1
|
Tanaka M, Sotta N, Duncan S, Chiba Y, Onouchi H, Marée AM, Naito S, Grieneisen V, Fujiwara T. Ribosome stalling-induced NIP5;1 mRNA decay triggers ARGONAUTE1-dependent transcription downregulation. Nucleic Acids Res 2025; 53:gkaf159. [PMID: 40107731 PMCID: PMC11915504 DOI: 10.1093/nar/gkaf159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 02/11/2025] [Accepted: 02/18/2025] [Indexed: 03/22/2025] Open
Abstract
In eukaryotes, messenger RNA (mRNA) accumulation is regulated through the levels of transcription, processing, and degradation. Here, we uncover the multi-level regulatory mechanism governing the expression of NIP5;1, a boron (B) diffusion facilitator in Arabidopsis. B-dependent NIP5;1 mRNA degradation is triggered by ribosome stalling at an AUGUAA sequence in its 5'-untranslated region. We showed that deletion of ATGTAA also abolishes B-dependent transcriptional downregulation, revealing a dual role of this sequence in both mRNA degradation and transcriptional control. Small RNAs (sRNAs) and ARGONAUTE1 (AGO1) are implicated in mRNA-degradation-mediated B-dependent transcriptional downregulation: a 5'-3' exonuclease mutant, xrn4, presents both elevated levels of NIP5;1 mRNA degradation intermediates and transcriptional downregulation; AGO1-associated sRNA-sequencing reveals the presence of sRNAs with sequences upstream of NIP5;1 AUGUAA; and nascent mRNA profiling by global run-on sequencing demonstrates RNA polymerase II pausing at ATGTAA, a phenomenon diminished in the ago1 mutant that lacks B-dependent transcriptional downregulation. These findings point to multi-level coordination of NIP5;1 expression with the AUGUAA sequence at its core: ribosome stalling orchestrates translational inhibition, mRNA degradation and transcriptional downregulation in response to B. The fast response resulting from this synergy suggests that similar mechanisms may exist in other eukaryotic systems for efficient and rapid regulation of gene expression.
Collapse
Affiliation(s)
- Mayuki Tanaka
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
- Graduate School of Agriculture, Osaka Metropolitan University, Osaka 599-8531, Japan
| | - Naoyuki Sotta
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
- Graduate School of Agriculture, Osaka Metropolitan University, Osaka 599-8531, Japan
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
| | - Susan Duncan
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Yukako Chiba
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hitoshi Onouchi
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | | | - Satoshi Naito
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | | | - Toru Fujiwara
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
2
|
Fashemi BE, Rougeau AK, Salazar AM, Bark SJ, Chappidi R, Brown JW, Cho CJ, Mills JC, Mysorekar IU. IFRD1 is required for maintenance of bladder epithelial homeostasis. iScience 2024; 27:111282. [PMID: 39628564 PMCID: PMC11613175 DOI: 10.1016/j.isci.2024.111282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/21/2024] [Accepted: 10/25/2024] [Indexed: 12/06/2024] Open
Abstract
The maintenance of homeostasis and rapid regeneration of the urothelium following stress are critical for bladder function. Here, we identify a key role for IFRD1 in maintaining urothelial homeostasis in a mouse model. We demonstrate that the murine bladder expresses IFRD1 at homeostasis, particularly in the urothelium, and its loss alters the global transcriptome with significant accumulation of endolysosomes and dysregulated uroplakin expression pattern. We show that IFRD1 interacts with mRNA-translation-regulating factors in human urothelial cells. Loss of Ifrd1 leads to disrupted proteostasis, enhanced endoplasmic reticulum (ER stress) with activation of the PERK arm of the unfolded protein response pathway, and increased oxidative stress. Ifrd1-deficient bladders exhibit urothelial cell apoptosis/exfoliation, enhanced basal cell proliferation, reduced differentiation into superficial cells, increased urothelial permeability, and aberrant voiding behavior. These findings highlight a crucial role for IFRD1 in urothelial homeostasis, suggesting its potential as a therapeutic target for bladder dysfunction.
Collapse
Affiliation(s)
- Bisiayo E. Fashemi
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Amala K. Rougeau
- Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Arnold M. Salazar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Steven J. Bark
- Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Rayvanth Chappidi
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jeffrey W. Brown
- Department of Medicine, Division of Gastroenterology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Charles J. Cho
- Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Jason C. Mills
- Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Indira U. Mysorekar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
3
|
Hanchapola HACR, Kim G, Liyanage DS, Omeka WKM, Udayantha HMV, Kodagoda YK, Dilshan MAH, Rodrigo DCG, Jayamali BPMV, Kim J, Jeong T, Lee S, Qiang W, Lee J. Molecular features, antiviral activity, and immunological expression assessment of interferon-related developmental regulator 1 (IFRD1) in red-spotted grouper (Epinephelus akaara). FISH & SHELLFISH IMMUNOLOGY 2024; 153:109859. [PMID: 39182708 DOI: 10.1016/j.fsi.2024.109859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
Interferon-related developmental regulator 1 (IFRD1) is a viral responsive gene associated with interferon-gamma. Herein, we identified the IFRD1 gene (EaIFRD1) from red-spotted grouper (Epinephelus akaara), evaluated its transcriptional responses, and investigated its functional features using various biological assays. EaIFRD1 encodes a protein comprising 428 amino acids with a molecular mass of 48.22 kDa. It features a substantial domain belonging to the interferon-related developmental regulator superfamily. Spatial mRNA expression of EaIFRD1 demonstrated the highest expression levels in the brain and the lowest in the skin. Furthermore, EaIFRD1 mRNA expression in grouper tissues exhibited significant modulation in response to immune stimulants, including poly (I:C), LPS, and nervous necrosis virus (NNV) infection. We analyzed downstream gene regulation by examining type Ⅰ interferon pathway genes following EaIFRD1 overexpression. The results demonstrated a significant upregulation in cells overexpressing EaIFRD1 compared to the control after infection with viral hemorrhagic septicemia virus (VHSV). A subcellular localization assay confirmed the nuclear location of the EaIFRD1 protein, consistent with its role as a transcriptional coactivator. Cells overexpressing EaIFRD1 exhibited increased migratory activity, enhancing wound-healing capabilities compared to the control. Additionally, under H2O2 exposure, EaIFRD1 overexpression protected cells against oxidative stress. Overexpression of EaIFRD1 also reduced poly (I:C)-mediated NO production in RAW267.4 macrophage cells. In FHM cells, EaIFRD1 overexpression significantly reduced VHSV virion replication. Collectively, these findings suggest that EaIFRD1 plays a crucial role in the antiviral immune response and immunological regulation in E. akaara.
