1
|
Wang DM, Chen DC, Xiu MH, Wang L, Kosten TR, Zhang XY. A double-blind, randomized controlled study of the effects of celecoxib on clinical symptoms and cognitive impairment in patients with drug-naïve first episode schizophrenia: pharmacogenetic impact of cyclooxygenase-2 functional polymorphisms. Neuropsychopharmacology 2024; 49:893-902. [PMID: 37903861 PMCID: PMC10948781 DOI: 10.1038/s41386-023-01760-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/26/2023] [Accepted: 10/16/2023] [Indexed: 11/01/2023]
Abstract
Chronic low-grade peripheral and central nervous system inflammation may have a role in the pathogenesis of schizophrenia (SCZ). Inhibition of cyclooxygenase-2 (COX2), the arachidonic acid pathway, may inhibit cytokine responses and minimize inflammation. In this study, we added the COX2 inhibitor celecoxib to risperidone monotherapy to examine its efficacy on clinical symptoms and cognitive deficits in drug-naïve first episode (DNFE) SCZ patients. First, we genotyped two polymorphisms (rs5275 and rs689466) in the COX-2 gene in a case-control study of 353 SCZ patients and 422 healthy controls. Ninety patients participated in a 12-week, double-blind, randomized, placebo-controlled trial of celecoxib 400 mg/day. We used the Positive and Negative Syndrome Scale (PANSS) and the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) to assess clinical symptoms and cognition. Our results show that the COX2 rs5275 polymorphism was significantly correlated with SCZ and positive symptoms. After 12-week treatment, celecoxib significantly improved the PANSS total and three subscale scores of SCZ patients. Furthermore, patients with the rs5275 TT genotype had greater improvement in PANSS total score than patients carrying the C allele. However, no significant difference in RBANS total and subscale scores existed between the celecoxib and placebo groups at week 12. Our findings suggest that COX2 inhibitors may be promising therapeutics for clinical symptoms rather than cognitive impairment in first episode SCZ patients. COX2 rs5275 gene polymorphism may be implicated in the development and the efficacy of treating clinical symptoms in SCZ.Trial Registration Number: The trial was registered with www.clinicaltrials.gov (NCT00686140).
Collapse
Affiliation(s)
- Dong-Mei Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Science, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Da-Chun Chen
- Beijing HuiLongGuan hospital, Peking University, Beijing, China
| | - Mei-Hong Xiu
- Beijing HuiLongGuan hospital, Peking University, Beijing, China
| | - Li Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Science, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Thomas R Kosten
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Xiang-Yang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Science, Beijing, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Mideksa YG, Aschenbrenner I, Fux A, Kaylani D, Weiß CA, Nguyen TA, Bach NC, Lang K, Sieber SA, Feige MJ. A comprehensive set of ER protein disulfide isomerase family members supports the biogenesis of proinflammatory interleukin 12 family cytokines. J Biol Chem 2022; 298:102677. [PMID: 36336075 PMCID: PMC9731863 DOI: 10.1016/j.jbc.2022.102677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/06/2022] Open
Abstract
Cytokines of the interleukin 12 (IL-12) family are assembled combinatorially from shared α and β subunits. A common theme is that human IL-12 family α subunits remain incompletely structured in isolation until they pair with a designate β subunit. Accordingly, chaperones need to support and control specific assembly processes. It remains incompletely understood, which chaperones are involved in IL-12 family biogenesis. Here, we site-specifically introduce photocrosslinking amino acids into the IL-12 and IL-23 α subunits (IL-12α and IL-23α) for stabilization of transient chaperone-client complexes for mass spectrometry. Our analysis reveals that a large set of endoplasmic reticulum chaperones interacts with IL-12α and IL-23α. Among these chaperones, we focus on protein disulfide isomerase (PDI) family members and reveal IL-12 family subunits to be clients of several incompletely characterized PDIs. We find that different PDIs show selectivity for different cysteines in IL-12α and IL-23α. Despite this, PDI binding generally stabilizes unassembled IL-12α and IL-23α against degradation. In contrast, α:β assembly appears robust, and only multiple simultaneous PDI depletions reduce IL-12 secretion. Our comprehensive analysis of the IL-12/IL-23 chaperone machinery reveals a hitherto uncharacterized role for several PDIs in this process. This extends our understanding of how cells accomplish the task of specific protein assembly reactions for signaling processes. Furthermore, our findings show that cytokine secretion can be modulated by targeting specific endoplasmic reticulum chaperones.
