1
|
Ko YJ, Lee ME, Cho BH, Kim M, Hyeon JE, Han JH, Han SO. Bioproduction of porphyrins, phycobilins, and their proteins using microbial cell factories: engineering, metabolic regulations, challenges, and perspectives. Crit Rev Biotechnol 2024; 44:373-387. [PMID: 36775664 DOI: 10.1080/07388551.2023.2168512] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/21/2022] [Accepted: 01/03/2023] [Indexed: 02/14/2023]
Abstract
Porphyrins, phycobilins, and their proteins have abundant π-electrons and strongly absorb visible light, some of which bind a metal ion in the center. Because of the structural and optical properties, they not only play critical roles as an essential component in natural systems but also have attracted much attention as a high value specialty chemical in various fields, including renewable energy, cosmetics, medicines, and foods. However, their commercial application seems to be still limited because the market price of porphyrins and phycobilins is generally expensive to apply them easily. Furthermore, their petroleum-based chemical synthesis is energy-intensive and emits a pollutant. Recently, to replace petroleum-based production, many studies on the bioproduction of metalloporphyrins, including Zn-porphyrin, Co-porphyrin, and heme, porphyrin derivatives including chlorophyll, biliverdin, and phycobilins, and their proteins including hemoproteins, phycobiliproteins, and phytochromes from renewable carbon sources using microbial cell factories have been reported. This review outlines recent advances in the bioproduction of porphyrins, phycobilins, and their proteins using microbial cell factories developed by various microbial biotechnology techniques, provides well-organized information on metabolic regulations of the porphyrin metabolism, and then critically discusses challenges and future perspectives. Through these, it is expected to be able to achieve possible solutions and insights and to develop an outstanding platform to be applied to the industry in future research.
Collapse
Affiliation(s)
- Young Jin Ko
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
- Institute of Life Science and Natural Resources, Korea University, Seoul, Korea
| | - Myeong-Eun Lee
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Byeong-Hyeon Cho
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Minhye Kim
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jeong Eun Hyeon
- Department of Next Generation Applied Sciences, The Graduate School of Sungshin University, Seoul, Korea
- Department of Food Science and Biotechnology, College of Knowledge-Based Services Engineering, Sungshin Women's University, Seoul, Korea
| | - Joo Hee Han
- Department of Next Generation Applied Sciences, The Graduate School of Sungshin University, Seoul, Korea
- Department of Food Science and Biotechnology, College of Knowledge-Based Services Engineering, Sungshin Women's University, Seoul, Korea
| | - Sung Ok Han
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Zhang Z, Yang S, Wang Q, Yu H, Zhao B, Wu T, Tang K, Ma J, Yang X, Feng X. Soybean GmHY2a encodes a phytochromobilin synthase that regulates internode length and flowering time. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6646-6662. [PMID: 35946571 PMCID: PMC9629791 DOI: 10.1093/jxb/erac318] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Plant height and flowering time are important agronomic traits that directly affect soybean [Glycine max (L.) Merr.] adaptability and yield. Here, the Glycine max long internode 1 (Gmlin1) mutant was selected from an ethyl methyl sulfonate (EMS)-mutated Williams 82 population due to its long internodes and early flowering. Using bulked segregant analysis (BSA), the Gmlin1 locus was mapped to Glyma.02G304700, a homologue of the Arabidopsis HY2 gene, which encodes a phytochromobilin (PΦB) synthase involved in phytochrome chromophore synthesis. Mutation of GmHY2a results in failure of the de-etiolation response under both red and far-red light. The Gmlin1 mutant exhibits a constitutive shade avoidance response under normal light, and the mutations influence the auxin and gibberellin pathways to promote internode elongation. The Gmlin1 mutant also exhibits decreased photoperiod sensitivity. In addition, the soybean photoperiod repressor gene E1 is down-regulated in the Gmlin1 mutant, resulting in accelerated flowering. The nuclear import of phytochrome A (GmphyA) and GmphyB following light treatment is decreased in Gmlin1 protoplasts, indicating that the weak light response of the Gmlin1 mutant is caused by a decrease in functional phytochrome. Together, these results indicate that GmHY2a plays an important role in soybean phytochrome biosynthesis and provide insights into the adaptability of the soybean plant.