Collapse
Affiliation(s)
- H A C R Hanchapola
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Gaeun Kim
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - D S Liyanage
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju, 63333, Republic of Korea
| | - W K M Omeka
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju, 63333, Republic of Korea
| | - H M V Udayantha
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju, 63333, Republic of Korea
| | - Y K Kodagoda
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - M A H Dilshan
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - D C G Rodrigo
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - B P M Vileka Jayamali
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Joungeun Kim
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Taehyug Jeong
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju, 63333, Republic of Korea
| | - Sukkyoung Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju, 63333, Republic of Korea
| | - Wan Qiang
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju, 63333, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju, 63333, Republic of Korea.
| |
Collapse
|
4
|
Fashemi BE, Rougeau AK, Salazar AM, Bark SJ, Chappidi R, Brown JW, Cho CJ, Mills JC, Mysorekar IU. A new role for IFRD1 in regulation of ER stress in bladder epithelial homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574887. [PMID: 38260387 PMCID: PMC10802459 DOI: 10.1101/2024.01.09.574887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
A healthy bladder requires the homeostatic maintenance of and rapid regeneration of urothelium upon stress/injury/infection. Several factors have been identified to play important roles in urothelial development, injury and disease response, however, little is known about urothelial regulation at homeostasis. Here, we identify a new role for IFRD1, a stress-induced gene that has recently been demonstrated to play a critical role in adult tissue proliferation and regeneration, in maintenance of urothelial function/ homeostasis in a mouse model. We show that the mouse bladder expresses IFRD1 at homeostasis and its loss alters the global transcriptome of the bladder with significant accumulation of cellular organelles including multivesicular bodies with undigested cargo, lysosomes and mitochondria. We demonstrate that IFRD1 interacts with several mRNA-translation-regulating factors in human urothelial cells and that the urothelium of Ifrd1-/- mice reveal decreased global translation and enhanced endoplasmic reticulum (ER) stress response. Ifrd1-/- bladders have activation of the unfolded protein response (UPR) pathway, specifically the PERK arm, with a concomitant increase in oxidative stress and spontaneous exfoliation of urothelial cells. Further, we show that such increase in cell shedding is associated with a compensatory proliferation of the basal cells but impaired regeneration of superficial cells. Finally, we show that upon loss of IFRD1, mice display aberrant voiding behavior. Thus, we propose that IFRD1 is at the center of many crucial cellular pathways that work together to maintain urothelial homeostasis, highlighting its importance as a target for diagnosis and/or therapy in bladder conditions.
Collapse
Affiliation(s)
- Bisiayo E. Fashemi
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Amala K. Rougeau
- Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, USA
| | - Arnold M. Salazar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX
| | - Steven J. Bark
- Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX
| | - Rayvanth Chappidi
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jeffrey W. Brown
- John T. Milliken Department of Medicine, Division of Gastroenterology, Washington University School of Medicine, St. Louis, MO
| | - Charles J. Cho
- Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, USA
| | - Jason C. Mills
- Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Indira U. Mysorekar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Huffington Center of Aging, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
5
|
Nguyen T, Mills JC, Cho CJ. The coordinated management of ribosome and translation during injury and regeneration. Front Cell Dev Biol 2023; 11:1186638. [PMID: 37427381 PMCID: PMC10325863 DOI: 10.3389/fcell.2023.1186638] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Diverse acute and chronic injuries induce damage responses in the gastrointestinal (GI) system, and numerous cell types in the gastrointestinal tract demonstrate remarkable resilience, adaptability, and regenerative capacity in response to stress. Metaplasias, such as columnar and secretory cell metaplasia, are well-known adaptations that these cells make, the majority of which are epidemiologically associated with an elevated cancer risk. On a number of fronts, it is now being investigated how cells respond to injury at the tissue level, where diverse cell types that differ in proliferation capacity and differentiation state cooperate and compete with one another to participate in regeneration. In addition, the cascades or series of molecular responses that cells show are just beginning to be understood. Notably, the ribosome, a ribonucleoprotein complex that is essential for translation on the endoplasmic reticulum (ER) and in the cytoplasm, is recognized as the central organelle during this process. The highly regulated management of ribosomes as key translational machinery, and their platform, rough endoplasmic reticulum, are not only essential for maintaining differentiated cell identity, but also for achieving successful cell regeneration after injury. This review will cover in depth how ribosomes, the endoplasmic reticulum, and translation are regulated and managed in response to injury (e.g., paligenosis), as well as why this is essential for the proper adaptation of a cell to stress. For this, we will first discuss how multiple gastrointestinal organs respond to stress through metaplasia. Next, we will cover how ribosomes are generated, maintained, and degraded, in addition to the factors that govern translation. Finally, we will investigate how ribosomes and translation machinery are dynamically regulated in response to injury. Our increased understanding of this overlooked cell fate decision mechanism will facilitate the discovery of novel therapeutic targets for gastrointestinal tract tumors, focusing on ribosomes and translation machinery.
Collapse
Affiliation(s)
- Thanh Nguyen
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Jason C. Mills
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Charles J. Cho
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
6
|
Abstract
Complex multicellular organisms have evolved specific mechanisms to replenish cells in homeostasis and during repair. Here, we discuss how emerging technologies (e.g., single-cell RNA sequencing) challenge the concept that tissue renewal is fueled by unidirectional differentiation from a resident stem cell. We now understand that cell plasticity, i.e., cells adaptively changing differentiation state or identity, is a central tissue renewal mechanism. For example, mature cells can access an evolutionarily conserved program (paligenosis) to reenter the cell cycle and regenerate damaged tissue. Most tissues lack dedicated stem cells and rely on plasticity to regenerate lost cells. Plasticity benefits multicellular organisms, yet it also carries risks. For one, when long-lived cells undergo paligenotic, cyclical proliferation and redif-ferentiation, they can accumulate and propagate acquired mutations that activate oncogenes and increase the potential for developing cancer. Lastly, we propose a new framework for classifying patterns of cell proliferation in homeostasis and regeneration, with stem cells representing just one of the diverse methods that adult tissues employ.
Collapse
Affiliation(s)
- Jeffrey W. Brown
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Charles J. Cho
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA,Current affiliation: Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Jason C. Mills
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA,Current affiliation: Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA,Departments of Pathology and Immunology and Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA,Current affiliation: Departments of Medicine, Pathology and Immunology, and Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
7
|
The role of upstream open reading frames in translation regulation in the apicomplexan parasites Plasmodium falciparum and Toxoplasma gondii. Parasitology 2021; 148:1277-1287. [PMID: 34099078 PMCID: PMC8383288 DOI: 10.1017/s0031182021000937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During their complex life cycles, the Apicomplexan parasites Plasmodium falciparum and Toxoplasma gondii employ several layers of regulation of their gene expression. One such layer is mediated at the level of translation through upstream open reading frames (uORFs). As uORFs are found in the upstream regions of a majority of transcripts in both the parasites, it is essential that their roles in translational regulation be appreciated to a greater extent. This review provides a comprehensive summary of studies that show uORF-mediated gene regulation in these parasites and highlights examples of clinically and physiologically relevant genes, including var2csa in P. falciparum, and ApiAT1 in T. gondii, that exhibit uORF-mediated regulation. In addition to these examples, several studies that use bioinformatics, transcriptomics, proteomics and ribosome profiling also indicate the possibility of widespread translational regulation by uORFs. Further analysis of these genome-wide datasets, taking into account uORFs associated with each gene, will reveal novel genes involved in key biological pathways such as cell-cycle progression, stress-response and pathogenicity. The cumulative evidence from studies presented in this review suggests that uORFs will play crucial roles in regulating gene expression during clinical disease caused by these important human pathogens.