Collapse
Affiliation(s)
- Yonatan G. Mideksa
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Isabel Aschenbrenner
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Anja Fux
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Dinah Kaylani
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Caroline A.M. Weiß
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Tuan-Anh Nguyen
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Nina C. Bach
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Kathrin Lang
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany,Laboratory of Organic Chemistry, ETH Zürich, Zurich, Switzerland
| | - Stephan A. Sieber
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Matthias J. Feige
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany,For correspondence: Matthias J. Feige
| |
Collapse
|
3
|
Hildenbrand K, Aschenbrenner I, Franke FC, Devergne O, Feige MJ. Biogenesis and engineering of interleukin 12 family cytokines. Trends Biochem Sci 2022; 47:936-949. [PMID: 35691784 DOI: 10.1016/j.tibs.2022.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/04/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023]
Abstract
Interleukin 12 (IL-12) family cytokines are secreted proteins that regulate immune responses. Each family member is a heterodimer and nature uses shared building blocks to assemble the functionally distinct IL-12 cytokines. In recent years we have gained insights into the molecular principles and cellular regulation of IL-12 family biogenesis. For each of the family members, generally one subunit depends on its partner to acquire its native structure and be secreted from immune cells. If unpaired, molecular chaperones retain these subunits in cells. This allows cells to regulate and control secretion of the highly potent IL-12 family cytokines. Molecular insights gained into IL-12 family biogenesis, structure, and function now allow us to engineer IL-12 family cytokines to develop novel immunotherapeutic approaches.
Collapse
Affiliation(s)
- Karen Hildenbrand
- Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Isabel Aschenbrenner
- Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Fabian C Franke
- Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Odile Devergne
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (Cimi-Paris), 75 013 Paris, France.
| | - Matthias J Feige
- Department of Chemistry, Technical University of Munich, 85748 Garching, Germany.
| |
Collapse
|
4
|
|
5
|
Huang WG, Wang J, Liu YJ, Wang HX, Zhou SZ, Chen H, Yang FW, Li Y, Yi Y, He YH. Endoplasmic Reticulum Stress Increases Multidrug-resistance Protein 2 Expression and Mitigates Acute Liver Injury. Curr Mol Med 2020; 20:548-557. [PMID: 31976833 DOI: 10.2174/1566524020666200124102411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/30/2019] [Accepted: 01/12/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Multidrug-resistance protein (MRP) 2 is a key membrane transporter that is expressed on hepatocytes and regulated by nuclear factor kappa B (NF-κB). Interestingly, endoplasmic reticulum (ER) stress is closely associated with liver injury and the activation of NF-κB signaling. OBJECTIVE Here, we investigated the impact of ER stress on MRP2 expression and the functional involvement of MRP2 in acute liver injury. METHODS ER stress, MRP2 expression, and hepatocyte injury were analyzed in a carbon tetrachloride (CCl4)-induced mouse model of acute liver injury and in a thapsigargin (TG)-induced model of ER stress. RESULTS CCl4 and TG induced significant ER stress, MRP2 protein expression and NF- κB activation in mice and LO2 cells (P < 0.05). Pretreatment with ER stress inhibitor 4- phenyl butyric acid (PBA) significantly mitigated CCl4 and TG-induced ER stress and MRP2 protein expression (P < 0.05). Moreover, pretreatment with pyrrolidine dithiocarbamic acid (PDTC; NF-κB inhibitor) significantly inhibited CCl4-induced NF-κB activation and reduced MRP2 protein expression (1±0.097 vs. 0.623±0.054; P < 0.05). Furthermore, hepatic downregulation of MRP2 expression significantly increased CCl4- induced ER stress, apoptosis, and liver injury. CONCLUSION ER stress enhances intrahepatic MRP2 protein expression by activating NF-κB. This increase in MRP2 expression mitigates ER stress and acute liver injury.
