demonstrated that TSPYL5 has a specific affinity toward longer DNA fragments and that the same histone-binding residues are also critically involved in its DNA binding. Finally, employing histone deposition and supercoiling assays, we confirmed that TSPYL5 is a histone chaperone responsible for histone H3/H4 deposition and nucleosome assembly. We conclude that TSPYL5 is likely a new member of the NAP histone chaperone family.
Collapse
Affiliation(s)
- Sambit Dalui
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India
| | - Anirban Dasgupta
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India
| | - Swagata Adhikari
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhaba National Institute, Mumbai, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhaba National Institute, Mumbai, India
| | - Siddhartha Roy
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India.
| |
Collapse
|
2
|
Biochemical and Structural Insights into the Winged Helix Domain of P150, the Largest Subunit of the Chromatin Assembly Factor 1. Int J Mol Sci 2022; 23:ijms23042160. [PMID: 35216276 PMCID: PMC8874411 DOI: 10.3390/ijms23042160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 02/05/2023] Open
Abstract
The Chromatin Assembly Factor 1 is a heterotrimeric complex responsible for the nucleosome assembly during DNA replication and DNA repair. In humans, the largest subunit P150 is the major actor of this process. It has been recently considered as a tumor-associated protein due to its overexpression in many malignancies. Structural and functional studies targeting P150 are still limited and only scarce information about this subunit is currently available. Literature data and bioinformatics analysis assisted the identification of a stable DNA binding domain, encompassing residues from 721 to 860 of P150 within the full-length protein. This domain was recombinantly produced and in vitro investigated. An acidic region modulating its DNA binding ability was also identified and characterized. Results showed similarities and differences between the P150 and its yeast homologue, namely Cac-1, suggesting that, although sharing a common biological function, the two proteins may also possess different features.
Collapse
|
3
|
The box C/D snoRNP assembly factor Bcd1 interacts with the histone chaperone Rtt106 and controls its transcription dependent activity. Nat Commun 2021; 12:1859. [PMID: 33767140 PMCID: PMC7994586 DOI: 10.1038/s41467-021-22077-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/26/2021] [Indexed: 12/25/2022] Open
Abstract
Biogenesis of eukaryotic box C/D small nucleolar ribonucleoproteins initiates co-transcriptionally and requires the action of the assembly machinery including the Hsp90/R2TP complex, the Rsa1p:Hit1p heterodimer and the Bcd1 protein. We present genetic interactions between the Rsa1p-encoding gene and genes involved in chromatin organization including RTT106 that codes for the H3-H4 histone chaperone Rtt106p controlling H3K56ac deposition. We show that Bcd1p binds Rtt106p and controls its transcription-dependent recruitment by reducing its association with RNA polymerase II, modulating H3K56ac levels at gene body. We reveal the 3D structures of the free and Rtt106p-bound forms of Bcd1p using nuclear magnetic resonance and X-ray crystallography. The interaction is also studied by a combination of biophysical and proteomic techniques. Bcd1p interacts with a region that is distinct from the interaction interface between the histone chaperone and histone H3. Our results are evidence for a protein interaction interface for Rtt106p that controls its transcription-associated activity. Biogenesis of small nucleolar RNAs ribonucleoproteins (snoRNPs) requires dedicated assembly machinery. Here, the authors show that a subset of snoRNP assembly factors interacts, genetically or directly, with factors modulating chromatin architecture, suggesting a link between ribosome formation and chromatin functions.
Collapse
|
4
|
Young TJ, Cui Y, Pfeffer C, Hobbs E, Liu W, Irudayaraj J, Kirchmaier AL. CAF-1 and Rtt101p function within the replication-coupled chromatin assembly network to promote H4 K16ac, preventing ectopic silencing. PLoS Genet 2020; 16:e1009226. [PMID: 33284793 PMCID: PMC7746308 DOI: 10.1371/journal.pgen.1009226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 12/17/2020] [Accepted: 10/26/2020] [Indexed: 11/18/2022] Open
Abstract
Replication-coupled chromatin assembly is achieved by a network of alternate pathways containing different chromatin assembly factors and histone-modifying enzymes that coordinate deposition of nucleosomes at the replication fork. Here we describe the organization of a CAF-1-dependent pathway in Saccharomyces cerevisiae that regulates acetylation of histone H4 K16. We demonstrate factors that function in this CAF-1-dependent pathway are important for preventing establishment of silenced states at inappropriate genomic sites using a crippled HMR locus as a model, while factors specific to other assembly pathways do not. This CAF-1-dependent pathway required the cullin Rtt101p, but was functionally distinct from an alternate pathway involving Rtt101p-dependent ubiquitination of histone H3 and the chromatin assembly factor Rtt106p. A major implication from this work is that cells have the inherent ability to create different chromatin modification patterns during DNA replication via differential processing and deposition of histones by distinct chromatin assembly pathways within the network.
Collapse
Affiliation(s)
- Tiffany J. Young
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
- Purdue University Center for Cancer Research, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Yi Cui
- Purdue University Center for Cancer Research, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Claire Pfeffer
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Emilie Hobbs
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Wenjie Liu
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, United States of America
- Department of Bioengineering, Cancer Center at Illinois, Micro and Nanotechnology Laboratory, University of Illinois at Urbana Champaign, Urbana, Illinois, United States of America
| | - Joseph Irudayaraj
- Purdue University Center for Cancer Research, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, United States of America
- Department of Bioengineering, Cancer Center at Illinois, Micro and Nanotechnology Laboratory, University of Illinois at Urbana Champaign, Urbana, Illinois, United States of America
| | - Ann L. Kirchmaier
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
- Purdue University Center for Cancer Research, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
5
|
Modulation of Gene Silencing by Cdc7p via H4 K16 Acetylation and Phosphorylation of Chromatin Assembly Factor CAF-1 in Saccharomyces cerevisiae. Genetics 2019; 211:1219-1237. [PMID: 30728156 DOI: 10.1534/genetics.118.301858] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/29/2019] [Indexed: 11/18/2022] Open
Abstract
CAF-1 is an evolutionarily conserved H3/H4 histone chaperone that plays a key role in replication-coupled chromatin assembly and is targeted to the replication fork via interactions with PCNA, which, if disrupted, leads to epigenetic defects. In Saccharomyces cerevisiae, when the silent mating-type locus HMR contains point mutations within the E silencer, Sir protein association and silencing is lost. However, mutation of CDC7, encoding an S-phase-specific kinase, or subunits of the H4 K16-specific acetyltransferase complex SAS-I, restore silencing to this crippled HMR, HMR a e** Here, we observed that loss of Cac1p, the largest subunit of CAF-1, also restores silencing at HMR a e**, and silencing in both cac1Δ and cdc7 mutants is suppressed by overexpression of SAS2 We demonstrate Cdc7p and Cac1p interact in vivo in S phase, but not in G1, consistent with observed cell cycle-dependent phosphorylation of Cac1p, and hypoacetylation of chromatin at H4 K16 in both cdc7 and cac1Δ mutants. Moreover, silencing at HMR a e** is restored in cells expressing cac1p mutants lacking Cdc7p phosphorylation sites. We also discovered that cac1Δ and cdc7-90 synthetically interact negatively in the presence of DNA damage, but that Cdc7p phosphorylation sites on Cac1p are not required for responses to DNA damage. Combined, our results support a model in which Cdc7p regulates replication-coupled histone modification via a CAC1-dependent mechanism involving H4 K16ac deposition, and thereby silencing, while CAF-1-dependent replication- and repair-coupled chromatin assembly per se are functional in the absence of phosphorylation of Cdc7p consensus sites on CAF-1.
