1
|
Sas-Chen A, Thomas JM, Matzov D, Taoka M, Nance KD, Nir R, Bryson KM, Shachar R, Liman GLS, Burkhart BW, Gamage ST, Nobe Y, Briney CA, Levy MJ, Fuchs RT, Robb GB, Hartmann J, Sharma S, Lin Q, Florens L, Washburn MP, Isobe T, Santangelo TJ, Shalev-Benami M, Meier JL, Schwartz S. Dynamic RNA acetylation revealed by quantitative cross-evolutionary mapping. Nature 2020; 583:638-643. [PMID: 32555463 PMCID: PMC8130014 DOI: 10.1038/s41586-020-2418-2] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 03/26/2020] [Indexed: 12/14/2022]
Abstract
N4-acetylcytidine (ac4C) is an ancient and highly conserved RNA modification that is present on tRNA and rRNA and has recently been investigated in eukaryotic mRNA1-3. However, the distribution, dynamics and functions of cytidine acetylation have yet to be fully elucidated. Here we report ac4C-seq, a chemical genomic method for the transcriptome-wide quantitative mapping of ac4C at single-nucleotide resolution. In human and yeast mRNAs, ac4C sites are not detected but can be induced-at a conserved sequence motif-via the ectopic overexpression of eukaryotic acetyltransferase complexes. By contrast, cross-evolutionary profiling revealed unprecedented levels of ac4C across hundreds of residues in rRNA, tRNA, non-coding RNA and mRNA from hyperthermophilic archaea. Ac4C is markedly induced in response to increases in temperature, and acetyltransferase-deficient archaeal strains exhibit temperature-dependent growth defects. Visualization of wild-type and acetyltransferase-deficient archaeal ribosomes by cryo-electron microscopy provided structural insights into the temperature-dependent distribution of ac4C and its potential thermoadaptive role. Our studies quantitatively define the ac4C landscape, providing a technical and conceptual foundation for elucidating the role of this modification in biology and disease4-6.
Collapse
Affiliation(s)
- Aldema Sas-Chen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Justin M Thomas
- National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Donna Matzov
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Masato Taoka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Kellie D Nance
- National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Ronit Nir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Keri M Bryson
- National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Ran Shachar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Geraldy L S Liman
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Brett W Burkhart
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | | | - Yuko Nobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Chloe A Briney
- National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | | | - Ryan T Fuchs
- RNA Research Division, New England Biolabs, Inc, Ipswich, MA, USA
| | - G Brett Robb
- RNA Research Division, New England Biolabs, Inc, Ipswich, MA, USA
| | - Jesse Hartmann
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Sunny Sharma
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Qishan Lin
- RNA Epitranscriptomics and Proteomics Resource, University at Albany, Albany, NY, USA
| | | | | | - Toshiaki Isobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Thomas J Santangelo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Moran Shalev-Benami
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Jordan L Meier
- National Cancer Institute, National Institutes of Health, Frederick, MD, USA.
| | - Schraga Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
2
|
Sanders TJ, Wenck BR, Selan JN, Barker MP, Trimmer SA, Walker JE, Santangelo TJ. FttA is a CPSF73 homologue that terminates transcription in Archaea. Nat Microbiol 2020; 5:545-553. [PMID: 32094586 PMCID: PMC7103508 DOI: 10.1038/s41564-020-0667-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/06/2020] [Indexed: 12/23/2022]
Abstract
Regulated gene expression is largely achieved by controlling the activities of essential, multisubunit RNA polymerase transcription elongation complexes (TECs). The extreme stability required of TECs to processively transcribe large genomic regions necessitates robust mechanisms to terminate transcription. Efficient transcription termination is particularly critical for gene-dense bacterial and archaeal genomes1-3 in which continued transcription would necessarily transcribe immediately adjacent genes and result in conflicts between the transcription and replication apparatuses4-6; the coupling of transcription and translation7,8 would permit the loading of ribosomes onto aberrant transcripts. Only select sequences or transcription termination factors can disrupt the otherwise extremely stable TEC and we demonstrate that one of the last universally conserved archaeal proteins with unknown biological function is the Factor that terminates transcription in Archaea (FttA). FttA resolves the dichotomy of a prokaryotic gene structure (operons and polarity) and eukaryotic molecular homology (general transcription apparatus) that is observed in Archaea. This missing link between prokaryotic and eukaryotic transcription regulation provides the most parsimonious link to the evolution of the processing activities involved in RNA 3'-end formation in Eukarya.