Collapse
Affiliation(s)
- Wen-Ge Huang
- Department of Infectious Diseases, the Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou, China
| | - Jun Wang
- Department of Infectious Diseases, the Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou, China
| | - Yu-Juan Liu
- Department of Infectious Diseases, the Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou, China
| | - Hong-Xia Wang
- Department of Infectious Diseases, the Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou, China
| | - Si-Zhen Zhou
- Department of Infectious Diseases, the Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou, China
| | - Huan Chen
- Department of Infectious Diseases, the Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou, China
| | - Fang-Wan Yang
- Department of Infectious Diseases, the Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou, China
| | - Ying Li
- Department of Infectious Diseases, the Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou, China
| | - Yu Yi
- Department of Infectious Diseases, the Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou, China
| | - Yi-Huai He
- Department of Infectious Diseases, the Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou, China
| |
Collapse
|
6
|
Navarro-Marquez M, Torrealba N, Troncoso R, Vásquez-Trincado C, Rodriguez M, Morales PE, Villalobos E, Eura Y, Garcia L, Chiong M, Klip A, Jaimovich E, Kokame K, Lavandero S. Herpud1 impacts insulin-dependent glucose uptake in skeletal muscle cells by controlling the Ca2+-calcineurin-Akt axis. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1653-1662. [DOI: 10.1016/j.bbadis.2018.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/17/2018] [Accepted: 02/20/2018] [Indexed: 01/08/2023]
|
7
|
Proteomic analysis reveals aberrant expression of CALR and HSPA5 in thyroid tissues of Graves' disease. Clin Biochem 2017; 50:40-45. [DOI: 10.1016/j.clinbiochem.2016.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 08/18/2016] [Accepted: 08/19/2016] [Indexed: 02/06/2023]
|
8
|
Duellman T, Burnett J, Yang J. Functional Roles of N-Linked Glycosylation of Human Matrix Metalloproteinase 9. Traffic 2015. [PMID: 26207422 DOI: 10.1111/tra.12312] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Matrix metalloproteinase-9 (MMP-9) is a secreted endoproteinase with a critical role in the regulation of the extracellular matrix and proteolytic activation of signaling molecules. Human (h)MMP-9 has two well-defined N-glycosylation sites at residues N38 and N120; however, their role has remained mostly unexplored partly because expression of the N-glycosylation-deficient N38S has been difficult due to a recently discovered single nucleotide polymorphism-dependent miRNA-mediated inhibitory mechanism. hMMP-9 cDNA encoding amino acid substitutions at residues 38 (modified-S38, mS38) or 120 (N120S) were created in the background of a miRNA-binding site disrupted template and expressed by transient transfection. hMMP-9 harboring a single mS38 replacement secreted well, whereas N120S, or a double mS38/N120S hMMP-9 demonstrated much reduced secretion. Imaging indicated endoplasmic reticulum (ER) retention of the non-secreted variants and co-immunoprecipitation confirmed an enhanced strong interaction between the non-secreted hMMP-9 and the ER-resident protein calreticulin (CALR). Removal of N-glycosylation at residue 38 revealed an amino acid-dependent strong interaction with CALR likely preventing unloading of the misfolded protein from the ER chaperone down the normal secretory pathway. As with other glycoproteins, N-glycosylation strongly regulates hMMP-9 secretion. This is mediated, however, through a novel mechanism of cloaking an N-glycosylation-independent strong interaction with the ER-resident CALR.