Collapse
|
6
|
Solution structure of TbTFIIS2-2 PWWP domain from Trypanosoma brucei and its binding to H4K17me3 and H3K32me3. Biochem J 2019; 476:421-431. [PMID: 30626613 DOI: 10.1042/bcj20180870] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/01/2019] [Accepted: 01/08/2019] [Indexed: 11/17/2022]
Abstract
Posttranslational modifications (PTMs) of core histones, such as histone methylation, play critical roles in a variety of biological processes including transcription regulation, chromatin condensation and DNA repair. In T. brucei, no domain recognizing methylated histone has been identified so far. TbTFIIS2-2, as a potential transcription elongation factors in T. brucei, contains a PWWP domain in the N-terminus which shares low sequence similarity compared with other PWWP domains and is absent from other TFIIS factors. In the present study, the solution structure of TbTFIIS2-2 PWWP domain was determined by NMR spectroscopy. TbTFIIS2-2 PWWP domain adopts a global fold containing a five-strand β-barrel and two C-terminal α-helices similar to other PWWP domains. Moreover, through systematic screening, we revealed that TbTFIIS2-2 PWWP domain is able to bind H4K17me3 and H3K32me3. Meanwhile, we identified the critical residues responsible for the binding ability of TbTFIIS2-2 PWWP domain. The conserved cage formed by the aromatic amino acids in TbTFIIS2-2 PWWP domain is essential for its binding to methylated histones.
Collapse
|
7
|
Sauer PV, Gu Y, Liu WH, Mattiroli F, Panne D, Luger K, Churchill MEA. Mechanistic insights into histone deposition and nucleosome assembly by the chromatin assembly factor-1. Nucleic Acids Res 2018; 46:9907-9917. [PMID: 30239791 PMCID: PMC6212844 DOI: 10.1093/nar/gky823] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/15/2018] [Indexed: 02/03/2023] Open
Abstract
Eukaryotic chromatin is a highly dynamic structure with essential roles in virtually all DNA-dependent cellular processes. Nucleosomes are a barrier to DNA access, and during DNA replication, they are disassembled ahead of the replication machinery (the replisome) and reassembled following its passage. The Histone chaperone Chromatin Assembly Factor-1 (CAF-1) interacts with the replisome and deposits H3-H4 directly onto newly synthesized DNA. Therefore, CAF-1 is important for the establishment and propagation of chromatin structure. The molecular mechanism by which CAF-1 mediates H3-H4 deposition has remained unclear. However, recent studies have revealed new insights into the architecture and stoichiometry of the trimeric CAF-1 complex and how it interacts with and deposits H3-H4 onto substrate DNA. The CAF-1 trimer binds to a single H3-H4 dimer, which induces a conformational rearrangement in CAF-1 promoting its interaction with substrate DNA. Two CAF-1•H3-H4 complexes co-associate on nucleosome-free DNA depositing (H3-H4)2 tetramers in the first step of nucleosome assembly. Here, we review the progress made in our understanding of CAF-1 structure, mechanism of action, and how CAF-1 contributes to chromatin dynamics during DNA replication.
Collapse
Affiliation(s)
- Paul V Sauer
- European Molecular Biology Laboratory, 38042 Grenoble, France
| | - Yajie Gu
- Department of Biochemistry, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Wallace H Liu
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | - Daniel Panne
- European Molecular Biology Laboratory, 38042 Grenoble, France,Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 7RH, UK
| | - Karolin Luger
- Department of Biochemistry, University of Colorado at Boulder, Boulder, CO 80309, USA,Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA
| | - Mair EA Churchill
- Department of Pharmacology and Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA,To whom correspondence should be addressed. Tel: +1 303 724 3670;
| |
Collapse
|
8
|
Serra-Cardona A, Zhang Z. Replication-Coupled Nucleosome Assembly in the Passage of Epigenetic Information and Cell Identity. Trends Biochem Sci 2017; 43:136-148. [PMID: 29292063 DOI: 10.1016/j.tibs.2017.12.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/07/2017] [Accepted: 12/09/2017] [Indexed: 12/31/2022]
Abstract
During S phase, replicated DNA must be assembled into nucleosomes using both newly synthesized and parental histones in a process that is tightly coupled to DNA replication. This DNA replication-coupled process is regulated by multitude of histone chaperones as well as by histone-modifying enzymes. In recent years novel insights into nucleosome assembly of new H3-H4 tetramers have been gained through studies on the classical histone chaperone CAF-1 and the identification of novel factors involved in this process. Moreover, in vitro reconstitution of chromatin replication has shed light on nucleosome assembly of parental H3-H4, a process that remains elusive. Finally, recent studies have revealed that the replication-coupled nucleosome assembly is important for the determination and maintenance of cell fate in multicellular organisms.