Collapse
Affiliation(s)
- Zhirui Zhang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Qiushi Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China
| | - Hui Yu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China
| | - Beifang Zhao
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China
| | - Tao Wu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kuanqiang Tang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China
| | - Jingjing Ma
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China
| | - Xinjing Yang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Sugishima M, Wada K, Fukuyama K, Yamamoto K. Crystal structure of phytochromobilin synthase in complex with biliverdin IXα, a key enzyme in the biosynthesis of phytochrome. J Biol Chem 2020; 295:771-782. [PMID: 31822504 DOI: 10.1074/jbc.ra119.011431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/08/2019] [Indexed: 11/06/2022] Open
Abstract
Phytochromobilin (PΦB) is a red/far-red light sensory pigment in plant phytochrome. PΦB synthase is a ferredoxin-dependent bilin reductase (FDBR) that catalyzes the site-specific reduction of bilins, which are sensory and photosynthesis pigments, and produces PΦB from biliverdin, a heme-derived linear tetrapyrrole pigment. Here, we determined the crystal structure of tomato PΦB synthase in complex with biliverdin at 1.95 Å resolution. The overall structure of tomato PΦB synthase was similar to those of other FDBRs, except for the addition of a long C-terminal loop and short helices. The structure further revealed that the C-terminal loop is part of the biliverdin-binding pocket and that two basic residues in the C-terminal loop form salt bridges with the propionate groups of biliverdin. This suggested that the C-terminal loop is involved in the interaction with ferredoxin and biliverdin. The configuration of biliverdin bound to tomato PΦB synthase differed from that of biliverdin bound to other FDBRs, and its orientation in PΦB synthase was inverted relative to its orientation in the other FDBRs. Structural and enzymatic analyses disclosed that two aspartic acid residues, Asp-123 and Asp-263, form hydrogen bonds with water molecules and are essential for the site-specific A-ring reduction of biliverdin. On the basis of these observations and enzymatic assays with a V121A PΦB synthase variant, we propose the following mechanistic product release mechanism: PΦB synthase-catalyzed stereospecific reduction produces 2(R)-PΦB, which when bound to PΦB synthase collides with the side chain of Val-121, releasing 2(R)-PΦB from the synthase.
Collapse
Affiliation(s)
- Masakazu Sugishima
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Kei Wada
- Department of Medical Sciences, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Keiichi Fukuyama
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| | - Ken Yamamoto
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| |
Collapse
|
4
|
Sugishima M, Wada K, Fukuyama K, Yamamoto K. Crystal structure of phytochromobilin synthase in complex with biliverdin IXα, a key enzyme in the biosynthesis of phytochrome. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49934-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
5
|
Kyriakakis P, Catanho M, Hoffner N, Thavarajah W, Hu VJ, Chao SS, Hsu A, Pham V, Naghavian L, Dozier LE, Patrick GN, Coleman TP. Biosynthesis of Orthogonal Molecules Using Ferredoxin and Ferredoxin-NADP + Reductase Systems Enables Genetically Encoded PhyB Optogenetics. ACS Synth Biol 2018; 7:706-717. [PMID: 29301067 PMCID: PMC5820651 DOI: 10.1021/acssynbio.7b00413] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transplanting metabolic reactions from one species into another has many uses as a research tool with applications ranging from optogenetics to crop production. Ferredoxin (Fd), the enzyme that most often supplies electrons to these reactions, is often overlooked when transplanting enzymes from one species to another because most cells already contain endogenous Fd. However, we have shown that the production of chromophores used in Phytochrome B (PhyB) optogenetics is greatly enhanced in mammalian cells by expressing bacterial and plant Fds with ferredoxin-NADP+ reductases (FNR). We delineated the rate limiting factors and found that the main metabolic precursor, heme, was not the primary limiting factor for producing either the cyanobacterial or plant chromophores, phycocyanobilin or phytochromobilin, respectively. In fact, Fd is limiting, followed by Fd+FNR and finally heme. Using these findings, we optimized the PCB production system and combined it with a tissue penetrating red/far-red sensing PhyB optogenetic gene switch in animal cells. We further characterized this system in several mammalian cell lines using red and far-red light. Importantly, we found that the light-switchable gene system remains active for several hours upon illumination, even with a short light pulse, and requires very small amounts of light for maximal activation. Boosting chromophore production by matching metabolic pathways with specific ferredoxin systems will enable the unparalleled use of the many PhyB optogenetic tools and has broader implications for optimizing synthetic metabolic pathways.