Collapse
|
8
|
IFRD1 regulates the asthmatic responses of airway via NF-κB pathway. Mol Immunol 2020; 127:186-192. [PMID: 32992150 DOI: 10.1016/j.molimm.2020.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/19/2020] [Accepted: 09/14/2020] [Indexed: 11/24/2022]
Abstract
Asthma is a chronic respiratory disease which is susceptible to children and causes great harm to them. Recently, Interferon-related developmental regulator 1 (IFRD1) was proved to be participant in regulating lung diseases, and its abnormal expression was shown in pathological airway tissues. Our study aimed to demonstrate the role and modulatory mechanism of IFRD1 in the pathogenesis of asthma. First, we evaluated the expression of IFRD1 in the lungs of asthmatic patients. C57BL/6 mice and human bronchial epithelioid (HBE) cells were respectively induced by ovalbumin (OVA) and lipopolysaccharide (LPS) to construct asthma models in vivo and in vitro. Using adenovirus and pcDNA vectors, we carried out overexpression assays on mice and cell models. Additionally, the potential mechanism of IFRD1 on regulating asthma process was elucidated by targeting NF-κB pathway. The results showed that IFRD1 was significantly down-regulated in asthma lung tissues, as well as the in vivo and in vitro models of asthma. Besides, OVA induced the inflammation responses and hyperreactivity of airway in mice, and LPS also caused inflammatory cytokine secretion and apoptosis of HBE cells, while cell viability was inhibited. However, IFRD1 overexpression dramatically reversed the effects of OVA and LPS. We subsequently discovered that the NF-κB pathway was activated in asthmatic cells, and NF-κB signaling activation was involved in IFRD1 regulated asthma responses of HBE cells. In conclusion, our study indicated that IFRD1 inhibited the asthmatic responses of airway via the NF-κB pathway inactivation. The evidence presented herein might provide a novel sight for asthma therapy.
Collapse
|
9
|
Miao ZF, Lewis MA, Cho CJ, Adkins-Threats M, Park D, Brown JW, Sun JX, Burclaff JR, Kennedy S, Lu J, Mahar M, Vietor I, Huber LA, Davidson NO, Cavalli V, Rubin DC, Wang ZN, Mills JC. A Dedicated Evolutionarily Conserved Molecular Network Licenses Differentiated Cells to Return to the Cell Cycle. Dev Cell 2020; 55:178-194.e7. [PMID: 32768422 DOI: 10.1016/j.devcel.2020.07.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/04/2020] [Accepted: 07/11/2020] [Indexed: 02/06/2023]
Abstract
Differentiated cells can re-enter the cell cycle to repair tissue damage via a series of discrete morphological and molecular stages coordinated by the cellular energetics regulator mTORC1. We previously proposed the term "paligenosis" to describe this conserved cellular regeneration program. Here, we detail a molecular network regulating mTORC1 during paligenosis in both mouse pancreatic acinar and gastric chief cells. DDIT4 initially suppresses mTORC1 to induce autodegradation of differentiated cell components and damaged organelles. Later in paligenosis, IFRD1 suppresses p53 accumulation. Ifrd1-/- cells do not complete paligenosis because persistent p53 prevents mTORC1 reactivation and cell proliferation. Ddit4-/- cells never suppress mTORC1 and bypass the IFRD1 checkpoint on proliferation. Previous reports and our current data implicate DDIT4/IFRD1 in governing paligenosis in multiple organs and species. Thus, we propose that an evolutionarily conserved, dedicated molecular network has evolved to allow differentiated cells to re-enter the cell cycle (i.e., undergo paligenosis) after tissue injury. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Zhi-Feng Miao
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, First Hospital of China Medical University, Shenyang 110001, China
| | - Mark A Lewis
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Charles J Cho
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mahliyah Adkins-Threats
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dongkook Park
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jeffrey W Brown
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jing-Xu Sun
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, First Hospital of China Medical University, Shenyang 110001, China
| | - Joseph R Burclaff
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Susan Kennedy
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jianyun Lu
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marcus Mahar
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Ilja Vietor
- Division of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Lukas A Huber
- Division of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Nicholas O Davidson
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Valeria Cavalli
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Deborah C Rubin
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhen-Ning Wang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, First Hospital of China Medical University, Shenyang 110001, China.
| | - Jason C Mills
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
10
|
Tuck AC, Rankova A, Arpat AB, Liechti LA, Hess D, Iesmantavicius V, Castelo-Szekely V, Gatfield D, Bühler M. Mammalian RNA Decay Pathways Are Highly Specialized and Widely Linked to Translation. Mol Cell 2020; 77:1222-1236.e13. [PMID: 32048998 PMCID: PMC7083229 DOI: 10.1016/j.molcel.2020.01.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/11/2019] [Accepted: 01/07/2020] [Indexed: 12/24/2022]
Abstract
RNA decay is crucial for mRNA turnover and surveillance and misregulated in many diseases. This complex system is challenging to study, particularly in mammals, where it remains unclear whether decay pathways perform specialized versus redundant roles. Cytoplasmic pathways and links to translation are particularly enigmatic. By directly profiling decay factor targets and normal versus aberrant translation in mouse embryonic stem cells (mESCs), we uncovered extensive decay pathway specialization and crosstalk with translation. XRN1 (5'-3') mediates cytoplasmic bulk mRNA turnover whereas SKIV2L (3'-5') is universally recruited by ribosomes, tackling aberrant translation and sometimes modulating mRNA abundance. Further exploring translation surveillance revealed AVEN and FOCAD as SKIV2L interactors. AVEN prevents ribosome stalls at structured regions, which otherwise require SKIV2L for clearance. This pathway is crucial for histone translation, upstream open reading frame (uORF) regulation, and counteracting ribosome arrest on small ORFs. In summary, we uncovered key targets, components, and functions of mammalian RNA decay pathways and extensive coupling to translation.
Collapse
Affiliation(s)
- Alex Charles Tuck
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Aneliya Rankova
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Alaaddin Bulak Arpat
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Luz Angelica Liechti
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Daniel Hess
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Vytautas Iesmantavicius
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | | | - David Gatfield
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Marc Bühler
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland.
| |
Collapse
|
11
|
Wang S, Mao C, Liu S. Peptides encoded by noncoding genes: challenges and perspectives. Signal Transduct Target Ther 2019; 4:57. [PMID: 31871775 PMCID: PMC6908703 DOI: 10.1038/s41392-019-0092-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/17/2019] [Accepted: 10/27/2019] [Indexed: 01/01/2023] Open
Abstract
In recent years, noncoding gene (NCG) translation events have been frequently discovered. The resultant peptides, as novel findings in the life sciences, perform unexpected functions of increasingly recognized importance in many fundamental biological and pathological processes. The emergence of these novel peptides, in turn, has advanced the field of genomics while indispensably aiding living organisms. The peptides from NCGs serve as important links between extracellular stimuli and intracellular adjustment mechanisms. These peptides are also important entry points for further exploration of the mysteries of life that may trigger a new round of revolutionary biotechnological discoveries. Insights into NCG-derived peptides will assist in understanding the secrets of life and the causes of diseases, and will also open up new paths to the treatment of diseases such as cancer. Here, a critical review is presented on the action modes and biological functions of the peptides encoded by NCGs. The challenges and future trends in searching for and studying NCG peptides are also critically discussed.