Collapse
Affiliation(s)
- Albert Serra-Cardona
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA; Department of Pediatrics, Columbia University, New York, NY 10032, USA; Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Zhiguo Zhang
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA; Department of Pediatrics, Columbia University, New York, NY 10032, USA; Department of Genetics and Development, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
9
|
Dronamraju R, Ramachandran S, Jha DK, Adams AT, DiFiore JV, Parra MA, Dokholyan NV, Strahl BD. Redundant Functions for Nap1 and Chz1 in H2A.Z Deposition. Sci Rep 2017; 7:10791. [PMID: 28883625 PMCID: PMC5589762 DOI: 10.1038/s41598-017-11003-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/17/2017] [Indexed: 11/22/2022] Open
Abstract
H2A.Z is a histone H2A variant that contributes to transcriptional regulation, DNA damage response and limits heterochromatin spreading. In Saccharomyces cerevisiae, H2A.Z is deposited by the SWR-C complex, which relies on several histone chaperones including Nap1 and Chz1 to deliver H2A.Z-H2B dimers to SWR-C. However, the mechanisms by which Nap1 and Chz1 cooperate to bind H2A.Z and their contribution to H2A.Z deposition in chromatin is not well understood. Using structural modeling and molecular dynamics simulations, we identify a series of H2A.Z residues that form a chaperone-specific binding surface. Mutation of these residues revealed different surface requirements for Nap1 and Chz1 interaction with H2A.Z. Consistent with this result, we found that loss of Nap1 or Chz1 individually resulted in mild defects in H2A.Z deposition, but that deletion of both Nap1 and Chz1 resulted in a significant reduction of H2A.Z deposition at promoters and led to heterochromatin spreading. Together, our findings reveal unique H2A.Z surface dependences for Nap1 and Chz1 and a redundant role for these chaperones in H2A.Z deposition.
Collapse
Affiliation(s)
- Raghuvar Dronamraju
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Srinivas Ramachandran
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Deepak K Jha
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Division of Hematology/Oncology, Department of Medicine, Children's Hospital Boston, Boston, MA, USA
| | - Alexander T Adams
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Julia V DiFiore
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Michael A Parra
- Department Susquehanna University, Selinsgrove, PA, 17870, USA
| | - Nikolay V Dokholyan
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Program in Molecular and Cellular Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Brian D Strahl
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599, USA. .,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
10
|
Sauer PV, Timm J, Liu D, Sitbon D, Boeri-Erba E, Velours C, Mücke N, Langowski J, Ochsenbein F, Almouzni G, Panne D. Insights into the molecular architecture and histone H3-H4 deposition mechanism of yeast Chromatin assembly factor 1. eLife 2017; 6:e23474. [PMID: 28315525 PMCID: PMC5404918 DOI: 10.7554/elife.23474] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/09/2017] [Indexed: 12/16/2022] Open
Abstract
How the very first step in nucleosome assembly, deposition of histone H3-H4 as tetramers or dimers on DNA, is accomplished remains largely unclear. Here, we report that yeast chromatin assembly factor 1 (CAF1), a conserved histone chaperone complex that deposits H3-H4 during DNA replication, binds a single H3-H4 heterodimer in solution. We identify a new DNA-binding domain in the large Cac1 subunit of CAF1, which is required for high-affinity DNA binding by the CAF1 three-subunit complex, and which is distinct from the previously described C-terminal winged-helix domain. CAF1 binds preferentially to DNA molecules longer than 40 bp, and two CAF1-H3-H4 complexes concertedly associate with DNA molecules of this size, resulting in deposition of H3-H4 tetramers. While DNA binding is not essential for H3-H4 tetrasome deposition in vitro, it is required for efficient DNA synthesis-coupled nucleosome assembly. Mutant histones with impaired H3-H4 tetramerization interactions fail to release from CAF1, indicating that DNA deposition of H3-H4 tetramers by CAF1 requires a hierarchical cooperation between DNA binding, H3-H4 deposition and histone tetramerization.
Collapse
Affiliation(s)
| | - Jennifer Timm
- European Molecular Biology Laboratory, Grenoble, France
| | - Danni Liu
- CEA, DRF, SB2SM, Laboratoire de Biologie Structurale et Radiobiologie, Gif-sur-Yvette, France
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Gif-sur-Yvette, France
| | - David Sitbon
- Institut Curie, PSL Research University, CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3664, Paris, France
| | - Elisabetta Boeri-Erba
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), Grenoble, France
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Grenoble, France
| | - Christophe Velours
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Gif-sur-Yvette, France
| | - Norbert Mücke
- Abteilung Biophysik der Makromoleküle, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Jörg Langowski
- Abteilung Biophysik der Makromoleküle, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Françoise Ochsenbein
- CEA, DRF, SB2SM, Laboratoire de Biologie Structurale et Radiobiologie, Gif-sur-Yvette, France
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Gif-sur-Yvette, France
| | - Geneviève Almouzni
- Institut Curie, PSL Research University, CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3664, Paris, France
| | - Daniel Panne
- European Molecular Biology Laboratory, Grenoble, France
| |
Collapse
|
11
|
Hammond CM, Strømme CB, Huang H, Patel DJ, Groth A. Histone chaperone networks shaping chromatin function. Nat Rev Mol Cell Biol 2017; 18:141-158. [PMID: 28053344 DOI: 10.1038/nrm.2016.159] [Citation(s) in RCA: 378] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The association of histones with specific chaperone complexes is important for their folding, oligomerization, post-translational modification, nuclear import, stability, assembly and genomic localization. In this way, the chaperoning of soluble histones is a key determinant of histone availability and fate, which affects all chromosomal processes, including gene expression, chromosome segregation and genome replication and repair. Here, we review the distinct structural and functional properties of the expanding network of histone chaperones. We emphasize how chaperones cooperate in the histone chaperone network and via co-chaperone complexes to match histone supply with demand, thereby promoting proper nucleosome assembly and maintaining epigenetic information by recycling modified histones evicted from chromatin.
Collapse
Affiliation(s)
- Colin M Hammond
- Biotech Research and Innovation Centre (BRIC) and Centre for Epigenetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Caroline B Strømme
- Biotech Research and Innovation Centre (BRIC) and Centre for Epigenetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Hongda Huang
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Anja Groth
- Biotech Research and Innovation Centre (BRIC) and Centre for Epigenetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| |
Collapse
|
12
|
Zhang K, Gao Y, Li J, Burgess R, Han J, Liang H, Zhang Z, Liu Y. A DNA binding winged helix domain in CAF-1 functions with PCNA to stabilize CAF-1 at replication forks. Nucleic Acids Res 2016; 44:5083-94. [PMID: 26908650 PMCID: PMC4914081 DOI: 10.1093/nar/gkw106] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 02/15/2016] [Indexed: 02/05/2023] Open
Abstract
Chromatin assembly factor 1 (CAF-1) is a histone H3–H4 chaperone that deposits newly synthesized histone (H3–H4)2 tetramers during replication-coupled nucleosome assembly. However, how CAF-1 functions in this process is not yet well understood. Here, we report the crystal structure of C terminus of Cac1 (Cac1C), a subunit of yeast CAF-1, and the function of this domain in stabilizing CAF-1 at replication forks. We show that Cac1C forms a winged helix domain (WHD) and binds DNA in a sequence-independent manner. Mutations in Cac1C that abolish DNA binding result in defects in transcriptional silencing and increased sensitivity to DNA damaging agents, and these defects are exacerbated when combined with Cac1 mutations deficient in PCNA binding. Similar phenotypes are observed for corresponding mutations in mouse CAF-1. These results reveal a mechanism conserved in eukaryotic cells whereby the ability of CAF-1 to bind DNA is important for its association with the DNA replication forks and subsequent nucleosome assembly.