Collapse
Affiliation(s)
- Phillip Kyriakakis
- Department
of Bioengineering, University of California, San Diego, 9500 Gilman
Drive, La Jolla, California 92093-0412, United States
| | - Marianne Catanho
- Department
of Bioengineering, University of California, San Diego, 9500 Gilman
Drive, La Jolla, California 92093-0412, United States
| | - Nicole Hoffner
- Neurosciences
Graduate Program, University of California, San Diego, 9500 Gilman
Drive, La Jolla, California 92093-0412, United States
| | - Walter Thavarajah
- Department
of Bioengineering, University of California, San Diego, 9500 Gilman
Drive, La Jolla, California 92093-0412, United States
| | - Vincent J. Hu
- Department
of Bioengineering, University of California, San Diego, 9500 Gilman
Drive, La Jolla, California 92093-0412, United States
| | - Syh-Shiuan Chao
- Frank
H. Better School of Medicine, Quinnipiac University, 370 Bassett Road, North Haven, Connecticut 06473, United States
| | - Athena Hsu
- School
of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0412, United States
| | - Vivian Pham
- Roy J. and
Lucille A. Carver College of Medicine, University of Iowa, 451 Newton Road, Iowa City, Iowa 52242, United States
| | - Ladan Naghavian
- Department
of Bioengineering, University of California, San Diego, 9500 Gilman
Drive, La Jolla, California 92093-0412, United States
| | - Lara E. Dozier
- Section
of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093-0347, United States
| | - Gentry N. Patrick
- Section
of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093-0347, United States
| | - Todd P. Coleman
- Department
of Bioengineering, University of California, San Diego, 9500 Gilman
Drive, La Jolla, California 92093-0412, United States
| |
Collapse
|
6
|
Lu L, Zhao BQ, Miao D, Ding WL, Zhou M, Scheer H, Zhao KH. A Simple Preparation Method for Phytochromobilin. Photochem Photobiol 2017; 93:675-680. [DOI: 10.1111/php.12710] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/16/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Lu Lu
- State Key Laboratory of Agricultural Microbiology; Huazhong Agricultural University; Wuhan China
| | - Bao-Qing Zhao
- State Key Laboratory of Agricultural Microbiology; Huazhong Agricultural University; Wuhan China
| | - Dan Miao
- State Key Laboratory of Agricultural Microbiology; Huazhong Agricultural University; Wuhan China
| | - Wen-Long Ding
- State Key Laboratory of Agricultural Microbiology; Huazhong Agricultural University; Wuhan China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology; Huazhong Agricultural University; Wuhan China
| | - Hugo Scheer
- Department Biologie I; Universität München; München Germany
| | - Kai-Hong Zhao
- State Key Laboratory of Agricultural Microbiology; Huazhong Agricultural University; Wuhan China
| |
Collapse
|
7
|
Zhao J, Qiu Z, Ruan B, Kang S, He L, Zhang S, Dong G, Hu J, Zeng D, Zhang G, Gao Z, Ren D, Hu X, Chen G, Guo L, Qian Q, Zhu L. Functional Inactivation of Putative Photosynthetic Electron Acceptor Ferredoxin C2 (FdC2) Induces Delayed Heading Date and Decreased Photosynthetic Rate in Rice. PLoS One 2015; 10:e0143361. [PMID: 26598971 PMCID: PMC4657970 DOI: 10.1371/journal.pone.0143361] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/03/2015] [Indexed: 11/19/2022] Open
Abstract
Ferredoxin (Fd) protein as unique electron acceptor, involved in a variety of fundamental metabolic and signaling processes, which is indispensable for plant growth. The molecular mechanisms of Fd such as regulation of electron partitioning, impact of photosynthetic rate and involvement in the carbon fixing remain elusive in rice. Here we reported a heading date delay and yellowish leaf 1 (hdy1) mutant derived from Japonica rice cultivar “Nipponbare” subjected to EMS treatment. In the paddy field, the hdy1 mutant appeared at a significantly late heading date and had yellow-green leaves during the whole growth stage. Further investigation indicated that the abnormal phenotype of hdy1 was connected with depressed pigment content and photosynthetic rate. Genetic analysis results showed that the hdy1 mutant phenotype was caused by a single recessive nuclear gene mutation. Map-based cloning revealed that OsHDY1 is located on chromosome 3 and encodes an ortholog of the AtFdC2 gene. Complementation and overexpression, transgenic plants exhibited the mutant phenotype including head date, leaf color and the transcription levels of the FdC2 were completely rescued by transformation with OsHDY1. Real-time PCR revealed that the expression product of OsHDY1 was detected in almost all of the organs except root, whereas highest expression levels were observed in seeding new leaves. The lower expression levels of HDY1 and content of iron were detected in hdy1 than WT’s. The FdC2::GFP was detected in the chloroplasts of rice. Real-time PCR results showed that the expression of many photosynthetic electron transfer related genes in hdy1 were higher than WT. Our results suggest that OsFdC2 plays an important role in photosynthetic rate and development of heading date by regulating electron transfer and chlorophyll content in rice.