Collapse
Affiliation(s)
- Shuo Wang
- Changhai Hospital, Shanghai, 200433 China
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019-5300 USA
| | | |
Collapse
|
12
|
Martinez TF, Chu Q, Donaldson C, Tan D, Shokhirev MN, Saghatelian A. Accurate annotation of human protein-coding small open reading frames. Nat Chem Biol 2019; 16:458-468. [PMID: 31819274 PMCID: PMC7085969 DOI: 10.1038/s41589-019-0425-0] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 11/01/2019] [Indexed: 12/13/2022]
Abstract
Functional protein-coding small open reading frames (smORFs) are emerging as an important class of genes. However, the number of translated smORFs in the human genome is unclear because proteogenomic methods are not sensitive enough, and, as we show, Ribo-Seq strategies require additional measures to ensure comprehensive and accurate smORF annotation. Here, we integrate de novo transcriptome assembly and Ribo-Seq into an improved workflow that overcomes obstacles with previous methods to more confidently annotate thousands of smORFs. Evolutionary conservation analyses suggest that hundreds of smORF-encoded microproteins are likely functional. Additionally, many smORFs are regulated during fundamental biological processes, such as cell stress. Peptides derived from smORFs are also detectable on human leukocyte antigen complexes, revealing smORFs as a source of antigens. Thus, by including additional validation into our smORF annotation workflow, we accurately identify thousands of unannotated translated smORFs that will provide a rich pool of unexplored, functional human genes.
Collapse
Affiliation(s)
- Thomas F Martinez
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA.
| | - Qian Chu
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Cynthia Donaldson
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Dan Tan
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Maxim N Shokhirev
- Razavi Newman Integrative Genomics Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
13
|
Aliouat A, Hatin I, Bertin P, François P, Stierlé V, Namy O, Salhi S, Jean-Jean O. Divergent effects of translation termination factor eRF3A and nonsense-mediated mRNA decay factor UPF1 on the expression of uORF carrying mRNAs and ribosome protein genes. RNA Biol 2019; 17:227-239. [PMID: 31619139 PMCID: PMC6973328 DOI: 10.1080/15476286.2019.1674595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In addition to its role in translation termination, eRF3A has been implicated in the nonsense-mediated mRNA decay (NMD) pathway through its interaction with UPF1. NMD is a RNA quality control mechanism, which detects and degrades aberrant mRNAs as well as some normal transcripts including those that harbour upstream open reading frames in their 5ʹ leader sequence. In this study, we used RNA-sequencing and ribosome profiling to perform a genome wide analysis of the effect of either eRF3A or UPF1 depletion in human cells. Our bioinformatics analyses allow to delineate the features of the transcripts controlled by eRF3A and UPF1 and to compare the effect of each of these factors on gene expression. We find that eRF3A and UPF1 have very different impacts on the human transcriptome, less than 250 transcripts being targeted by both factors. We show that eRF3A depletion globally derepresses the expression of mRNAs containing translated uORFs while UPF1 knockdown derepresses only the mRNAs harbouring uORFs with an AUG codon in an optimal context for translation initiation. Finally, we also find that eRF3A and UPF1 have opposite effects on ribosome protein gene expression. Together, our results provide important elements for understanding the impact of translation termination and NMD on the human transcriptome and reveal novel determinants of ribosome biogenesis regulation.
Collapse
Affiliation(s)
- Affaf Aliouat
- Sorbonne Université, CNRS, Biological Adaptation and Aging, B2A, 75005 Paris, France
| | - Isabelle Hatin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris Sud, Université Paris-Saclay, Gif sur Yvette cedex, France
| | - Pierre Bertin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris Sud, Université Paris-Saclay, Gif sur Yvette cedex, France
| | - Pauline François
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris Sud, Université Paris-Saclay, Gif sur Yvette cedex, France
| | - Vérène Stierlé
- Sorbonne Université, CNRS, Biological Adaptation and Aging, B2A, 75005 Paris, France
| | - Olivier Namy
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris Sud, Université Paris-Saclay, Gif sur Yvette cedex, France
| | - Samia Salhi
- Sorbonne Université, CNRS, Biological Adaptation and Aging, B2A, 75005 Paris, France
| | - Olivier Jean-Jean
- Sorbonne Université, CNRS, Biological Adaptation and Aging, B2A, 75005 Paris, France
| |
Collapse
|
14
|
Silva J, Fernandes R, Romão L. Translational Regulation by Upstream Open Reading Frames and Human Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1157:99-116. [DOI: 10.1007/978-3-030-19966-1_5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Brown A, Baird MR, Yip MC, Murray J, Shao S. Structures of translationally inactive mammalian ribosomes. eLife 2018; 7:40486. [PMID: 30355441 PMCID: PMC6226290 DOI: 10.7554/elife.40486] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/12/2018] [Indexed: 12/23/2022] Open
Abstract
The cellular levels and activities of ribosomes directly regulate gene expression during numerous physiological processes. The mechanisms that globally repress translation are incompletely understood. Here, we use electron cryomicroscopy to analyze inactive ribosomes isolated from mammalian reticulocytes, the penultimate stage of red blood cell differentiation. We identify two types of ribosomes that are translationally repressed by protein interactions. The first comprises ribosomes sequestered with elongation factor 2 (eEF2) by SERPINE mRNA binding protein 1 (SERBP1) occupying the ribosomal mRNA entrance channel. The second type are translationally repressed by a novel ribosome-binding protein, interferon-related developmental regulator 2 (IFRD2), which spans the P and E sites and inserts a C-terminal helix into the mRNA exit channel to preclude translation. IFRD2 binds ribosomes with a tRNA occupying a noncanonical binding site, the ‘Z site’, on the ribosome. These structures provide functional insights into how ribosomal interactions may suppress translation to regulate gene expression.
Collapse
Affiliation(s)
- Alan Brown
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Matthew R Baird
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Matthew Cj Yip
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Jason Murray
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Sichen Shao
- Department of Cell Biology, Harvard Medical School, Boston, United States
| |
Collapse
|
16
|
Rendleman J, Cheng Z, Maity S, Kastelic N, Munschauer M, Allgoewer K, Teo G, Zhang YBM, Lei A, Parker B, Landthaler M, Freeberg L, Kuersten S, Choi H, Vogel C. New insights into the cellular temporal response to proteostatic stress. eLife 2018; 7:39054. [PMID: 30272558 PMCID: PMC6185107 DOI: 10.7554/elife.39054] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/28/2018] [Indexed: 12/13/2022] Open
Abstract
Maintaining a healthy proteome involves all layers of gene expression regulation. By quantifying temporal changes of the transcriptome, translatome, proteome, and RNA-protein interactome in cervical cancer cells, we systematically characterize the molecular landscape in response to proteostatic challenges. We identify shared and specific responses to misfolded proteins and to oxidative stress, two conditions that are tightly linked. We reveal new aspects of the unfolded protein response, including many genes that escape global translation shutdown. A subset of these genes supports rerouting of energy production in the mitochondria. We also find that many genes change at multiple levels, in either the same or opposing directions, and at different time points. We highlight a variety of putative regulatory pathways, including the stress-dependent alternative splicing of aminoacyl-tRNA synthetases, and protein-RNA binding within the 3’ untranslated region of molecular chaperones. These results illustrate the potential of this information-rich resource.