Collapse
Affiliation(s)
- Travis J Sanders
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Breanna R Wenck
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Jocelyn N Selan
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Mathew P Barker
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Stavros A Trimmer
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Julie E Walker
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
- Watchmaker Genomics, Boulder, CO, USA
| | - Thomas J Santangelo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
3
|
Fouqueau T, Blombach F, Cackett G, Carty AE, Matelska DM, Ofer S, Pilotto S, Phung DK, Werner F. The cutting edge of archaeal transcription. Emerg Top Life Sci 2018; 2:517-533. [PMID: 33525828 PMCID: PMC7289017 DOI: 10.1042/etls20180014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 12/26/2022]
Abstract
The archaeal RNA polymerase (RNAP) is a double-psi β-barrel enzyme closely related to eukaryotic RNAPII in terms of subunit composition and architecture, promoter elements and basal transcription factors required for the initiation and elongation phase of transcription. Understanding archaeal transcription is, therefore, key to delineate the universally conserved fundamental mechanisms of transcription as well as the evolution of the archaeo-eukaryotic transcription machineries. The dynamic interplay between RNAP subunits, transcription factors and nucleic acids dictates the activity of RNAP and ultimately gene expression. This review focusses on recent progress in our understanding of (i) the structure, function and molecular mechanisms of known and less characterized factors including Elf1 (Elongation factor 1), NusA (N-utilization substance A), TFS4, RIP and Eta, and (ii) their evolution and phylogenetic distribution across the expanding tree of Archaea.
Collapse
Affiliation(s)
- Thomas Fouqueau
- RNAP laboratory, Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K
| | - Fabian Blombach
- RNAP laboratory, Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K
| | - Gwenny Cackett
- RNAP laboratory, Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K
| | - Alice E Carty
- RNAP laboratory, Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K
| | - Dorota M Matelska
- RNAP laboratory, Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K
| | - Sapir Ofer
- RNAP laboratory, Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K
| | - Simona Pilotto
- RNAP laboratory, Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K
| | - Duy Khanh Phung
- RNAP laboratory, Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K
| | - Finn Werner
- RNAP laboratory, Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K
| |
Collapse
|
4
|
Abstract
Transcription elongation is not uniform and transcription is often hindered by protein-bound factors or DNA lesions that limit translocation and impair catalysis. Despite the high degree of sequence and structural homology of the multi-subunit RNA polymerases (RNAP), substantial differences in response to DNA lesions have been reported. Archaea encode only a single RNAP with striking structural conservation with eukaryotic RNAP II (Pol II). Here, we demonstrate that the archaeal RNAP from Thermococcus kodakarensis is sensitive to a variety of DNA lesions that pause and arrest RNAP at or adjacent to the site of DNA damage. DNA damage only halts elongation when present in the template strand, and the damage often results in RNAP arresting such that the lesion would be encapsulated with the transcription elongation complex. The strand-specific halt to archaeal transcription elongation on modified templates is supportive of RNAP recognizing DNA damage and potentially initiating DNA repair through a process akin to the well-described transcription-coupled DNA repair (TCR) pathways in Bacteria and Eukarya.
