1
|
Hyde EI, Callow P, Rajasekar KV, Timmins P, Patel TR, Siligardi G, Hussain R, White SA, Thomas CM, Scott DJ. Intrinsic disorder in the partitioning protein KorB persists after co-operative complex formation with operator DNA and KorA. Biochem J 2017; 474:3121-3135. [PMID: 28760886 PMCID: PMC5577506 DOI: 10.1042/bcj20170281] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 11/24/2022]
Abstract
The ParB protein, KorB, from the RK2 plasmid is required for DNA partitioning and transcriptional repression. It acts co-operatively with other proteins, including the repressor KorA. Like many multifunctional proteins, KorB contains regions of intrinsically disordered structure, existing in a large ensemble of interconverting conformations. Using NMR spectroscopy, circular dichroism and small-angle neutron scattering, we studied KorB selectively within its binary complexes with KorA and DNA, and within the ternary KorA/KorB/DNA complex. The bound KorB protein remains disordered with a mobile C-terminal domain and no changes in the secondary structure, but increases in the radius of gyration on complex formation. Comparison of wild-type KorB with an N-terminal deletion mutant allows a model of the ensemble average distances between the domains when bound to DNA. We propose that the positive co-operativity between KorB, KorA and DNA results from conformational restriction of KorB on binding each partner, while maintaining disorder.
Collapse
Affiliation(s)
- Eva I Hyde
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Philip Callow
- Institut Laue Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
| | | | - Peter Timmins
- Institut Laue Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
| | - Trushar R Patel
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Giuliano Siligardi
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K
| | - Rohanah Hussain
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K
| | - Scott A White
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, U.K
| | | | - David J Scott
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, U.K.
- ISIS Neutron and Muon Spallation Source and Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire, U.K
| |
Collapse
|
2
|
Rajasekar KV, Lovering AL, Dancea F, Scott DJ, Harris SA, Bingle LEH, Roessle M, Thomas CM, Hyde EI, White SA. Flexibility of KorA, a plasmid-encoded, global transcription regulator, in the presence and the absence of its operator. Nucleic Acids Res 2016; 44:4947-56. [PMID: 27016739 PMCID: PMC4889941 DOI: 10.1093/nar/gkw191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 03/08/2016] [Accepted: 03/11/2016] [Indexed: 12/03/2022] Open
Abstract
The IncP (Incompatibility group P) plasmids are important carriers in the spread of antibiotic resistance across Gram-negative bacteria. Gene expression in the IncP-1 plasmids is stringently controlled by a network of four global repressors, KorA, KorB, TrbA and KorC interacting cooperatively. Intriguingly, KorA and KorB can act as co-repressors at varying distances between their operators, even when they are moved to be on opposite sides of the DNA. KorA is a homodimer with the 101-amino acid subunits, folding into an N-terminal DNA-binding domain and a C-terminal dimerization domain. In this study, we have determined the structures of the free KorA repressor and two complexes each bound to a 20-bp palindromic DNA duplex containing its consensus operator sequence. Using a combination of X-ray crystallography, nuclear magnetic resonance spectroscopy, SAXS and molecular dynamics calculations, we show that the linker between the two domains is very flexible and the protein remains highly mobile in the presence of DNA. This flexibility allows the DNA-binding domains of the dimer to straddle the operator DNA on binding and is likely to be important in cooperative binding to KorB. Unexpectedly, the C-terminal domain of KorA is structurally similar to the dimerization domain of the tumour suppressor p53.