Collapse
Affiliation(s)
- Justin Rendleman
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States
| | - Zhe Cheng
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States
| | - Shuvadeep Maity
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States
| | - Nicolai Kastelic
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Mathias Munschauer
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Kristina Allgoewer
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States
| | - Guoshou Teo
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States
| | - Yun Bin Matteo Zhang
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States
| | - Amy Lei
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States
| | - Brian Parker
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Integrative Research Institute for the Life Sciences, Institute of Biology, Humboldt University, Berlin, Germany
| | | | | | - Hyungwon Choi
- National University of Singapore, Singapore.,Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Christine Vogel
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States
| |
Collapse
|
17
|
Li H, Xiao L, Zhang L, Wu J, Wei B, Sun N, Zhao Y. FSPP: A Tool for Genome-Wide Prediction of smORF-Encoded Peptides and Their Functions. Front Genet 2018; 9:96. [PMID: 29675032 PMCID: PMC5896265 DOI: 10.3389/fgene.2018.00096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 03/08/2018] [Indexed: 02/01/2023] Open
Abstract
smORFs are small open reading frames of less than 100 codons. Recent low throughput experiments showed a lot of smORF-encoded peptides (SEPs) played crucial rule in processes such as regulation of transcription or translation, transportation through membranes and the antimicrobial activity. In order to gather more functional SEPs, it is necessary to have access to genome-wide prediction tools to give profound directions for low throughput experiments. In this study, we put forward a functional smORF-encoded peptides predictor (FSPP) which tended to predict authentic SEPs and their functions in a high throughput method. FSPP used the overlap of detected SEPs from Ribo-seq and mass spectrometry as target objects. With the expression data on transcription and translation levels, FSPP built two co-expression networks. Combing co-location relations, FSPP constructed a compound network and then annotated SEPs with functions of adjacent nodes. Tested on 38 sequenced samples of 5 human cell lines, FSPP successfully predicted 856 out of 960 annotated proteins. Interestingly, FSPP also highlighted 568 functional SEPs from these samples. After comparison, the roles predicted by FSPP were consistent with known functions. These results suggest that FSPP is a reliable tool for the identification of functional small peptides. FSPP source code can be acquired at https://www.bioinfo.org/FSPP.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China.,School of Computer and Control Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Li Xiao
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Lili Zhang
- School of Computer and Control Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, China.,CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jiarui Wu
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Bin Wei
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Ninghui Sun
- State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Yi Zhao
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Dimopoulou M, Verhoef A, Pennings JL, van Ravenzwaay B, Rietjens IM, Piersma AH. A transcriptomic approach for evaluating the relative potency and mechanism of action of azoles in the rat Whole Embryo Culture. Toxicology 2017; 392:96-105. [DOI: 10.1016/j.tox.2017.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/28/2017] [Accepted: 09/28/2017] [Indexed: 01/07/2023]
|
19
|
Guan Y, Jin X, Liu X, Huang Y, Wang M, Li X. Uncovering potential key genes associated with the pathogenesis of asthma: A microarray analysis of asthma-relevant tissues. Allergol Immunopathol (Madr) 2017; 45:152-159. [PMID: 27842724 DOI: 10.1016/j.aller.2016.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 08/03/2016] [Accepted: 08/19/2016] [Indexed: 01/18/2023]
Abstract
BACKGROUND The present study aimed to discover more potential genes associated with the pathogenesis of asthma. METHODS The microarray data of GSE67940 was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified in bronchial alveolar lavage cells from patients with mild-moderate asthma (notSA) and severe asthma (SA) compared with normal controls (NC), respectively. Functional and pathway enrichment analysis, protein-protein interaction (PPI) network analysis were performed upon the identified up- and down-regulated DEGs. Besides, the gene association network based on the common up-regulated and down-regulated genes was generated and transcriptional regulatory pairs of overlapping DEGs in the PPI network were identified. RESULTS A total of 104 DEGs (30 up- and 74 down-regulated genes) were identified in notSA vs. NC. Additionally, 2796 DEGs were screened out in SA vs. NC group, including 320 up-regulated DEGs, and 135 down-regulated DEGs. Specially, 41 overlapping DEGs were screened out in notSA vs. NC and SA vs. NC, including 16 common up-regulated genes and 25 common down-regulated genes. No pathways were enriched by the DEGs in notSA vs. NC. DEGs in SA vs. NC were associated with cytokine-cytokine receptor interaction. VEGFA was a hub protein in both the PPI networks of DEGs in notSA vs. NC and SA vs. NC. Gene association network showed that signalling pathways and cytokine-cytokine receptor interaction were involved in. The overlapping VEGFA, and IFRD1, and ZNF331 were regulated by more TFs. CONCLUSION Genes such as VEGFA, and IFRD1, and ZNF331 may be associated with pathogenesis of asthma.
Collapse
|
20
|
Tsai CC, Wu KM, Chiang TY, Huang CY, Chou CH, Li SJ, Chiang YC. Comparative transcriptome analysis of Gastrodia elata (Orchidaceae) in response to fungus symbiosis to identify gastrodin biosynthesis-related genes. BMC Genomics 2016; 17:212. [PMID: 26960548 PMCID: PMC4784368 DOI: 10.1186/s12864-016-2508-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 02/22/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gastrodia elata Blume (Orchidaceae) is an important Chinese medicine with several functional components. In the life cycle of G. elata, the orchid develops a symbiotic relationship with two compatible mycorrhizal fungi Mycena spp. and Armillaria mellea during seed germination to form vegetative propagation corm and vegetative growth to develop tubers, respectively. Gastrodin (p-hydroxymethylphenol-beta-D-glucoside) is the most important functional component in G. elata, and gastrodin significantly increases from vegetative propagation corms to tubers. To address the gene regulation mechanism in gastrodin biosynthesis in G. elata, a comparative analysis of de novo transcriptome sequencing among the vegetative propagation corms and tubers of G. elata and A. mellea was conducted using deep sequencing. RESULTS Transcriptome comparison between the vegetative propagation corms and juvenile tubers of G. elata revealed 703 differentially expressed unigenes, of which 298 and 405 unigenes were, respectively up-regulated (fold-change ≥ 2, q-value < 0.05, the trimmed mean of M-values (TMM)-normalized fragments per kilobase of transcript per Million mapped reads (FPKM) > 10) and down-regulated (fold-change ≤ 0.5, q-value <0.05, TMM-normalized FPKM > 10) in juvenile tubers. After Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, 112 up-regulated unigenes with KEGG Ortholog identifiers (KOids) or enzyme commission (EC) numbers were assigned to 159 isogroups involved in seventy-eight different pathways, and 132 down-regulated unigenes with KOids or EC numbers were assigned to 168 isogroups, involved in eighty different pathways. The analysis of the isogroup genes from all pathways revealed that the two unigenes TRINITY_DN54282_c0_g1 (putative monooxygenases) and TRINITY_DN50323_c0_g1 (putative glycosyltransferases) might participate in hydroxylation and glucosylation in the gastrodin biosynthetic pathway. CONCLUSIONS The gene expression of the two unique unigenes encoding monooxygenase and glycosyltransferase significantly increases from vegetative propagation corms to tubers, and the molecular basis of gastrodin biosynthesis in the tubers of G. elata is proposed.
Collapse
Affiliation(s)
- Chi-Chu Tsai
- Crop Improvement Division, Kaohsiung District Agricultural Improvement Station, Pingtung, 900, Taiwan.