Collapse
Affiliation(s)
- Tyler Duellman
- Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin, School of Medicine and Public Health, Madison, WI, 53705, USA.,Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - John Burnett
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jay Yang
- Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin, School of Medicine and Public Health, Madison, WI, 53705, USA.,Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
9
|
Duellman T, Burnett J, Shin A, Yang J. LMAN1 (ERGIC-53) is a potential carrier protein for matrix metalloproteinase-9 glycoprotein secretion. Biochem Biophys Res Commun 2015; 464:685-91. [PMID: 26150355 DOI: 10.1016/j.bbrc.2015.06.164] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 06/29/2015] [Indexed: 01/09/2023]
Abstract
Matrix metalloproteinase-9 (MMP-9) is a secreted glycoprotein with a major role in shaping the extracellular matrix and a detailed understanding of the secretory mechanism could help identify methods to correct diseases resulting from dysregulation of secretion. MMP-9 appears to follow a canonical secretory pathway through a quality control cycle in the endoplasmic reticulum (ER) before transport of the properly folded protein to the Golgi apparatus and beyond for secretion. Through a complementation assay, we determined that LMAN1, a well-studied lectin-carrier protein, interacts with a secretion-competent N-glycosylated MMP-9 in the ER while N-glycosylation-deficient secretion-compromised MMP-9 does not. In contrast, co-immunoprecipitation demonstrated protein interaction between LMAN1 and secretion-compromised N-glycosylation-deficient MMP-9. MMP-9 secretion was reduced in the LMAN1 knockout cell line compared to control cells confirming the functional role of LMAN1. These observations support the role of LMAN1 as a lectin-carrier protein mediating efficient MMP-9 secretion.
Collapse
Affiliation(s)
- Tyler Duellman
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - John Burnett
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Alice Shin
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Jay Yang
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.
| |
Collapse
|
10
|
Di Penta A, Chiba A, Alloza I, Wyssenbach A, Yamamura T, Villoslada P, Miyake S, Vandenbroeck K. A trifluoromethyl analogue of celecoxib exerts beneficial effects in neuroinflammation. PLoS One 2013; 8:e83119. [PMID: 24349442 PMCID: PMC3859644 DOI: 10.1371/journal.pone.0083119] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 10/31/2013] [Indexed: 12/31/2022] Open
Abstract
Celecoxib is a selective cyclooxygenase-2 (COX2) inhibitor. We have previously shown that celecoxib inhibits experimental autoimmune encephalomyelitis (EAE) in COX-2-deficient mice, suggestive for a mode of action involving COX2-independent pathways. In the present study, we tested the effect of a trifluoromethyl analogue of celecoxib (TFM-C) with 205-fold lower COX-2 inhibitory activity in two models of neuroinflammation, i.e. cerebellar organotypic cultures challenged with LPS and the EAE mouse model for multiple sclerosis. TFM-C inhibited secretion of IL-1β, IL-12 and IL-17, enhanced that of TNF-α and RANTES, reduced neuronal axonal damage and protected from oxidative stress in the organotypic model. TFM-C blocked TNF-α release in microglial cells through a process involving intracellular retention, but induced TNF-α secretion in primary astrocyte cultures. Finally, we demonstrate that TFM-C and celecoxib ameliorated EAE with equal potency. This coincided with reduced secretion of IL-17 and IFN-γ by MOG-reactive T-cells and of IL-23 and inflammatory cytokines by bone marrow-derived dendritic cells. Our study reveals that non-coxib analogues of celecoxib may have translational value in the treatment of neuro-inflammatory conditions.