Collapse
Affiliation(s)
- Karthik V Rajasekar
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Andrew L Lovering
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Felician Dancea
- School of Cancer Studies, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - David J Scott
- School of Biosciences, Sutton Bonington Campus, University of Nottingham, Nottingham LE12 5RD, UK
| | - Sarah A Harris
- School of Physics and Astronomy and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Lewis E H Bingle
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | - Christopher M Thomas
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Eva I Hyde
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Scott A White
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
3
|
Abstract
The stable maintenance of low-copy-number plasmids in bacteria is actively driven by partition mechanisms that are responsible for the positioning of plasmids inside the cell. Partition systems are ubiquitous in the microbial world and are encoded by many bacterial chromosomes as well as plasmids. These systems, although different in sequence and mechanism, typically consist of two proteins and a DNA partition site, or prokaryotic centromere, on the plasmid or chromosome. One protein binds site-specifically to the centromere to form a partition complex, and the other protein uses the energy of nucleotide binding and hydrolysis to transport the plasmid, via interactions with this partition complex inside the cell. For plasmids, this minimal cassette is sufficient to direct proper segregation in bacterial cells. There has been significant progress in the last several years in our understanding of partition mechanisms. Two general areas that have developed are (i) the structural biology of partition proteins and their interactions with DNA and (ii) the action and dynamics of the partition ATPases that drive the process. In addition, systems that use tubulin-like GTPases to partition plasmids have recently been identified. In this chapter, we concentrate on these recent developments and the molecular details of plasmid partition mechanisms.
Collapse
|
4
|
Scott DJ, Winzor DJ. Characterization of Intrinsically Disordered Proteins by Analytical Ultracentrifugation. Methods Enzymol 2015; 562:225-39. [PMID: 26412654 DOI: 10.1016/bs.mie.2015.06.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Intrinsically disordered proteins have traditionally been largely neglected by structural biologists because a lack of rigid structure precludes their study by X-ray crystallography. Structural information must therefore be inferred from physicochemical studies of their solution behavior. Analytical ultracentrifugation yields important information about the gross conformation of an intrinsically disordered protein. Sedimentation velocity studies provide estimates of the weight-average sedimentation and diffusion coefficients of a given macromolecular state of the protein.
Collapse
Affiliation(s)
- David J Scott
- National Center for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Nottingham, United Kingdom; ISIS Spallation Neutron and Muon Source and Research Complex at Harwell, Rutherford-Appleton Laboratory, Oxford, United Kingdom.
| | - Donald J Winzor
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
5
|
Receveur-Brechot V, Durand D. How random are intrinsically disordered proteins? A small angle scattering perspective. Curr Protein Pept Sci 2012; 13:55-75. [PMID: 22044150 PMCID: PMC3394175 DOI: 10.2174/138920312799277901] [Citation(s) in RCA: 277] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 08/04/2011] [Accepted: 08/04/2011] [Indexed: 01/08/2023]
Abstract
While the crucial role of intrinsically disordered proteins (IDPs) in the cell cycle is now recognized, deciphering their molecular mode of action at the structural level still remains highly challenging and requires a combination of many biophysical approaches. Among them, small angle X-ray scattering (SAXS) has been extremely successful in the last decade and has become an indispensable technique for addressing many of the fundamental questions regarding the activities of IDPs. After introducing some experimental issues specific to IDPs and in relation to the latest technical developments, this article presents the interest of the theory of polymer physics to evaluate the flexibility of fully disordered proteins. The different strategies to obtain 3-dimensional models of IDPs, free in solution and associated in a complex, are then reviewed. Indeed, recent computational advances have made it possible to readily extract maximum information from the scattering curve with a special emphasis on highly flexible systems, such as multidomain proteins and IDPs. Furthermore, integrated computational approaches now enable the generation of ensembles of conformers to translate the unique flexible characteristics of IDPs by taking into consideration the constraints of more and more various complementary experiment. In particular, a combination of SAXS with high-resolution techniques, such as x-ray crystallography and NMR, allows us to provide reliable models and to gain unique structural insights about the protein over multiple structural scales. The latest neutron scattering experiments also promise new advances in the study of the conformational changes of macromolecules involving more complex systems.
Collapse
|
6
|
Scott DJ, Winzor DJ. Sedimentation velocity of intrinsically disordered proteins: what information can we actually obtain? MOLECULAR BIOSYSTEMS 2012; 8:378-80. [PMID: 21952612 DOI: 10.1039/c1mb05262d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intrinsically disordered proteins are a challenge to characterise structurally because of their innate flexibility. Hydrodynamic methods such as sedimentation velocity analytical ultracentrifugation have been proposed as methods for their characterisation. By examining in detail this assumption we show that although velocity measurements do yield information on gross conformation, the information is restricted to only the weight averaged sedimentation and diffusion coefficients of the conformational ensemble.