- Graduate Institute of Biotechnology, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan.
| | - Keh-Ming Wu
- Welgene Biotech. Co., Ltd., Taipei, 115, Taiwan.
| | - Tzen-Yuh Chiang
- Department of Life Science, Cheng-Kung University, Tainan, 701, Taiwan.
| | - Chun-Yen Huang
- Crop Improvement Division, Kaohsiung District Agricultural Improvement Station, Pingtung, 900, Taiwan.
| | - Chang-Hung Chou
- Research Center for Biodiversity, China Medical University, Taichung, 404, Taiwan.
| | - Shu-Ju Li
- Crop Improvement Division, Kaohsiung District Agricultural Improvement Station, Pingtung, 900, Taiwan.
| | - Yu-Chung Chiang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, 804, Taiwan.
- Department of Biomedical Science and Environment Biology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
21
|
Andreev DE, O'Connor PBF, Fahey C, Kenny EM, Terenin IM, Dmitriev SE, Cormican P, Morris DW, Shatsky IN, Baranov PV. Translation of 5' leaders is pervasive in genes resistant to eIF2 repression. eLife 2015; 4:e03971. [PMID: 25621764 PMCID: PMC4383229 DOI: 10.7554/elife.03971] [Citation(s) in RCA: 252] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 01/22/2015] [Indexed: 12/18/2022] Open
Abstract
Eukaryotic cells rapidly reduce protein synthesis in response to various stress
conditions. This can be achieved by the phosphorylation-mediated inactivation of a
key translation initiation factor, eukaryotic initiation factor 2 (eIF2). However,
the persistent translation of certain mRNAs is required for deployment of an adequate
stress response. We carried out ribosome profiling of cultured human cells under
conditions of severe stress induced with sodium arsenite. Although this led to a
5.4-fold general translational repression, the protein coding open reading frames
(ORFs) of certain individual mRNAs exhibited resistance to the inhibition. Nearly all
resistant transcripts possess at least one efficiently translated upstream open
reading frame (uORF) that represses translation of the main coding ORF under normal
conditions. Site-specific mutagenesis of two identified stress resistant mRNAs
(PPP1R15B and IFRD1) demonstrated that a single uORF is sufficient for eIF2-mediated
translation control in both cases. Phylogenetic analysis suggests that at least two
regulatory uORFs (namely, in SLC35A4 and MIEF1) encode functional protein
products. DOI:http://dx.doi.org/10.7554/eLife.03971.001 Proteins carry out essential tasks for living cells and genes contain the
instructions to make proteins within their DNA. These instructions are copied to make
a molecule of mRNA, and a molecular machine known as a ribosome then reads and
translates the mRNA to build the protein. The first step in the translation process is called ‘initiation’ and
requires a protein called eIF2 to work together with the ribosome. This step involves
identifying an instruction called the start codon that marks the beginning of the
mRNA's coding sequence. The section of an mRNA molecule before the start codon
is not normally translated by the ribosome and is hence called the 5′
untranslated region. Building proteins requires energy and resources, and so it is carefully regulated. If
a cell is stressed, such as by being exposed to harmful chemicals, it makes fewer
proteins in order to conserve its resources. This down-regulation of protein
production is achieved in part by the cell chemically modifying its eIF2 proteins to
make them less able to initiate translation. However, stressed cells still continue
to make more of certain proteins that help them to combat stress. The mRNA molecules
for some of these proteins contain at least one other start codon in the 5′
untranslated region. The sequence that would be translated from such a start codon is
known as an upstream open reading frame (or uORF for short)—and this feature
is thought to help certain proteins to still be expressed despite low levels of
active eIF2. Andreev, O'Connor et al. have now analysed which mRNAs are
translated in human cells that have been treated with a chemical that induces stress
and makes the eIF2 protein less able to initiate translation. To do so, a technique
called ribosome profiling was used to identify all of the mRNA molecules bound to
ribosomes shortly after treatment with this chemical. Overall translation of most mRNAs in stressed cells was reduced to a quarter of the
normal level. However, Andreev, O'Connor et al. observed that the translation
of a few mRNAs continued almost as normal, or even increased, after the chemical
treatment. Notably, most of these mRNAs encoded regulatory proteins, which are not
required in large amounts. With one exception, all of these resistant mRNAs contained
uORFs. In unstressed cells, these uORFs were efficiently translated, while the same
mRNA's coding sequences were translated less efficiently. Andreev,
O'Connor et al. suggest that these two features could be used to identify
mRNAs that are still translated into working proteins when cells are stressed.
Further work is now needed to explore the mechanisms by which translation of these
uORFs allows mRNAs to resist the stress. DOI:http://dx.doi.org/10.7554/eLife.03971.002
Collapse
Affiliation(s)
- Dmitry E Andreev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Ciara Fahey
- Department of Psychiatry and Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
| | - Elaine M Kenny
- Department of Psychiatry and Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
| | - Ilya M Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Paul Cormican
- Department of Psychiatry and Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
| | - Derek W Morris
- Department of Psychiatry and Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
| | - Ivan N Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
22
|
Chen FC. Alternative RNA structure-coupled gene regulations in tumorigenesis. Int J Mol Sci 2014; 16:452-75. [PMID: 25551597 PMCID: PMC4307256 DOI: 10.3390/ijms16010452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/16/2014] [Indexed: 12/11/2022] Open
Abstract
Alternative RNA structures (ARSs), or alternative transcript isoforms, are critical for regulating cellular phenotypes in humans. In addition to generating functionally diverse protein isoforms from a single gene, ARS can alter the sequence contents of 5'/3' untranslated regions (UTRs) and intronic regions, thus also affecting the regulatory effects of these regions. ARS may introduce premature stop codon(s) into a transcript, and render the transcript susceptible to nonsense-mediated decay, which in turn can influence the overall gene expression level. Meanwhile, ARS can regulate the presence/absence of upstream open reading frames and microRNA targeting sites in 5'UTRs and 3'UTRs, respectively, thus affecting translational efficiencies and protein expression levels. Furthermore, since ARS may alter exon-intron structures, it can influence the biogenesis of intronic microRNAs and indirectly affect the expression of the target genes of these microRNAs. The connections between ARS and multiple regulatory mechanisms underline the importance of ARS in determining cell fate. Accumulating evidence indicates that ARS-coupled regulations play important roles in tumorigenesis. Here I will review our current knowledge in this field, and discuss potential future directions.