Collapse
Affiliation(s)
- Alexandra M Gehring
- a Department of Biochemistry and Molecular Biology , Colorado State University , Fort Collins , CO , USA.,b Institute for Genome Architecture and Function, Colorado State University , Fort Collins , CO , USA
| | - Thomas J Santangelo
- a Department of Biochemistry and Molecular Biology , Colorado State University , Fort Collins , CO , USA.,b Institute for Genome Architecture and Function, Colorado State University , Fort Collins , CO , USA
| |
Collapse
|
5
|
Affiliation(s)
- Joel A. Farkas
- Department of Microbiology and Center for RNA Biology, Ohio State University, Columbus, Ohio 43210
| | - Jonathan W. Picking
- Department of Microbiology and Center for RNA Biology, Ohio State University, Columbus, Ohio 43210
| | - Thomas J. Santangelo
- Department of Microbiology and Center for RNA Biology, Ohio State University, Columbus, Ohio 43210
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523;
| |
Collapse
|
6
|
Affiliation(s)
- Finn Werner
- RNAP Laboratory, Institute for Structural and Molecular Biology, Division of Biosciences, University College London , Darwin Building, Gower Street, London WC1E 6BT, U.K
| |
Collapse
|
7
|
Wiesler SC, Burrows PC, Buck M. A dual switch controls bacterial enhancer-dependent transcription. Nucleic Acids Res 2012; 40:10878-92. [PMID: 22965125 PMCID: PMC3505966 DOI: 10.1093/nar/gks844] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 08/13/2012] [Accepted: 08/13/2012] [Indexed: 12/31/2022] Open
Abstract
Bacterial RNA polymerases (RNAPs) are targets for antibiotics. Myxopyronin binds to the RNAP switch regions to block structural rearrangements needed for formation of open promoter complexes. Bacterial RNAPs containing the major variant σ(54) factor are activated by enhancer-binding proteins (bEBPs) and transcribe genes whose products are needed in pathogenicity and stress responses. We show that (i) enhancer-dependent RNAPs help Escherichia coli to survive in the presence of myxopyronin, (ii) enhancer-dependent RNAPs partially resist inhibition by myxopyronin and (iii) ATP hydrolysis catalysed by bEBPs is obligatory for functional interaction of the RNAP switch regions with the transcription start site. We demonstrate that enhancer-dependent promoters contain two barriers to full DNA opening, allowing tight regulation of transcription initiation. bEBPs engage in a dual switch to (i) allow propagation of nucleated DNA melting from an upstream DNA fork junction and (ii) complete the formation of the transcription bubble and downstream DNA fork junction at the RNA synthesis start site, resulting in switch region-dependent RNAP clamp closure and open promoter complex formation.
Collapse
Affiliation(s)
- Simone C. Wiesler
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | | | - Martin Buck
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK
| |
Collapse
|
8
|
An archaeal histone is required for transformation of Thermococcus kodakarensis. J Bacteriol 2012; 194:6864-74. [PMID: 23065975 DOI: 10.1128/jb.01523-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Archaeal histones wrap DNA into complexes, designated archaeal nucleosomes, that resemble the tetrasome core of a eukaryotic nucleosome. Therefore, all DNA interactions in vivo in Thermococcus kodakarensis, the most genetically versatile model species for archaeal research, must occur in the context of a histone-bound genome. Here we report the construction and properties of T. kodakarensis strains that have TK1413 or TK2289 deleted, the genes that encode HTkA and HTkB, respectively, the two archaeal histones present in this archaeon. All attempts to generate a strain with both TK1413 and TK2289 deleted were unsuccessful, arguing that a histone-mediated event(s) in T. kodakarensis is essential. The HTkA and HTkB amino acid sequences are 84% identical (56 of 67 residues) and 94% similar (63 of 67 residues), but despite this homology and their apparent redundancy in terms of supporting viability, the absence of HTkA and HTkB resulted in differences in growth and in quantitative and qualitative differences in genome transcription. A most surprising result was that the deletion of TK1413 (ΔhtkA) resulted in a T. kodakarensis strain that was no longer amenable to transformation, whereas the deletion of TK2289 (ΔhtkB) had no detrimental effects on transformation. Potential roles for the archaeal histones in regulating gene expression and for HTkA in DNA uptake and recombination are discussed.
Collapse
|
9
|
Atomi H, Imanaka T, Fukui T. Overview of the genetic tools in the Archaea. Front Microbiol 2012; 3:337. [PMID: 23060865 PMCID: PMC3462420 DOI: 10.3389/fmicb.2012.00337] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Accepted: 09/01/2012] [Indexed: 01/17/2023] Open
Abstract
This section provides an overview of the genetic systems developed in the Archaea. Genetic manipulation is possible in many members of the halophiles, methanogens, Sulfolobus, and Thermococcales. We describe the selection/counterselection principles utilized in each of these groups, which consist of antibiotics and their resistance markers, and auxotrophic host strains and complementary markers. The latter strategy utilizes techniques similar to those developed in yeast. However, Archaea are resistant to many of the antibiotics routinely used for selection in the Bacteria, and a number of strategies specific to the Archaea have been developed. In addition, examples utilizing the genetic systems developed for each group will be briefly described.