Collapse
Affiliation(s)
- Alessandra Di Penta
- Neurogenomiks Laboratory, University of Basque Country (UPV/ EHU), Zamudio, Spain
- Achucarro Basque Center for Neuroscience, Zamudio, Spain
| | - Asako Chiba
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Iraide Alloza
- Neurogenomiks Laboratory, University of Basque Country (UPV/ EHU), Zamudio, Spain
- Achucarro Basque Center for Neuroscience, Zamudio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Ane Wyssenbach
- Neurotek Laboratory, University of Basque Country (UPV/EHU), Zamudio, Spain
| | - Takashi Yamamura
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Pablo Villoslada
- Center of Neuroimmunology, Institute of Biomedical Research August Pi Sunyer (IDIBAPS) – Hospital Clinic of Barcelona, Barcelona, Spain
| | - Sachiko Miyake
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Koen Vandenbroeck
- Neurogenomiks Laboratory, University of Basque Country (UPV/ EHU), Zamudio, Spain
- Achucarro Basque Center for Neuroscience, Zamudio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- * E-mail:
| |
Collapse
|
11
|
Bernasconi R, Galli C, Kokame K, Molinari M. Autoadaptive ER-associated degradation defines a preemptive unfolded protein response pathway. Mol Cell 2013; 52:783-93. [PMID: 24239290 DOI: 10.1016/j.molcel.2013.10.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/23/2013] [Accepted: 10/09/2013] [Indexed: 11/19/2022]
Abstract
Folding-defective proteins must be cleared efficiently from the endoplasmic reticulum (ER) to prevent perturbation of the folding environment and to maintain cellular proteostasis. Misfolded proteins engage dislocation machineries (dislocons) built around E3 ubiquitin ligases that promote their transport across the ER membrane, their polyubiquitylation, and their proteasomal degradation. Here, we report on the intrinsic instability of the HRD1 dislocon and the constitutive, rapid turnover of the scaffold protein HERP. We show that HRD1 dislocon integrity relies on the presence of HRD1 clients that interrupt, in a dose-dependent manner, the UBC6e/RNF5/p97/proteasome-controlled relay that controls HERP turnover. We propose that ER-associated degradation (ERAD) deploys autoadaptive regulatory pathways, collectively defined as ERAD tuning, to rapidly adapt degradation activity to misfolded protein load and to preempt the unfolded protein response (UPR) activation.
Collapse
Affiliation(s)
- Riccardo Bernasconi
- Institute for Research in Biomedicine, Protein Folding and Quality Control, 6500 Bellinzona, Switzerland
| | - Carmela Galli
- Institute for Research in Biomedicine, Protein Folding and Quality Control, 6500 Bellinzona, Switzerland
| | - Koichi Kokame
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center, Osaka 565-8565, Japan
| | - Maurizio Molinari
- Institute for Research in Biomedicine, Protein Folding and Quality Control, 6500 Bellinzona, Switzerland; Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, 1015 Lausanne, Switzerland.
| |
Collapse
|
12
|
Henderson B, Kaiser F. Do reciprocal interactions between cell stress proteins and cytokines create a new intra-/extra-cellular signalling nexus? Cell Stress Chaperones 2013; 18:685-701. [PMID: 23884786 PMCID: PMC3789882 DOI: 10.1007/s12192-013-0444-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 06/16/2013] [Accepted: 06/17/2013] [Indexed: 12/22/2022] Open
Abstract
Cytokine biology began in the 1950s, and by 1988, a large number of cytokines, with a myriad of biological actions, had been discovered. In 1988, the basis of the protein chaperoning function of the heat shock, or cell stress, proteins was identified, and it was assumed that this was their major activity. However, since this time, evidence has accumulated to show that cell stress proteins are secreted by cells and can stimulate cellular cytokine synthesis with the generation of pro- and/or anti-inflammatory cytokine networks. Cell stress can also control cytokine synthesis, and cytokines are able to induce, or even inhibit, the synthesis of selected cell stress proteins and may also promote their release. How cell stress proteins control the formation of cytokines is not understood and how cytokines control cell stress protein synthesis depends on the cellular compartment experiencing stress, with cytoplasmic heat shock factor 1 (HSF1) having a variety of actions on cytokine gene transcription. The endoplasmic reticulum unfolded protein response also exhibits a complex set of behaviours in terms of control of cytokine synthesis. In addition, individual intracellular cell stress proteins, such as Hsp27 and Hsp90, have major roles in controlling cellular responses to cytokines and in controlling cytokine synthesis in response to exogenous factors. While still confusing, the literature supports the hypothesis that cell stress proteins and cytokines may generate complex intra- and extra-cellular networks, which function in the control of cells to external and internal stressors and suggests the cell stress response as a key parameter in cytokine network generation and, as a consequence, in control of immunity.