Collapse
Affiliation(s)
- Juan Zhao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Zhennan Qiu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Banpu Ruan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Shujing Kang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Lei He
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Sen Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Guojun Dong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Jiang Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Dali Zeng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Guangheng Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Deyong Ren
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Xingming Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Guang Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Li Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
- * E-mail:
| |
Collapse
|
8
|
Yoshitake Y, Yokoo T, Saito H, Tsukiyama T, Quan X, Zikihara K, Katsura H, Tokutomi S, Aboshi T, Mori N, Inoue H, Nishida H, Kohchi T, Teraishi M, Okumoto Y, Tanisaka T. The effects of phytochrome-mediated light signals on the developmental acquisition of photoperiod sensitivity in rice. Sci Rep 2015; 5:7709. [PMID: 25573482 PMCID: PMC4287723 DOI: 10.1038/srep07709] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 12/08/2014] [Indexed: 11/30/2022] Open
Abstract
Plants commonly rely on photoperiodism to control flowering time. Rice development before floral initiation is divided into two successive phases: the basic vegetative growth phase (BVP, photoperiod-insensitive phase) and the photoperiod-sensitive phase (PSP). The mechanism responsible for the transition of rice plants into their photoperiod-sensitive state remains elusive. Here, we show that se13, a mutation detected in the extremely early flowering mutant X61 is a nonsense mutant gene of OsHY2, which encodes phytochromobilin (PΦB) synthase, as evidenced by spectrometric and photomorphogenic analyses. We demonstrated that some flowering time and circadian clock genes harbor different expression profiles in BVP as opposed to PSP, and that this phenomenon is chiefly caused by different phytochrome-mediated light signal requirements: in BVP, phytochrome-mediated light signals directly suppress Ehd2, while in PSP, phytochrome-mediated light signals activate Hd1 and Ghd7 expression through the circadian clock genes' expression. These findings indicate that light receptivity through the phytochromes is different between two distinct developmental phases corresponding to the BVP and PSP in the rice flowering process. Our results suggest that these differences might be involved in the acquisition of photoperiod sensitivity in rice.