Collapse
Affiliation(s)
- David J Scott
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom.
| | | |
Collapse
|
7
|
Affiliation(s)
- Monika Fuxreiter
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
8
|
The evidence of large-scale DNA-induced compaction in the mycobacterial chromosomal ParB. J Mol Biol 2011; 413:901-7. [PMID: 21839743 DOI: 10.1016/j.jmb.2011.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 07/22/2011] [Accepted: 08/01/2011] [Indexed: 11/21/2022]
Abstract
The bacterial chromosome trafficking apparatus or the segrosome participates in the mitotic-like segregation of the chromosomes prior to cell division in several bacteria. ParB, which is the parS DNA-binding component of the segrosome, polymerizes on the parS-adjacent chromosome to form a nucleoprotein filament of unknown nature for the segregation function. We combined static light scattering, circular dichroism and small-angle X-ray scattering to present evidence that the apo form of the mycobacterial ParB forms an elongated dimer with intrinsically disordered regions as well as folded domains in solution. A comparison of the solution scattering of the apo and the parS-bound ParBs indicates a rather drastic compaction of the protein upon DNA binding. We propose that this binding-induced conformational transition is priming the ParB for polymerization on the DNA template.
Collapse
|
9
|
Fuxreiter M, Simon I, Bondos S. Dynamic protein-DNA recognition: beyond what can be seen. Trends Biochem Sci 2011; 36:415-23. [PMID: 21620710 DOI: 10.1016/j.tibs.2011.04.006] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 04/15/2011] [Accepted: 04/15/2011] [Indexed: 12/28/2022]
Abstract
Traditionally, specific DNA recognition is thought to rely on static contacts with the bases or phosphates. Recent results, however, indicate that residues far outside the binding context can crucially influence selectivity or binding affinity via transient, dynamic interactions with the DNA binding interface. These regions usually do not adopt a well-defined structure, even when bound to DNA, and thus form a fuzzy complex. Here, we propose the existence of a dynamic DNA readout mechanism, wherein distant segments modulate conformational preferences, flexibility or spacing of the DNA binding motifs or serve as competitive partners. Despite their low sequence similarity, these intrinsically disordered regions are often conserved at the structural level, and exploited for regulation of the transcription machinery via protein-protein interactions, post-translational modifications or alternative splicing.
Collapse
Affiliation(s)
- Monika Fuxreiter
- Department of Biological Chemistry, Weizmann Institute of Science, 7600 Rehovot, Israel.
| | | | | |
Collapse
|
10
|
Burra PV, Kalmar L, Tompa P. Reduction in structural disorder and functional complexity in the thermal adaptation of prokaryotes. PLoS One 2010; 5:e12069. [PMID: 20711457 PMCID: PMC2920320 DOI: 10.1371/journal.pone.0012069] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 07/07/2010] [Indexed: 01/20/2023] Open
Abstract
Genomic correlates of evolutionary adaptation to very low or very high optimal growth temperature (OGT) values have been the subject of many studies. Whereas these provided a protein-structural rationale of the activity and stability of globular proteins/enzymes, the point has been neglected that adaptation to extreme temperatures could also have resulted from an increased use of intrinsically disordered proteins (IDPs), which are resistant to these conditions in vitro. Contrary to these expectations, we found a conspicuously low level of structural disorder in bacteria of very high (and very low) OGT values. This paucity of disorder does not reflect phylogenetic relatedness, i.e. it is a result of genuine adaptation to extreme conditions. Because intrinsic disorder correlates with important regulatory functions, we asked how these bacteria could exist without IDPs by studying transcription factors, known to harbor a lot of function-related intrinsic disorder. Hyperthermophiles have much less transcription factors, which have reduced disorder compared to their mesophilic counterparts. On the other hand, we found by systematic categorization of proteins with long disordered regions that there are certain functions, such as translation and ribosome biogenesis that depend on structural disorder even in hyperthermophiles. In all, our observations suggest that adaptation to extreme conditions is achieved by a significant functional simplification, apparent at both the level of the genome and individual genes/proteins.
Collapse
Affiliation(s)
- Prasad V. Burra
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Lajos Kalmar
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary
| | - Peter Tompa
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary
- * E-mail:
| |
Collapse
|