Collapse
Affiliation(s)
- Feng-Chi Chen
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli County 350, Taiwan.
| |
Collapse
|
23
|
Zhao C, Pavicic PG, Datta S, Sun D, Novotny M, Hamilton TA. Cellular stress amplifies TLR3/4-induced CXCL1/2 gene transcription in mononuclear phagocytes via RIPK1. THE JOURNAL OF IMMUNOLOGY 2014; 193:879-88. [PMID: 24920846 DOI: 10.4049/jimmunol.1303396] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The impact of environmental stressors on the magnitude of specific chemokine gene expression was examined in mouse bone marrow-derived macrophages stimulated through various TLRs. Levels of TLR-stimulated CXCL1 and CXCL2 but not CXCL10 or CCL5 mRNAs were selectively enhanced (>10-fold) in stressed macrophages. The amplification was also manifested for other proinflammatory cytokines, including TNF-α, IL-1α, and IL-6. Responses through TLR3 and TLR4 exhibited the greatest sensitivity, reflecting a requirement for Toll/IL-IR domain-containing adaptor-inducing IFN-β (TRIF), the adaptor protein selectively associated with these TLRs. IFN regulatory factor 3, a transcription factor that is downstream of TLR4/TRIF signaling, was not required for sensitivity to stress-induced chemokine amplification. c/EBP homologous protein and X box binding protein 1 have been reported to enhance inflammatory cytokine responses but are not required for amplification of TLR3/4-induced CXCL1 expression. Rather, receptor-interacting protein kinase 1, a kinase also linked with TLR3/4/TRIF signaling, is required and involves a stress-dependent increase in its abundance and ubiquitination. Whereas NF-κB activation is necessary for TLR-induced chemokine gene transcription, this factor does not appear to be the primary mechanistic target of environmental stress. The application of stress also enhanced chemokine expression in macrophages infiltrating the peritoneal cavity but was not observed in the resident peritoneal cells or in the liver. These findings identify novel mechanisms for modulating the magnitude and duration of selective TLR-induced chemokine and cytokine gene expression and further establish the importance of cell stress pathways in coordinating the outcomes of cellular and tissue injury.
Collapse
Affiliation(s)
- Chenyang Zhao
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Paul G Pavicic
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Shyamasree Datta
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Dongxu Sun
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Michael Novotny
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Thomas A Hamilton
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| |
Collapse
|
24
|
Hatano M, Umemura M, Kimura N, Yamazaki T, Takeda H, Nakano H, Takahashi S, Takahashi Y. The 5'-untranslated region regulates ATF5 mRNA stability via nonsense-mediated mRNA decay in response to environmental stress. FEBS J 2013; 280:4693-707. [PMID: 23876217 DOI: 10.1111/febs.12440] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/08/2013] [Accepted: 07/15/2013] [Indexed: 11/28/2022]
Abstract
We previously reported that activating transcription factor 5 (ATF5) mRNA increases in response to amino acid limitation, and that this increase is dependent on mRNA stabilization. The ATF5 gene allows transcription of mRNAs with two alternative 5'-UTRs, 5'-UTRα and 5'-UTRβ, derived from exon 1α and exon 1β. 5'-UTRα contains the upstream open reading frames uORF1 and uORF2. Phosphorylation of eukaryotic initiation factor 2α during the integrated stress response had been previously shown to lead to bypassing of uORF2 translation and production of ATF5 protein. Translation of uORF2 is expected to result in translational termination at a position 125 nucleotides upstream of the exon junction, and this fits the criterion of a nonsense-mediated decay target mRNA. We investigated the potential role of 5'-UTRα in the control of mRNA stabilization, and found that 5'-UTRα reduced the stability of ATF5 mRNA. 5'-UTRα-regulated destabilization of mRNA was suppressed by knockdown of the nonsense-mediated decay factors Upf1 and Upf2. Mutation of the downstream AUG (uAUG2) rendered mRNA refractory to Upf1 and Upf2 knockdown. Moreover, 5'-UTRα-regulated down-regulation was hindered by amino acid limitation and tunicamycin treatment, and stress-induced phosphorylation of eukaryotic initiation factor 2α was involved in stabilization of ATF5 mRNA. These studies show that ATF5 mRNA is a naturally occurring normal mRNA target of nonsense-mediated decay, and provide evidence for linkage between stress-regulated translational regulation and the mRNA decay pathway. This linkage constitutes a mechanism that regulates expression of stress response genes.
Collapse
Affiliation(s)
- Masaya Hatano
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Upstream open reading frames (uORFs) are major gene expression regulatory elements. In many eukaryotic mRNAs, one or more uORFs precede the initiation codon of the main coding region. Indeed, several studies have revealed that almost half of human transcripts present uORFs. Very interesting examples have shown that these uORFs can impact gene expression of the downstream main ORF by triggering mRNA decay or by regulating translation. Also, evidence from recent genetic and bioinformatic studies implicates disturbed uORF-mediated translational control in the etiology of many human diseases, including malignancies, metabolic or neurologic disorders, and inherited syndromes. In this review, we will briefly present the mechanisms through which uORFs regulate gene expression and how they can impact on the organism's response to different cell stress conditions. Then, we will emphasize the importance of these structures by illustrating, with specific examples, how disturbed uORF-mediated translational control can be involved in the etiology of human diseases, giving special importance to genotype-phenotype correlations. Identifying and studying more cases of uORF-altering mutations will help us to understand and establish genotype-phenotype associations, leading to advancements in diagnosis, prognosis, and treatment of many human disorders.
Collapse
Affiliation(s)
- Cristina Barbosa
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
- Center for Biodiversity, Functional and Integrative Genomics, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Isabel Peixeiro
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
- Center for Biodiversity, Functional and Integrative Genomics, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Luísa Romão
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
- Center for Biodiversity, Functional and Integrative Genomics, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
26
|
Hurt JA, Robertson AD, Burge CB. Global analyses of UPF1 binding and function reveal expanded scope of nonsense-mediated mRNA decay. Genome Res 2013; 23:1636-50. [PMID: 23766421 PMCID: PMC3787261 DOI: 10.1101/gr.157354.113] [Citation(s) in RCA: 206] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
UPF1 is a DNA/RNA helicase with essential roles in nonsense-mediated mRNA decay (NMD) and embryonic development. How UPF1 regulates target abundance and the relationship between NMD and embryogenesis are not well understood. To explore how NMD shapes the embryonic transcriptome, we integrated genome-wide analyses of UPF1 binding locations, NMD-regulated gene expression, and translation in murine embryonic stem cells (mESCs). We identified over 200 direct UPF1 binding targets using crosslinking/immunoprecipitation-sequencing (CLIP-seq) and revealed a repression pathway that involves 3′ UTR binding by UPF1 and translation but is independent of canonical targeting features involving 3′ UTR length and stop codon placement. Interestingly, NMD targeting of this set of mRNAs occurs in other mouse tissues and is conserved in human. We also show, using ribosome footprint profiling, that actively translated upstream open reading frames (uORFs) are enriched in transcription factor mRNAs and predict mRNA repression by NMD, while poorly translated mRNAs escape repression. Together, our results identify novel NMD determinants and targets and provide context for understanding the impact of UPF1 and NMD on the mESC transcriptome.
Collapse
Affiliation(s)
- Jessica A Hurt
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | | | | |
Collapse
|
27
|
A perspective on mammalian upstream open reading frame function. Int J Biochem Cell Biol 2013; 45:1690-700. [PMID: 23624144 PMCID: PMC7172355 DOI: 10.1016/j.biocel.2013.04.020] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/16/2013] [Accepted: 04/17/2013] [Indexed: 12/11/2022]
Abstract
Post-transcriptional control makes a major contribution to the overall regulation of gene expression pathway. Within the cytoplasm this is mediated by a combination of regulatory RNA motifs within the 5′ and 3′ untranslated regions of mRNAs and their interacting protein/RNA partners. One of the most common regulatory RNA elements in mammalian transcripts (present in approximately 40% of all mRNAs) are upstream open reading frames (uORFs). However, despite the prevalence of these RNA elements how they function is not well understood. In general, they act to repress translation of the physiological ORF under control conditions, and under certain pathophysiological stresses this repression can be alleviated. It is known that re-initiation following the translation of an uORF is utilised in some situations however there are numerous alternative mechanisms that control the synthesis of a protein whose mRNA contains uORFs. Moreover, the trans-acting factors that are also involved in this process are not well defined. In this review we summarise our current understanding of this area and highlight some common features of these RNA motifs that have been discovered to date.