Collapse
Affiliation(s)
- Brian Henderson
- />Department of Microbial Diseases, Eastman Dental Institute, University College London, London, UK
| | - Frank Kaiser
- />Department of Microbial Diseases, Eastman Dental Institute, University College London, London, UK
- />Division of Microbial Diseases, Eastman Dental Institute, University College London, 256 Gray’s Inn Road, London, WC1X 8LD UK
| |
Collapse
|
13
|
Quiroga C, Gatica D, Paredes F, Bravo R, Troncoso R, Pedrozo Z, Rodriguez AE, Toro B, Chiong M, Vicencio JM, Hetz C, Lavandero S. Herp depletion protects from protein aggregation by up-regulating autophagy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3295-3305. [PMID: 24120520 DOI: 10.1016/j.bbamcr.2013.09.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/21/2013] [Accepted: 09/10/2013] [Indexed: 01/04/2023]
Abstract
Herp is an endoplasmic reticulum (ER) stress inducible protein that participates in the ER-associated protein degradation (ERAD) pathway. However, the contribution of Herp to other protein degradation pathways like autophagy and its connection to other types of stress responses remain unknown. Here we report that Herp regulates autophagy to clear poly-ubiquitin (poly-Ub) protein aggregates. Proteasome inhibition and glucose starvation (GS) led to a high level of poly-Ub protein aggregation that was drastically reduced by stably knocking down Herp (shHerp cells). The enhanced removal of poly-Ub inclusions protected cells from death caused by glucose starvation. Under basal conditions and increasingly after stress, higher LC3-II levels and GFP-LC3 puncta were observed in shHerp cells compared to control cells. Herp knockout cells displayed basal up-regulation of two essential autophagy regulators-Atg5 and Beclin-1, leading to increased autophagic flux. Beclin-1 up-regulation was due to a reduction in Hrd1 dependent proteasomal degradation, and not at transcriptional level. The consequent higher autophagic flux was necessary for the clearance of aggregates and for cell survival. We conclude that Herp operates as a relevant factor in the defense against glucose starvation by modulating autophagy levels. These data may have important implications due to the known up-regulation of Herp in pathological states such as brain and heart ischemia, both conditions associated to acute nutritional stress.
Collapse
Affiliation(s)
- Clara Quiroga
- Advanced Center for Chronic Diseases (ACCDiS) & Center for Molecular Studies of the Cell, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380492, Chile; Harvard School of Public Health, Boston, MA, USA
| | - Damian Gatica
- Advanced Center for Chronic Diseases (ACCDiS) & Center for Molecular Studies of the Cell, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380492, Chile
| | - Felipe Paredes
- Advanced Center for Chronic Diseases (ACCDiS) & Center for Molecular Studies of the Cell, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380492, Chile
| | - Roberto Bravo
- Advanced Center for Chronic Diseases (ACCDiS) & Center for Molecular Studies of the Cell, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380492, Chile
| | - Rodrigo Troncoso
- Advanced Center for Chronic Diseases (ACCDiS) & Center for Molecular Studies of the Cell, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380492, Chile
| | - Zully Pedrozo
- Advanced Center for Chronic Diseases (ACCDiS) & Center for Molecular Studies of the Cell, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380492, Chile
| | - Andrea E Rodriguez
- Advanced Center for Chronic Diseases (ACCDiS) & Center for Molecular Studies of the Cell, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380492, Chile
| | - Barbra Toro
- Advanced Center for Chronic Diseases (ACCDiS) & Center for Molecular Studies of the Cell, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380492, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS) & Center for Molecular Studies of the Cell, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380492, Chile
| | - Jose Miguel Vicencio
- Advanced Center for Chronic Diseases (ACCDiS) & Center for Molecular Studies of the Cell, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380492, Chile; The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London WC1E 6HX, UK
| | - Claudio Hetz
- Advanced Center for Chronic Diseases (ACCDiS) & Center for Molecular Studies of the Cell, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380492, Chile; Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago 8380492, Chile; The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London WC1E 6HX, UK.