Collapse
Affiliation(s)
- Kuo Zhang
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Gao
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jingjing Li
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Rebecca Burgess
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Junhong Han
- State Key Laboratory of Biotherapy and Cancer Center, Division of Abdominal Cancer, West China Hospital, Sichuan University, and National Collaborative innovation Center for Biotherapy, Chengdu 610041, China
| | - Huanhuan Liang
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Zhiguo Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Yingfang Liu
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| |
Collapse
|
13
|
Zhang W, Zeng F, Liu Y, Shao C, Li S, Lv H, Shi Y, Niu L, Teng M, Li X. Crystal Structure of Human SSRP1 Middle Domain Reveals a Role in DNA Binding. Sci Rep 2015; 5:18688. [PMID: 26687053 PMCID: PMC4685450 DOI: 10.1038/srep18688] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/23/2015] [Indexed: 02/06/2023] Open
Abstract
SSRP1 is a subunit of the FACT complex, an important histone chaperone required for transcriptional regulation, DNA replication and damage repair. SSRP1 also plays important roles in transcriptional regulation independent of Spt16 and interacts with other proteins. Here, we report the crystal structure of the middle domain of SSRP1. It consists of tandem pleckstrin homology (PH) domains. These domains differ from the typical PH domain in that PH1 domain has an extra conserved βαβ topology. SSRP1 contains the well-characterized DNA-binding HMG-1 domain. Our studies revealed that SSRP1-M can also participate in DNA binding, and that this binding involves one positively charged patch on the surface of the structure. In addition, SSRP1-M did not bind to histones, which was assessed through pull-down assays. This aspect makes the protein different from other related proteins adopting the double PH domain structure. Our studies facilitate the understanding of SSRP1 and provide insights into the molecular mechanisms of interaction with DNA and histones of the FACT complex.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Signaling Network, School of Life Science, 96 Jinzhai Road, Hefei, Anhui, 230026, People's Republic of China.,Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui, 230026, People's Republic of China
| | - Fuxing Zeng
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Signaling Network, School of Life Science, 96 Jinzhai Road, Hefei, Anhui, 230026, People's Republic of China.,Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui, 230026, People's Republic of China
| | - Yiwei Liu
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Signaling Network, School of Life Science, 96 Jinzhai Road, Hefei, Anhui, 230026, People's Republic of China.,Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui, 230026, People's Republic of China
| | - Chen Shao
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Signaling Network, School of Life Science, 96 Jinzhai Road, Hefei, Anhui, 230026, People's Republic of China.,Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui, 230026, People's Republic of China
| | - Sai Li
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Signaling Network, School of Life Science, 96 Jinzhai Road, Hefei, Anhui, 230026, People's Republic of China.,Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui, 230026, People's Republic of China
| | - Hui Lv
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Signaling Network, School of Life Science, 96 Jinzhai Road, Hefei, Anhui, 230026, People's Republic of China.,Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui, 230026, People's Republic of China
| | - Yunyu Shi
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Signaling Network, School of Life Science, 96 Jinzhai Road, Hefei, Anhui, 230026, People's Republic of China.,Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui, 230026, People's Republic of China
| | - Liwen Niu
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Signaling Network, School of Life Science, 96 Jinzhai Road, Hefei, Anhui, 230026, People's Republic of China.,Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui, 230026, People's Republic of China
| | - Maikun Teng
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Signaling Network, School of Life Science, 96 Jinzhai Road, Hefei, Anhui, 230026, People's Republic of China.,Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui, 230026, People's Republic of China
| | - Xu Li
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Signaling Network, School of Life Science, 96 Jinzhai Road, Hefei, Anhui, 230026, People's Republic of China.,Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui, 230026, People's Republic of China
| |
Collapse
|
14
|
Young TJ, Kirchmaier AL. Cell cycle regulation of silent chromatin formation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1819:303-312. [PMID: 24459732 DOI: 10.1016/j.bbagrm.2011.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Identical genes in two different cells can stably exist in alternate transcriptional states despite the dynamic changes that will occur to chromatin at that locus throughout the cell cycle. In mammals, this is achieved through epigenetic processes that regulate key developmental transitions and ensure stable patterns of gene expression during growth and differentiation. The budding yeast Saccharomyces cerevisiae utilizes silencing to control the expression state of genes encoding key regulatory factors for determining cell-type, ribosomal RNA levels and proper telomere function. Here, we review the composition of silent chromatin in S. cerevisiae, how silent chromatin is influenced by chromatin assembly and histone modifications and highlight several observations that have contributed to our understanding of the interplay between silent chromatin formation and stability and the cell cycle. This article is part of a Special Issue entitled: Histone chaperones and Chromatin assembly.
Collapse
|
15
|
Hondele M, Ladurner AG. Catch me if you can: how the histone chaperone FACT capitalizes on nucleosome breathing. Nucleus 2013; 4:443-9. [PMID: 24413069 DOI: 10.4161/nucl.27235] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nucleosomes confer a barrier to processes that require access to the eukaryotic genome such as transcription, DNA replication and repair. A variety of ATP-dependent nucleosome remodeling machines and ATP-independent histone chaperones facilitate nucleosome dynamics by depositing or evicting histones and unwrapping the DNA. It is clear that remodeling machines can use the energy from ATP to actively destabilize, translocate or disassemble nucleosomes. But how do ATP-independent histone chaperones, which "merely" bind histones, contribute to this process? Using our recent structural analysis of the conserved and essential eukaryotic histone chaperone FACT in complex with histones H2A-H2B as an example, we suggest that FACT capitalizes on transiently exposed surfaces of the nucleosome. By binding these surfaces, FACT stabilizes thermodynamically unfavorable intermediates of the intrinsically dynamic nucleosome particle. This makes the nucleosome permissive to DNA and RNA polymerases, providing temporary access, passage, and read-out.