Collapse
Affiliation(s)
- Haruyuki Atomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku Kyoto, Japan ; JST, CREST, Sanbancho, Chiyoda-ku Tokyo, Japan
| | | | | |
Collapse
|
10
|
Hileman TH, Santangelo TJ. Genetics Techniques for Thermococcus kodakarensis. Front Microbiol 2012; 3:195. [PMID: 22701112 PMCID: PMC3370424 DOI: 10.3389/fmicb.2012.00195] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 05/13/2012] [Indexed: 11/13/2022] Open
Abstract
Thermococcus kodakarensis (T. kodakarensis) has emerged as a premier model system for studies of archaeal biochemistry, genetics, and hyperthermophily. This prominence is derived largely from the natural competence of T. kodakarensis and the comprehensive, rapid, and facile techniques available for manipulation of the T. kodakarensis genome. These genetic capacities are complemented by robust planktonic growth, simple selections, and screens, defined in vitro transcription and translation systems, replicative expression plasmids, in vivo reporter constructs, and an ever-expanding knowledge of the regulatory mechanisms underlying T. kodakarensis metabolism. Here we review the existing techniques for genetic and biochemical manipulation of T. kodakarensis. We also introduce a universal platform to generate the first comprehensive deletion and epitope/affinity tagged archaeal strain libraries.
Collapse
Affiliation(s)
- Travis H Hileman
- Department of Microbiology, Center for RNA Biology, Ohio State University Columbus, OH, USA
| | | |
Collapse
|
11
|
Grohmann D, Werner F. Recent advances in the understanding of archaeal transcription. Curr Opin Microbiol 2011; 14:328-34. [DOI: 10.1016/j.mib.2011.04.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 04/13/2011] [Accepted: 04/13/2011] [Indexed: 01/12/2023]
|
12
|
Abstract
Several families of plasmids and viruses (PVs) have now been described in hyperthermophilic archaea of the order Thermococcales. One family of plasmids replicates by the rolling circle mechanism, whereas most other PVs probably replicate by the θ mode. PVs from Thermococcales encode novel families of DNA replication proteins that have only detectable homologues in other archaeal PVs. PVs from different families share a common gene pool and co-evolve with their hosts. Most Thermococcales also produce virus-like membrane vesicles similar to eukaryotic microparticles (ectosomes). Some membrane vesicles of Thermococcus nautilus harbour the plasmid pTN1, suggesting that vesicles can be involved in plasmid transfer between species.
Collapse
|
13
|
Taylor MP, van Zyl L, Tuffin IM, Leak DJ, Cowan DA. Genetic tool development underpins recent advances in thermophilic whole-cell biocatalysts. Microb Biotechnol 2011; 4:438-48. [PMID: 21310009 PMCID: PMC3815256 DOI: 10.1111/j.1751-7915.2010.00246.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The environmental value of sustainably producing bioproducts from biomass is now widely appreciated, with a primary target being the economic production of fuels such as bioethanol from lignocellulose. The application of thermophilic prokaryotes is a rapidly developing niche in this field, driven by their known catabolic versatility with lignocellulose-derived carbohydrates. Fundamental to the success of this work has been the development of reliable genetic and molecular systems. These technical tools are now available to assist in the development of other (hyper)thermophilic strains with diverse phenotypes such as hemicellulolytic and cellulolytic properties, branched chain alcohol production and other 'valuable bioproduct' synthetic capabilities. Here we present an insight into the historical limitations, recent developments and current status of a number of genetic systems for thermophiles. We also highlight the value of reliable genetic methods for increasing our knowledge of thermophile physiology. We argue that the development of robust genetic systems is paramount in the evolution of future thermophilic based bioprocesses and make suggestions for future approaches and genetic targets that will facilitate this process.
Collapse
Affiliation(s)
- M P Taylor
- Institute for Microbial Biotechnology and Metagenomics (IMBM), University of the Western Cape, Modderdam Road, Bellville 7535, Cape Town, South Africa
| | | | | | | | | |
Collapse
|