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS) & Center for Molecular Studies of the Cell, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380492, Chile; Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
14
|
Silverpil E, Wright AKA, Hansson M, Jirholt P, Henningsson L, Smith ME, Gordon SB, Iwakura Y, Gjertsson I, Glader P, Lindén A. Negative feedback on IL-23 exerted by IL-17A during pulmonary inflammation. Innate Immun 2013; 19:479-92. [PMID: 23295184 DOI: 10.1177/1753425912470470] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
It is now established that IL-17 has a broad pro-inflammatory potential in mammalian host defense, in inflammatory disease and in autoimmunity, whereas little is known about its anti-inflammatory potential and inhibitory feedback mechanisms. Here, we examined whether IL-17A can inhibit the extracellular release of IL-23 protein, the upstream regulator of IL-17A producing lymphocyte subsets, that is released from macrophages during pulmonary inflammation. We characterized the effect of IL-17A on IL-23 release in several models of pulmonary inflammation, evaluated the presence of IL-17 receptor A (RA) and C (RC) on human alveolar macrophages and assessed the role of the Rho family GTPase Rac1 as a mediator of the effect of IL-17A on the release of IL-23 protein. In a model of sepsis-induced pneumonia, intravenous exposure to Staphylococcus aureus caused higher IL-23 protein concentrations in cell-free bronchoalveolar lavage (BAL) samples from IL-17A knockout (KO) mice, compared with wild type (WT) control mice. In a model of Gram-negative airway infection, pre-treatment with a neutralizing anti-IL-17A Ab and subsequent intranasal (i.n.) exposure to LPS caused higher IL-23 and IL-17A protein concentrations in BAL samples compared with mice exposed to LPS, but pre-treated with an isotype control Ab. Moreover, i.n. exposure with IL-17A protein per se decreased IL- 23 protein concentrations in BAL samples. We detected IL-17RA and IL-17RC on human alveolar macrophages, and found that in vitro stimulation of these cells with IL-17A protein, after exposure to LPS, decreased IL-23 protein in conditioned medium, but not IL-23 p19 or p40 mRNA. This study indicates that IL-17A can partially inhibit the release of IL-23 protein during pulmonary inflammation, presumably by stimulating the here demonstrated receptor units IL-17RA and IL-17RC on alveolar macrophages. Hypothetically, the demonstrated mechanism may serve as negative feedback to protect from excessive IL-17A signaling and to control antibacterial host defense once it is activated.
Collapse
Affiliation(s)
- Elin Silverpil
- 1Lung Immunology Group, Department of Internal Medicine and Clinical Nutrition/Respiratory Medicine and Allergology, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Schönthal AH. Endoplasmic reticulum stress: its role in disease and novel prospects for therapy. SCIENTIFICA 2012; 2012:857516. [PMID: 24278747 PMCID: PMC3820435 DOI: 10.6064/2012/857516] [Citation(s) in RCA: 218] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 11/12/2012] [Indexed: 05/19/2023]
Abstract
The endoplasmic reticulum (ER) is a multifunctional organelle required for lipid biosynthesis, calcium storage, and protein folding and processing. A number of physiological and pathological conditions, as well as a variety of pharmacological agents, are able to disturb proper ER function and thereby cause ER stress, which severely impairs protein folding and therefore poses the risk of proteotoxicity. Specific triggers for ER stress include, for example, particular intracellular alterations (e.g., calcium or redox imbalances), certain microenvironmental conditions (e.g., hypoglycemia, hypoxia, and acidosis), high-fat and high-sugar diet, a variety of natural compounds (e.g., thapsigargin, tunicamycin, and geldanamycin), and several prescription drugs (e.g., bortezomib/Velcade, celecoxib/Celebrex, and nelfinavir/Viracept). The cell reacts to ER stress by initiating a defensive process, called the unfolded protein response (UPR), which is comprised of cellular mechanisms aimed at adaptation and safeguarding cellular survival or, in cases of excessively severe stress, at initiation of apoptosis and elimination of the faulty cell. In recent years, this dichotomic stress response system has been linked to several human diseases, and efforts are underway to develop approaches to exploit ER stress mechanisms for therapy. For example, obesity and type 2 diabetes have been linked to ER stress-induced failure of insulin-producing pancreatic beta cells, and current research efforts are aimed at developing drugs that ameliorate cellular stress and thereby protect beta cell function. Other studies seek to pharmacologically aggravate chronic ER stress in cancer cells in order to enhance apoptosis and achieve tumor cell death. In the following, these principles will be presented and discussed.