Collapse
Affiliation(s)
- Maria Hondele
- Department of Physiological Chemistry; Butenandt Institute and LMU Biomedical Center, Faculty of Medicine; Ludwig Maximilians University of Munich; Munich, Germany; Munich Cluster for Systems Neurology (SyNergy); Munich, Germany; Center for Integrated Protein Science Munich (CIPSM); Munich, Germany
| | - Andreas G Ladurner
- Department of Physiological Chemistry; Butenandt Institute and LMU Biomedical Center, Faculty of Medicine; Ludwig Maximilians University of Munich; Munich, Germany; Munich Cluster for Systems Neurology (SyNergy); Munich, Germany; Center for Integrated Protein Science Munich (CIPSM); Munich, Germany
| |
Collapse
|
16
|
The FACT histone chaperone guides histone H4 into its nucleosomal conformation in Saccharomyces cerevisiae. Genetics 2013; 195:101-13. [PMID: 23833181 DOI: 10.1534/genetics.113.153080] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The pob3-Q308K mutation alters the small subunit of the Saccharomyces cerevisiae histone/nucleosome chaperone Facilitates Chromatin Transactions (FACT), causing defects in both transcription and DNA replication. We describe histone mutations that suppress some of these defects, providing new insight into the mechanism of FACT activity in vivo. FACT is primarily known for its ability to promote reorganization of nucleosomes into a more open form, but neither the pob3-Q308K mutation nor the compensating histone mutations affect this activity. Instead, purified mutant FACT complexes fail to release from nucleosomes efficiently, and the histone mutations correct this flaw. We confirm that pob3-T252E also suppresses pob3-Q308K and show that combining two suppressor mutations can be detrimental, further demonstrating the importance of balance between association and dissociation for efficient FACT:nucleosome interactions. To explain our results, we propose that histone H4 can adopt multiple conformations, most of which are incompatible with nucleosome assembly. FACT guides H4 to adopt appropriate conformations, and this activity can be enhanced or diminished by mutations in Pob3 or histones. FACT can therefore destabilize nucleosomes by favoring the reorganized state, but it can also promote assembly by tethering histones and DNA together and maintaining them in conformations that promote canonical nucleosome formation.
Collapse
|
17
|
Hondele M, Stuwe T, Hassler M, Halbach F, Bowman A, Zhang ET, Nijmeijer B, Kotthoff C, Rybin V, Amlacher S, Hurt E, Ladurner AG. Structural basis of histone H2A-H2B recognition by the essential chaperone FACT. Nature 2013; 499:111-4. [PMID: 23698368 DOI: 10.1038/nature12242] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 05/03/2013] [Indexed: 12/25/2022]
Abstract
Facilitates chromatin transcription (FACT) is a conserved histone chaperone that reorganizes nucleosomes and ensures chromatin integrity during DNA transcription, replication and repair. Key to the broad functions of FACT is its recognition of histones H2A-H2B (ref. 2). However, the structural basis for how histones H2A-H2B are recognized and how this integrates with the other functions of FACT, including the recognition of histones H3-H4 and other nuclear factors, is unknown. Here we reveal the crystal structure of the evolutionarily conserved FACT chaperone domain Spt16M from Chaetomium thermophilum, in complex with the H2A-H2B heterodimer. A novel 'U-turn' motif scaffolded onto a Rtt106-like module embraces the α1 helix of H2B. Biochemical and in vivo assays validate the structure and dissect the contribution of histone tails and H3-H4 towards Spt16M binding. Furthermore, we report the structure of the FACT heterodimerization domain that connects FACT to replicative polymerases. Our results show that Spt16M makes several interactions with histones, which we suggest allow the module to invade the nucleosome gradually and block the strongest interaction of H2B with DNA. FACT would thus enhance 'nucleosome breathing' by re-organizing the first 30 base pairs of nucleosomal histone-DNA contacts. Our snapshot of the engagement of the chaperone with H2A-H2B and the structures of all globular FACT domains enable the high-resolution analysis of the vital chaperoning functions of FACT, shedding light on how the complex promotes the activity of enzymes that require nucleosome reorganization.
Collapse
Affiliation(s)
- Maria Hondele
- Department of Physiological Chemistry, Butenandt Institute and LMU Biomedical Center, Faculty of Medicine, Ludwig Maximilians University of Munich, Butenandtstrasse 5, 81377 Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Crystal structure and functional characterization of the human RBM25 PWI domain and its flanking basic region. Biochem J 2013. [PMID: 23190262 PMCID: PMC3553564 DOI: 10.1042/bj20121382] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Human RBM25 (RNA-binding motif protein 25) is a novel splicing factor that contains a PWI domain, a newly identified RNA/DNA-binding domain, and regulates Bcl-x pre-mRNA alternative splicing. The flanking basic region has been suggested to serve as a co-operative partner of the PWI domain in the binding of nucleic acids, but the structure of this basic region is unknown. In the present paper, we report the crystal structure of the RBM25 PWI domain and its flanking basic region. The PWI domain is revealed to comprise a conserved four-helix bundle, and the flanking basic region forms two α-helices and associates with helix H4 of the PWI domain. These interactions promote directly the formation of an enlarged nucleic-acid-binding platform. Structure-guided mutagenesis reveals a positively charged nucleic-acid-binding surface in the RBM25 PWI domain that is entirely different from that in the SRm160 PWI domain. Furthermore, we show that the promotion of the pro-apoptotic Bcl-xS isoform expression by RBM25 is facilitated by the PWI domain in vivo. Thus the present study suggests that the PWI domain plays an important role in the regulation of Bcl-x pre-mRNA alternative splicing.
Collapse
|
19
|
Kemble DJ, Whitby FG, Robinson H, McCullough LL, Formosa T, Hill CP. Structure of the Spt16 middle domain reveals functional features of the histone chaperone FACT. J Biol Chem 2013; 288:10188-94. [PMID: 23417676 DOI: 10.1074/jbc.c113.451369] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The histone chaperone FACT is an essential and abundant heterodimer found in all eukaryotes. Here we report a crystal structure of the middle domain of the large subunit of FACT (Spt16-M) to reveal a double pleckstrin homology architecture. This structure was found previously in the Pob3-M domain of the small subunit of FACT and in the related histone chaperone Rtt106, although Spt16-M is distinguished from these structures by the presence of an extended α-helix and a C-terminal addition. Consistent with our finding that the double pleckstrin homology structure is common to these three histone chaperones and reports that Pob3 and Rtt106 double pleckstrin homology domains bind histones H3-H4, we also find that Spt16-M binds H3-H4 with low micromolar affinity. Our structure provides a framework for interpreting a large body of genetic data regarding the physiological functions of FACT, including the identification of potential interaction surfaces for binding histones or other proteins.