Collapse
|
28
|
Cebecauerová D, Strautnieks SS, Byrne JA, Jirsa M, Thompson RJ. ATP8B1 gene expression is driven by a housekeeping-like promoter independent of bile acids and farnesoid X receptor. PLoS One 2012; 7:e51650. [PMID: 23251605 PMCID: PMC3518472 DOI: 10.1371/journal.pone.0051650] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Accepted: 11/02/2012] [Indexed: 12/26/2022] Open
Abstract
Background Mutations in ATP8B1 gene were identified as a cause of low γ-glutamyltranspeptidase cholestasis with variable phenotype, ranging from Progressive Familial Intrahepatic Cholestasis to Benign Recurrent Intrahepatic Cholestasis. However, only the coding region of ATP8B1 has been described. The aim of this research was to explore the regulatory regions, promoter and 5′untranslated region, of the ATP8B1 gene. Methodology/Principal Findings 5′Rapid Amplification of cDNA Ends using human liver and intestinal tissue was performed to identify the presence of 5′ untranslated exons. Expression levels of ATP8B1 transcripts were determined by quantitative reverse-transcription PCR and compared with the non-variable part of ATP8B1. Three putative promoters were examined in vitro using a reporter gene assay and the main promoter was stimulated with chenodeoxycholic acid. Four novel untranslated exons located up to 71 kb upstream of the previously published exon 1 and twelve different splicing variants were found both in the liver and the intestine. Multiple transcription start sites were identified within exon −3 and the proximal promoter upstream of this transcription start site cluster was proven to be an essential regulatory element responsible for 70% of total ATP8B1 transcriptional activity. In vitro analysis demonstrated that the main promoter drives constitutive ATP8B1 gene expression independent of bile acids. Conclusions/Significance The structure of the ATP8B1 gene is complex and the previously published transcription start site is not significant. The basal expression of ATP8B1 is driven by a housekeeping-like promoter located 71 kb upstream of the first protein coding exon.
Collapse
Affiliation(s)
- Dita Cebecauerová
- Institute of Liver Studies, King's College London School of Medicine, at King's College Hospital, London, United Kingdom
- Laboratory of Experimental Hepatology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- * E-mail: (DC); (RJT)
| | - Sandra S. Strautnieks
- Institute of Liver Studies, King's College London School of Medicine, at King's College Hospital, London, United Kingdom
| | - Jane A. Byrne
- Institute of Liver Studies, King's College London School of Medicine, at King's College Hospital, London, United Kingdom
| | - Milan Jirsa
- Laboratory of Experimental Hepatology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Richard J. Thompson
- Institute of Liver Studies, King's College London School of Medicine, at King's College Hospital, London, United Kingdom
- * E-mail: (DC); (RJT)
| |
Collapse
|
29
|
Ait Ghezala H, Jolles B, Salhi S, Castrillo K, Carpentier W, Cagnard N, Bruhat A, Fafournoux P, Jean-Jean O. Translation termination efficiency modulates ATF4 response by regulating ATF4 mRNA translation at 5' short ORFs. Nucleic Acids Res 2012; 40:9557-70. [PMID: 22904092 PMCID: PMC3479206 DOI: 10.1093/nar/gks762] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The activating transcription factor 4 (ATF4) promotes transcriptional upregulation of specific target genes in response to cellular stress. ATF4 expression is regulated at the translational level by two short open reading frames (uORFs) in its 5′-untranslated region (5′-UTR). Here, we describe a mechanism regulating ATF4 expression in translation termination-deficient human cells. Using microarray analysis of total RNA and polysome-associated mRNAs, we show that depletion of the eucaryotic release factor 3a (eRF3a) induces upregulation of ATF4 and of ATF4 target genes. We show that eRF3a depletion modifies ATF4 translational control at regulatory uORFs increasing ATF4 ORF translation. Finally, we show that the increase of REDD1 expression, one of the upregulated targets of ATF4, is responsible for the mTOR pathway inhibition in eRF3a-depleted cells. Our results shed light on the molecular mechanisms connecting eRF3a depletion to mammalian target of rapamycin (mTOR) pathway inhibition and give an example of ATF4 activation that bypasses the signal transduction cascade leading to the phosphorylation of eIF2α. We propose that in mammals, in which the 5′-UTR regulatory elements of ATF4 mRNA are strictly conserved, variations in translation termination efficiency allow the modulation of the ATF4 response.
Collapse
Affiliation(s)
- Hayet Ait Ghezala
- UPMC Univ Paris 06, CNRS-FRE 3402, Biologie de l'ARN, 9 quai Saint Bernard, 75005 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Blanchard E, Marie S, Riffault L, Bonora M, Tabary O, Clement A, Jacquot J. Reduced expression of Tis7/IFRD1 protein in murine and human cystic fibrosis airway epithelial cell models homozygous for the F508del-CFTR mutation. Biochem Biophys Res Commun 2011; 411:471-6. [DOI: 10.1016/j.bbrc.2011.06.104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 06/13/2011] [Indexed: 01/24/2023]
|
31
|
Griffin BD, Nagy É. Coding potential and transcript analysis of fowl adenovirus 4: insight into upstream ORFs as common sequence features in adenoviral transcripts. J Gen Virol 2011; 92:1260-1272. [PMID: 21430092 DOI: 10.1099/vir.0.030064-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recombinant fowl adenoviruses (FAdVs) have been successfully used as veterinary vaccine vectors. However, insufficient definitions of the protein-coding and non-coding regions and an incomplete understanding of virus-host interactions limit the progress of next-generation vectors. FAdVs are known to cause several diseases of poultry. Certain isolates of species FAdV-C are the aetiological agent of inclusion body hepatitis/hydropericardium syndrome (IBH/HPS). In this study, we report the complete 45667 bp genome sequence of FAdV-4 of species FAdV-C. Assessment of the protein-coding potential of FAdV-4 was carried out with the Bio-Dictionary-based Gene Finder together with an evaluation of sequence conservation among species FAdV-A and FAdV-D. On this basis, 46 potentially protein-coding ORFs were identified. Of these, 33 and 13 ORFs were assigned high and low protein-coding potential, respectively. Homologues of the ancestral adenoviral genes were, with few exceptions, assigned high protein-coding potential. ORFs that were unique to the FAdVs were differentiated into high and low protein-coding potential groups. Notable putative genes with high protein-coding capacity included the previously unreported fiber 1, hypothetical 10.3K and hypothetical 10.5K genes. Transcript analysis revealed that several of the small ORFs less than 300 nt in length that were assigned low coding potential contributed to upstream ORFs (uORFs) in important mRNAs, including the ORF22 mRNA. Subsequent analysis of the previously reported transcripts of FAdV-1, FAdV-9, human adenovirus 2 and bovine adenovirus 3 identified widespread uORFs in AdV mRNAs that have the potential to act as important translational regulatory elements.
Collapse
Affiliation(s)
- Bryan D Griffin
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Éva Nagy
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| |
Collapse
|