Collapse
Affiliation(s)
- Axel H. Schönthal
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR-405, Los Angeles, CA 90033, USA
| |
Collapse
|
16
|
Chiba A, Mizuno M, Tomi C, Tajima R, Alloza I, di Penta A, Yamamura T, Vandenbroeck K, Miyake S. A 4-trifluoromethyl analogue of celecoxib inhibits arthritis by suppressing innate immune cell activation. Arthritis Res Ther 2012; 14:R9. [PMID: 22251404 PMCID: PMC3392797 DOI: 10.1186/ar3683] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 12/13/2011] [Accepted: 01/17/2012] [Indexed: 12/17/2022] Open
Abstract
Introduction Celecoxib, a highly specific cyclooxygenase-2 (COX-2) inhibitor has been reported to have COX-2-independent immunomodulatory effects. However, celecoxib itself has only mild suppressive effects on arthritis. Recently, we reported that a 4-trifluoromethyl analogue of celecoxib (TFM-C) with 205-fold lower COX-2-inhibitory activity inhibits secretion of IL-12 family cytokines through a COX-2-independent mechanism that involves Ca2+-mediated intracellular retention of the IL-12 polypeptide chains. In this study, we explored the capacity of TFM-C as a new therapeutic agent for arthritis. Methods To induce collagen-induced arthritis (CIA), DBA1/J mice were immunized with bovine type II collagen (CII) in Freund's adjuvant. Collagen antibody-induced arthritis (CAIA) was induced in C57BL/6 mice by injecting anti-CII antibodies. Mice received 10 μg/g of TFM-C or celecoxib every other day. The effects of TFM-C on clinical and histopathological severities were assessed. The serum levels of CII-specific antibodies were measured by ELISA. The effects of TFM-C on mast cell activation, cytokine producing capacity by macophages, and neutrophil recruitment were also evaluated. Results TFM-C inhibited the severity of CIA and CAIA more strongly than celecoxib. TFM-C treatments had little effect on CII-specific antibody levels in serum. TFM-C suppressed the activation of mast cells in arthritic joints. TFM-C also suppressed the production of inflammatory cytokines by macrophages and leukocyte influx in thioglycollate-induced peritonitis. Conclusion These results indicate that TFM-C may serve as an effective new disease-modifying drug for treatment of arthritis, such as rheumatoid arthritis.
Collapse
Affiliation(s)
- Asako Chiba
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
McLaughlin M, Vandenbroeck K. The endoplasmic reticulum protein folding factory and its chaperones: new targets for drug discovery? Br J Pharmacol 2011; 162:328-45. [PMID: 20942857 DOI: 10.1111/j.1476-5381.2010.01064.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Cytosolic heat shock proteins have received significant attention as emerging therapeutic targets. Much of this excitement has been triggered by the discovery that HSP90 plays a central role in the maintenance and stability of multifarious oncogenic membrane receptors and their resultant tyrosine kinase activity. Numerous studies have dealt with the effects of small molecules on chaperone- and stress-related pathways of the endoplasmic reticulum (ER). However, unlike cytosolic chaperones, relatively little emphasis has been placed upon translational avenues towards targeting of the ER for inhibition of folding/secretion of disease-promoting proteins. Here, we summarise existing small molecule inhibitors and potential future targets of ER chaperone-mediated inhibition. Client proteins of translational relevance in disease treatment are outlined, alongside putative future disease treatment modalities based on ER-centric targeted therapies. Particular attention is paid to cancer and autoimmune disorders via the effects of the GRP94 inhibitor geldanamycin and its population of client proteins, overloading of the unfolded protein response, and inhibition of members of the IL-12 family of cytokines by celecoxib and non-coxib analogues.
Collapse
|