Collapse
Affiliation(s)
- David J Kemble
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112-5650, USA
| | | | | | | | | | | |
Collapse
|
20
|
Burgess RJ, Zhang Z. Histone chaperones in nucleosome assembly and human disease. Nat Struct Mol Biol 2013; 20:14-22. [PMID: 23288364 PMCID: PMC4004355 DOI: 10.1038/nsmb.2461] [Citation(s) in RCA: 294] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 10/30/2012] [Indexed: 12/22/2022]
Abstract
Nucleosome assembly following DNA replication, DNA repair and gene transcription is critical for the maintenance of genome stability and epigenetic information. Nucleosomes are assembled by replication-coupled or replication-independent pathways with the aid of histone chaperone proteins. How these different nucleosome assembly pathways are regulated remains relatively unclear. Recent studies have provided insight into the mechanisms and the roles of histone chaperones in regulating nucleosome assembly. Alterations or mutations in factors involved in nucleosome assembly have also been implicated in cancer and other human diseases. This review highlights the recent progress and outlines future challenges in the field.
Collapse
Affiliation(s)
- Rebecca J Burgess
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | | |
Collapse
|
21
|
Direct interplay among histones, histone chaperones, and a chromatin boundary protein in the control of histone gene expression. Mol Cell Biol 2012; 32:4337-49. [PMID: 22907759 DOI: 10.1128/mcb.00871-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, the histone chaperone Rtt106 binds newly synthesized histone proteins and mediates their delivery into chromatin during transcription, replication, and silencing. Rtt106 is also recruited to histone gene regulatory regions by the HIR histone chaperone complex to ensure S-phase-specific expression. Here we showed that this Rtt106:HIR complex included Asf1 and histone proteins. Mutations in Rtt106 that reduced histone binding reduced Rtt106 enrichment at histone genes, leading to their increased transcription. Deletion of the chromatin boundary element Yta7 led to increased Rtt106:H3 binding, increased Rtt106 enrichment at histone gene regulatory regions, and decreased histone gene transcription at the HTA1-HTB1 locus. These results suggested a unique regulatory mechanism in which Rtt106 sensed the level of histone proteins to maintain the proper level of histone gene transcription. The role of these histone chaperones and Yta7 differed markedly among the histone gene loci, including the two H3-H4 histone gene pairs. Defects in silencing in rtt106 mutants could be partially accounted for by Rtt106-mediated changes in histone gene repression. These studies suggested that feedback mediated by histone chaperone complexes plays a pivotal role in regulating histone gene transcription.
Collapse
|
22
|
Hainer SJ, Charsar BA, Cohen SB, Martens JA. Identification of Mutant Versions of the Spt16 Histone Chaperone That Are Defective for Transcription-Coupled Nucleosome Occupancy in Saccharomyces cerevisiae. G3 (BETHESDA, MD.) 2012; 2:555-67. [PMID: 22670226 PMCID: PMC3362939 DOI: 10.1534/g3.112.002451] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 03/04/2012] [Indexed: 12/12/2022]
Abstract
The highly conserved FACT (Facilitates Chromatin Transactions) complex performs essential functions in eukaryotic cells through the reorganization of nucleosomes. During transcription, FACT reorganizes nucleosomes to allow passage of RNA Polymerase II and then assists in restoring these nucleosomes after RNA Polymerase II has passed. We have previously shown, consistent with this function, that Spt16 facilitates repression of the Saccharomyces cerevisiae SER3 gene by maintaining nucleosome occupancy over the promoter of this gene as a consequence of intergenic transcription of SRG1 noncoding DNA. In this study, we report the results of a genetic screen to identify mutations in SPT16 that derepress SER3. Twenty-five spt16 mutant alleles were found to derepress SER3 without causing significant reductions in either SRG1 RNA levels or Spt16 protein levels. Additional phenotypic assays indicate that these mutants have general transcription defects related to altered chromatin structure. Our analyses of a subset of these spt16 mutants reveal defects in SRG1 transcription-coupled nucleosome occupancy over the SER3 promoter. We provide evidence that these mutants broadly impair transcription-coupled nucleosome occupancy at highly transcribed genes but not at lowly transcribed genes. Finally, we show that one consequence shared by these mutations is the reduced binding of mutant Spt16 proteins across SRG1 and other highly transcribed genes. Taken together, our results highlight an important role for Spt16 in orchestrating transcription-coupled nucleosome assembly at highly transcribed regions of the genome, possibly by facilitating the association of Spt16 during this process.
Collapse
Affiliation(s)
- Sarah J. Hainer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Brittany A. Charsar
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Shayna B. Cohen
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Joseph A. Martens
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
23
|
Solution structure of the Pdp1 PWWP domain reveals its unique binding sites for methylated H4K20 and DNA. Biochem J 2012; 442:527-38. [DOI: 10.1042/bj20111885] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Methylation of H4K20 (Lys20 of histone H4) plays an important role in the regulation of diverse cellular processes. In fission yeast, all three states of H4K20 methylation are catalysed by Set9. Pdp1 is a PWWP (proline-tryptophan-tryptophan-proline) domain-containing protein, which associates with Set9 to regulate its chromatin localization and methyltransferase activity towards H4K20. The structure of the Pdp1 PWWP domain, which is the first PWWP domain identified which binds to methyl-lysine at the H4K20 site, was determined in the present study by solution NMR. The Pdp1 PWWP domain adopts a classical PWWP fold, with a five-strand antiparallel β-barrel followed by three α-helices. However, it differs significantly from other PWWP domains in some structural aspects that account, in part, for its molecular recognition. Moreover, we revealed a unique binding pattern of the PWWP domain, in that the PWWP domain of Pdp1 bound not only to H4K20me3 (trimethylated Lys20 of histone H4), but also to dsDNA (double-stranded DNA) via an aromatic cage and a positively charged area respectively. EMSAs (electrophoretic mobility-shift assays) illustrated the ability of the Pdp1 PWWP domain to bind to the nucleosome core particle, and further mutagenesis experiments indicated the crucial role of this binding activity in histone H4K20 di- and tri-methylation in yeast cells. The present study may shed light on a novel mechanism of histone methylation regulation by the PWWP domain.