Collapse
Affiliation(s)
- Yoshihiro Yoshitake
- Division of Agronomy and Horticulture Science, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Takayuki Yokoo
- Division of Agronomy and Horticulture Science, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Hiroki Saito
- Division of Agronomy and Horticulture Science, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Takuji Tsukiyama
- Division of Agronomy and Horticulture Science, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Xu Quan
- Division of Agronomy and Horticulture Science, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kazunori Zikihara
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Hitomi Katsura
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Satoru Tokutomi
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Takako Aboshi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Naoki Mori
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Hiromo Inoue
- Division of Agronomy and Horticulture Science, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Hidetaka Nishida
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Masayoshi Teraishi
- Division of Agronomy and Horticulture Science, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Yutaka Okumoto
- Division of Agronomy and Horticulture Science, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Takatoshi Tanisaka
- 1] Division of Agronomy and Horticulture Science, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan [2] Department of Agricultural Regional Vitalization, Kibi International University, Minamiawaji, Hyogo, 656-0484, Japan
| |
Collapse
|
9
|
Hanke G, Mulo P. Plant type ferredoxins and ferredoxin-dependent metabolism. PLANT, CELL & ENVIRONMENT 2013; 36:1071-1084. [PMID: 23190083 DOI: 10.1111/pce.12046] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 11/19/2012] [Accepted: 11/20/2012] [Indexed: 05/24/2023]
Abstract
Ferredoxin (Fd) is a small [2Fe-2S] cluster-containing protein found in all organisms performing oxygenic photosynthesis. Fd is the first soluble acceptor of electrons on the stromal side of the chloroplast electron transport chain, and as such is pivotal to determining the distribution of these electrons to different metabolic reactions. In chloroplasts, the principle sink for electrons is in the production of NADPH, which is mostly consumed during the assimilation of CO2 . In addition to this primary function in photosynthesis, Fds are also involved in a number of other essential metabolic reactions, including biosynthesis of chlorophyll, phytochrome and fatty acids, several steps in the assimilation of sulphur and nitrogen, as well as redox signalling and maintenance of redox balance via the thioredoxin system and Halliwell-Asada cycle. This makes Fds crucial determinants of the electron transfer between the thylakoid membrane and a variety of soluble enzymes dependent on these electrons. In this article, we will first describe the current knowledge on the structure and function of the various Fd isoforms present in chloroplasts of higher plants and then discuss the processes involved in oxidation of Fd, introducing the corresponding enzymes and discussing what is known about their relative interaction with Fd.
Collapse
Affiliation(s)
- Guy Hanke
- Plant Physiology, Faculty of Biology and Chemistry, University of Osnabrück, DE-49076, Osnabrück, Germany
| | | |
Collapse
|
10
|
Lodeyro AF, Ceccoli RD, Pierella Karlusich JJ, Carrillo N. The importance of flavodoxin for environmental stress tolerance in photosynthetic microorganisms and transgenic plants. Mechanism, evolution and biotechnological potential. FEBS Lett 2012; 586:2917-24. [PMID: 22819831 DOI: 10.1016/j.febslet.2012.07.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 07/06/2012] [Accepted: 07/09/2012] [Indexed: 10/28/2022]
Abstract
Ferredoxins are electron shuttles harboring iron-sulfur clusters which participate in oxido-reductive pathways in organisms displaying very different lifestyles. Ferredoxin levels decline in plants and cyanobacteria exposed to environmental stress and iron starvation. Flavodoxin is an isofunctional flavoprotein present in cyanobacteria and algae (not plants) which is induced and replaces ferredoxin under stress. Expression of a chloroplast-targeted flavodoxin in plants confers tolerance to multiple stresses and iron deficit. We discuss herein the bases for functional equivalence between the two proteins, the reasons for ferredoxin conservation despite its susceptibility to aerobic stress and for the loss of flavodoxin as an adaptive trait in higher eukaryotes. We also propose a mechanism to explain the tolerance conferred by flavodoxin when expressed in plants.
Collapse
Affiliation(s)
- Anabella F Lodeyro
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | | | | | | |
Collapse
|
11
|
Structural and mechanistic insight into the ferredoxin-mediated two-electron reduction of bilins. Biochem J 2011; 439:257-64. [PMID: 21729003 DOI: 10.1042/bj20110814] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PEB (phycoerythrobilin) is one of the major open-chain tetrapyrrole molecules found in cyanobacterial light-harvesting phycobiliproteins. In these organisms, two enzymes of the ferredoxin-dependent bilin reductase family work in tandem to reduce BV (biliverdin IXα) to PEB. In contrast, a single cyanophage-encoded enzyme of the same family has been identified to catalyse the identical reaction. Using UV-visible and EPR spectroscopy we investigated the two individual cyanobacterial enzymes PebA [15,16-DHBV (dihydrobiliverdin):ferredoxin oxidoreductase] and PebB (PEB:ferredoxin oxidoreductase) showing that the two subsequent reactions catalysed by the phage enzyme PebS (PEB synthase) are clearly dissected in the cyanobacterial versions. Although a highly conserved aspartate residue is critical for both reductions, a second conserved aspartate residue is only involved in the A-ring reduction of the tetrapyrrole in PebB and PebS. The crystal structure of PebA from Synechococcus sp. WH8020 in complex with its substrate BV at a 1.55 Å (1 Å=0.1 nm) resolution revealed further insight into the understanding of enzyme evolution and function. Based on the structure it becomes obvious that in addition to the importance of certain catalytic residues, the shape of the active site and consequently the binding of the substrate highly determines the catalytic properties.