Collapse
|
24
|
Structural basis for recognition of H3K56-acetylated histone H3-H4 by the chaperone Rtt106. Nature 2012; 483:104-7. [PMID: 22307274 DOI: 10.1038/nature10861] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 01/16/2012] [Indexed: 01/10/2023]
Abstract
Dynamic variations in the structure of chromatin influence virtually all DNA-related processes in eukaryotes and are controlled in part by post-translational modifications of histones. One such modification, the acetylation of lysine 56 (H3K56ac) in the amino-terminal α-helix (αN) of histone H3, has been implicated in the regulation of nucleosome assembly during DNA replication and repair, and nucleosome disassembly during gene transcription. In Saccharomyces cerevisiae, the histone chaperone Rtt106 contributes to the deposition of newly synthesized H3K56ac-carrying H3-H4 complex on replicating DNA, but it is unclear how Rtt106 binds H3-H4 and specifically recognizes H3K56ac as there is no apparent acetylated lysine reader domain in Rtt106. Here, we show that two domains of Rtt106 are involved in a combinatorial recognition of H3-H4. An N-terminal domain homodimerizes and interacts with H3-H4 independently of acetylation while a double pleckstrin-homology (PH) domain binds the K56-containing region of H3. Affinity is markedly enhanced upon acetylation of K56, an effect that is probably due to increased conformational entropy of the αN helix of H3. Our data support a mode of interaction where the N-terminal homodimeric domain of Rtt106 intercalates between the two H3-H4 components of the (H3-H4)(2) tetramer while two double PH domains in the Rtt106 dimer interact with each of the two H3K56ac sites in (H3-H4)(2). We show that the Rtt106-(H3-H4)(2) interaction is important for gene silencing and the DNA damage response.
Collapse
|
25
|
Zunder RM, Antczak AJ, Berger JM, Rine J. Two surfaces on the histone chaperone Rtt106 mediate histone binding, replication, and silencing. Proc Natl Acad Sci U S A 2012; 109:E144-53. [PMID: 22198837 PMCID: PMC3271894 DOI: 10.1073/pnas.1119095109] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The histone chaperone Rtt106 binds histone H3 acetylated at lysine 56 (H3K56ac) and facilitates nucleosome assembly during several molecular processes. Both the structural basis of this modification-specific recognition and how this recognition informs Rtt106 function are presently unclear. Guided by our crystal structure of Rtt106, we identified two regions on its double-pleckstrin homology domain architecture that mediated histone binding. When histone binding was compromised, Rtt106 localized properly to chromatin but failed to deliver H3K56ac, leading to replication and silencing defects. By mutating analogous regions in the structurally homologous chromatin-reorganizer Pob3, we revealed a conserved histone-binding function for a basic patch found on both proteins. In contrast, a loop connecting two β-strands was required for histone binding by Rtt106 but was dispensable for Pob3 function. Unlike Rtt106, Pob3 histone binding was modification-independent, implicating the loop of Rtt106 in H3K56ac-specific recognition in vivo. Our studies described the structural origins of Rtt106 function, identified a conserved histone-binding surface, and defined a critical role for Rtt106:H3K56ac-binding specificity in silencing and replication-coupled nucleosome turnover.
Collapse
Affiliation(s)
- Rachel M. Zunder
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
| | - Andrew J. Antczak
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
| | - James M. Berger
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
| | - Jasper Rine
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
| |
Collapse
|
26
|
Li Q, Zhang Z. Linking DNA replication to heterochromatin silencing and epigenetic inheritance. Acta Biochim Biophys Sin (Shanghai) 2012; 44:3-13. [PMID: 22194009 DOI: 10.1093/abbs/gmr107] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chromatin is organized into distinct functional domains. During mitotic cell division, both genetic information encoded in DNA sequence and epigenetic information embedded in chromatin structure must be faithfully duplicated. The inheritance of epigenetic states is critical in maintaining the genome integrity and gene expression state. In this review, we will discuss recent progress on how proteins known to be involved in DNA replication and DNA replication-coupled nucleosome assembly impact on the inheritance and maintenance of heterochromatin, a tightly compact chromatin structure that silences gene transcription. As heterochromatin is important in regulating gene expression and maintaining genome stability, understanding how heterochromatin states are inherited during S phase of the cell cycle is of fundamental importance.
Collapse
|
27
|
Silva AC, Xu X, Kim HS, Fillingham J, Kislinger T, Mennella TA, Keogh MC. The replication-independent histone H3-H4 chaperones HIR, ASF1, and RTT106 co-operate to maintain promoter fidelity. J Biol Chem 2011; 287:1709-18. [PMID: 22128187 DOI: 10.1074/jbc.m111.316489] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
RNA polymerase II initiates from low complexity sequences so cells must reliably distinguish "real" from "cryptic" promoters and maintain fidelity to the former. Further, this must be performed under a range of conditions, including those found within inactive and highly transcribed regions. Here, we used genome-scale screening to identify those factors that regulate the use of a specific cryptic promoter and how this is influenced by the degree of transcription over the element. We show that promoter fidelity is most reliant on histone gene transactivators (Spt10, Spt21) and H3-H4 chaperones (Asf1, HIR complex) from the replication-independent deposition pathway. Mutations of Rtt106 that abrogate its interactions with H3-H4 or dsDNA permit extensive cryptic transcription comparable with replication-independent deposition factor deletions. We propose that nucleosome shielding is the primary means to maintain promoter fidelity, and histone replacement is most efficiently mediated in yeast cells by a HIR/Asf1/H3-H4/Rtt106 pathway.
Collapse
Affiliation(s)
- Andrea C Silva
- Department of Cell Biology, Albert Einstein College of Medicine, New York, New York 10461, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Hondele M, Ladurner AG. The chaperone-histone partnership: for the greater good of histone traffic and chromatin plasticity. Curr Opin Struct Biol 2011; 21:698-708. [PMID: 22054910 DOI: 10.1016/j.sbi.2011.10.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 10/11/2011] [Accepted: 10/11/2011] [Indexed: 01/25/2023]
Abstract
Histones are highly positively charged proteins that wrap our genome. Their surface properties also make them prone to nonspecific interactions and aggregation. A class of proteins known as histone chaperones is dedicated to safeguard histones by aiding their proper incorporation into nucleosomes. Histone chaperones facilitate ordered nucleosome assembly and disassembly reactions through the formation of semi-stable histone-chaperone intermediates without requiring ATP, but merely providing a complementary protein surface for histones to dynamically interact with. Recurrent 'chaperoning' mechanisms involve the masking of the histone's positive charge and the direct blocking of crucial histone surface sites, including those required for H3-H4 tetramerization or the binding of nucleosomal DNA. This shielding prevents histones from engaging in premature or unwanted interactions with nucleic acids and other cellular components. In this review, we analyze recent structural studies on chaperone-histone interactions and discuss the implications of this vital partnership for nucleosome assembly and disassembly pathways.