Collapse
|
12
|
Tanaka R, Kobayashi K, Masuda T. Tetrapyrrole Metabolism in Arabidopsis thaliana. THE ARABIDOPSIS BOOK 2011; 9:e0145. [PMID: 22303270 PMCID: PMC3268503 DOI: 10.1199/tab.0145] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Higher plants produce four classes of tetrapyrroles, namely, chlorophyll (Chl), heme, siroheme, and phytochromobilin. In plants, tetrapyrroles play essential roles in a wide range of biological activities including photosynthesis, respiration and the assimilation of nitrogen/sulfur. All four classes of tetrapyrroles are derived from a common biosynthetic pathway that resides in the plastid. In this article, we present an overview of tetrapyrrole metabolism in Arabidopsis and other higher plants, and we describe all identified enzymatic steps involved in this metabolism. We also summarize recent findings on Chl biosynthesis and Chl breakdown. Recent advances in this field, in particular those on the genetic and biochemical analyses of novel enzymes, prompted us to redraw the tetrapyrrole metabolic pathways. In addition, we also summarize our current understanding on the regulatory mechanisms governing tetrapyrrole metabolism. The interactions of tetrapyrrole biosynthesis and other cellular processes including the plastid-to-nucleus signal transduction are discussed.
Collapse
Affiliation(s)
- Ryouichi Tanaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | | | - Tatsuru Masuda
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
Vashist SK, Zhang B, Zheng D, Al-Rubeaan K, Luong JHT, Sheu FS. Sulfo-N-hydroxysuccinimide interferes with bicinchoninic acid protein assay. Anal Biochem 2011; 417:156-8. [PMID: 21704014 DOI: 10.1016/j.ab.2011.05.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 05/30/2011] [Accepted: 05/31/2011] [Indexed: 10/18/2022]
Abstract
This study revealed a major interference from sulfo-N-hydroxysuccinimide (sulfo-NHS) in the bicinchoninic acid (BCA) protein assay. Sulfo-NHS, a common reagent used in bioconjugation and analytical biochemistry, exhibited absorbance signals and absorbance peaks at 562 nm, comparable to bovine serum albumin (BSA). However, the combined absorbance of sulfo-NHS and BSA was not strictly additive. The sulfo-NHS interference was suggested to be caused by the reduction of Cu(2+) in the BCA Kit's reagent B (4% cupric sulfate) in a manner similar to that of the protein.
Collapse
|
14
|
Dietz KJ, Jacquot JP, Harris G. Hubs and bottlenecks in plant molecular signalling networks. THE NEW PHYTOLOGIST 2010; 188:919-38. [PMID: 20958306 DOI: 10.1111/j.1469-8137.2010.03502.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Conditional control of plant cell function and development relies on appropriate signal perception, signal integration and processing. The development of high throughput technologies such as proteomics and interactomics has enabled the identification of protein interaction networks that mediate signal processing from inputs to appropriate outputs. Such networks can be depicted in graphical representations using nodes and edges allowing for the immediate visualization and analysis of the network's topology. Hubs are network elements characterized by many edges (often degree grade k ≥ 5) which confer a degree of topological importance to them. The review introduces the concept of networks, hubs and bottlenecks and describes four examples from plant science in more detail, namely hubs in the redox regulatory network of the chloroplast with ferredoxin, thioredoxin and peroxiredoxin, in mitogen activated protein (MAP) kinase signal processing, in photomorphogenesis with the COP9 signalosome, COP1 and CDD, and monomeric GTPase function. Some guidance is provided to appropriate internet resources, web repositories, databases and their use. Plant networks can be generated from existing public databases and this type of analysis is valuable in support of existing hypotheses, or to allow for the generation of new concepts or ideas. However, intensive manual curating of in silico networks is still always necessary.
Collapse
Affiliation(s)
- Karl-Josef Dietz
- Plant Biochemistry and Physiology, Bielefeld University, D-33501 Bielefeld, Germany.
| | | | | |
Collapse
|