Collapse
Affiliation(s)
- Maria Hondele
- Department of Physiological Chemistry, Butenandt Institute of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Butenandtstrasse 5, 81377 Munich, Germany
| | | |
Collapse
|
29
|
Stevens JR, O'Donnell AF, Perry TE, Benjamin JJR, Barnes CA, Johnston GC, Singer RA. FACT, the Bur kinase pathway, and the histone co-repressor HirC have overlapping nucleosome-related roles in yeast transcription elongation. PLoS One 2011; 6:e25644. [PMID: 22022426 PMCID: PMC3192111 DOI: 10.1371/journal.pone.0025644] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 09/06/2011] [Indexed: 02/03/2023] Open
Abstract
Gene transcription is constrained by the nucleosomal nature of chromosomal DNA. This nucleosomal barrier is modulated by FACT, a conserved histone-binding heterodimer. FACT mediates transcription-linked nucleosome disassembly and also nucleosome reassembly in the wake of the RNA polymerase II transcription complex, and in this way maintains the repression of ‘cryptic’ promoters found within some genes. Here we focus on a novel mutant version of the yeast FACT subunit Spt16 that supplies essential Spt16 activities but impairs transcription-linked nucleosome reassembly in dominant fashion. This Spt16 mutant protein also has genetic effects that are recessive, which we used to show that certain Spt16 activities collaborate with histone acetylation and the activities of a Bur-kinase/Spt4–Spt5/Paf1C pathway that facilitate transcription elongation. These collaborating activities were opposed by the actions of Rpd3S, a histone deacetylase that restores a repressive chromatin environment in a transcription-linked manner. Spt16 activity paralleling that of HirC, a co-repressor of histone gene expression, was also found to be opposed by Rpd3S. Our findings suggest that Spt16, the Bur/Spt4–Spt5/Paf1C pathway, and normal histone abundance and/or stoichiometry, in mutually cooperative fashion, facilitate nucleosome disassembly during transcription elongation. The recessive nature of these effects of the mutant Spt16 protein on transcription-linked nucleosome disassembly, contrasted to its dominant negative effect on transcription-linked nucleosome reassembly, indicate that mutant FACT harbouring the mutant Spt16 protein competes poorly with normal FACT at the stage of transcription-linked nucleosome disassembly, but effectively with normal FACT for transcription-linked nucleosome reassembly. This functional difference is consistent with the idea that FACT association with the transcription elongation complex depends on nucleosome disassembly, and that the same FACT molecule that associates with an elongation complex through nucleosome disassembly is retained for reassembly of the same nucleosome.
Collapse
Affiliation(s)
- Jennifer R. Stevens
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Allyson F. O'Donnell
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Troy E. Perry
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jeremy J. R. Benjamin
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Christine A. Barnes
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Gerald C. Johnston
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Richard A. Singer
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail:
| |
Collapse
|
30
|
Formosa T. The role of FACT in making and breaking nucleosomes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:247-55. [PMID: 21807128 DOI: 10.1016/j.bbagrm.2011.07.009] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 07/15/2011] [Accepted: 07/16/2011] [Indexed: 12/22/2022]
Abstract
FACT is a roughly 180kDa heterodimeric protein complex important for managing the properties of chromatin in eukaryotic cells. Chromatin is a repressive barrier that plays an important role in protecting genomic DNA and regulating access to it. This barrier must be temporarily removed during transcription, replication, and repair, but it also must be rapidly restored to the original state afterwards. Further, the properties of chromatin are dynamic and must be adjusted as conditions dictate. FACT was identified as a factor that destabilizes nucleosomes in vitro, but it has now also been implicated as a central factor in the deposition of histones to form nucleosomes, as an exchange factor that swaps the histones within existing nucleosomes for variant forms, and as a tether that prevents histones from being displaced by the passage of RNA polymerases during transcription. FACT therefore plays central roles in building, maintaining, adjusting, and overcoming the chromatin barrier. This review summarizes recent results that have begun to reveal how FACT can promote what appear to be contradictory goals, using a simple set of binding activities to both enhance and diminish the stability of nucleosomes. This article is part of a Special Issue entitled: Histone chaperones and Chromatin assembly.
Collapse
|
31
|
Li Q, Burgess R, Zhang Z. All roads lead to chromatin: Multiple pathways for histone deposition. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:238-46. [PMID: 21763476 DOI: 10.1016/j.bbagrm.2011.06.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 06/28/2011] [Accepted: 06/29/2011] [Indexed: 11/28/2022]
Abstract
Chromatin, a complex of DNA and associated proteins, governs diverse processes including gene transcription, DNA replication and DNA repair. The fundamental unit of chromatin is the nucleosome, consisting of 147bp of DNA wound about 1.6 turns around a histone octamer of one (H3-H4)(2) tetramer and two H2A-H2B dimers. In order to form nucleosomes, (H3-H4)(2) tetramers are deposited first, followed by the rapid deposition of H2A-H2B. It is believed that the assembly of (H3-H4)(2) tetramers into nucleosomes is the rate-limiting step of nucleosome assembly. Moreover, assembly of H3-H4 into nucleosomes following DNA replication, DNA repair and gene transcription is likely to be a key step in the inheritance of epigenetic information and maintenance of genome integrity. In this review, we discuss how nucleosome assembly of H3-H4 is regulated by concerted actions of histone chaperones and modifications on newly synthesized H3 and H4. This article is part of a Special Issue entitled: Histone chaperones and Chromatin assembly.
Collapse
|
32
|
Das C, Tyler JK, Churchill ME. The histone shuffle: histone chaperones in an energetic dance. Trends Biochem Sci 2010; 35:476-89. [PMID: 20444609 PMCID: PMC4004086 DOI: 10.1016/j.tibs.2010.04.001] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Revised: 03/30/2010] [Accepted: 04/05/2010] [Indexed: 11/22/2022]
Abstract
Our genetic information is tightly packaged into a rather ingenious nucleoprotein complex called chromatin in a manner that enables it to be rapidly accessed during genomic processes. Formation of the nucleosome, which is the fundamental unit of chromatin, occurs via a stepwise process that is reversed to enable the disassembly of nucleosomes. Histone chaperone proteins have prominent roles in facilitating these processes as well as in replacing old histones with new canonical histones or histone variants during the process of histone exchange. Recent structural, biophysical and biochemical studies have begun to shed light on the molecular mechanisms whereby histone chaperones promote chromatin assembly, disassembly and histone exchange to facilitate DNA replication, repair and transcription.
Collapse
Affiliation(s)
- Chandrima Das
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine
| | - Jessica K. Tyler
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine
| | | |
Collapse
|