1
|
Gao J, Huang X. Recent advances on glycosyltransferases involved in the biosynthesis of the proteoglycan linkage region. Adv Carbohydr Chem Biochem 2021; 80:95-119. [PMID: 34872657 DOI: 10.1016/bs.accb.2021.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Proteoglycans (PGs) are an essential family of glycoproteins, which can play roles in many important biological events including cell proliferation, cancer development, and pathogen infections. Proteoglycans consist of a core protein with one or multiple glycosaminoglycan (GAG) chains, which are covalently attached to serine residues of serine-glycine dipeptide within the core protein through a common tetrasaccharide linkage. In the past three decades, four key glycosyl transferases involved in the biosynthesis of PG linkage have been discovered and investigated. This review aims to provide an overview on progress made on these four enzymes, with foci on enzyme expression/purification, substrate specificity, activity determination, product characterization, and structure-activity relationship analysis.
Collapse
Affiliation(s)
- Jia Gao
- Department of Chemistry, Michigan State University, East Lansing, MI, United States; Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, MI, United States; Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States; Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
2
|
Kóňa J. How inverting β-1,4-galactosyltransferase-1 can quench a high charge of the by-product UDP 3- in catalysis: a QM/MM study of enzymatic reaction with native and UDP-5' thio galactose substrates. Org Biomol Chem 2020; 18:7585-7596. [PMID: 32945815 DOI: 10.1039/d0ob01490g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The catalysis of inverting glycosyltransferases consists of several biophysical and biochemical processes during which the transfer of a sugar residue from the purine phosphate donor substrate to an acceptor substrate occurs with stereo-inversion of the anomeric C1 center at a product. During catalysis a highly charged phosphate by-product (UDP3-) is formed and a mechanism of how the enzyme stabilizes it back to the UDP2- form is not known. Using methods of molecular modeling (hybrid DFT-QM/MM calculations) we proposed and validated a catalytic mechanism of bovine inverting β-1,4-galactosyltransferase-1 (β4Gal-T1) with native (UDP-galactose) and thio donor substrates (UDP-5' thio galactose). We focused on three aspects of the mechanism not yet investigated: (i) the formation of an oxocarbenium ion intermediate, which was only found for the retaining glycosyltransferases for the time being; (ii) the mechanism of stabilization of a highly charged phosphate by-product (UDP3-) back to its standard in vivo form (UDP2-); (iii) explanation for why in experimental measurements the rate of catalysis with the thio donor substrate is only 8% of the rate of that with the natural substrate. To understand the differences in the interaction patterns between the complexes enzyme : UDP-Gal and enzyme : UDP-5S-Gal, fragmented molecular orbital (FMO) decomposition energy analysis was carried out at the DFT level.
Collapse
Affiliation(s)
- J Kóňa
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 84538 Bratislava, Slovak Republic.
| |
Collapse
|
3
|
Taujale R, Venkat A, Huang LC, Zhou Z, Yeung W, Rasheed KM, Li S, Edison AS, Moremen KW, Kannan N. Deep evolutionary analysis reveals the design principles of fold A glycosyltransferases. eLife 2020; 9:54532. [PMID: 32234211 PMCID: PMC7185993 DOI: 10.7554/elife.54532] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/31/2020] [Indexed: 12/26/2022] Open
Abstract
Glycosyltransferases (GTs) are prevalent across the tree of life and regulate nearly all aspects of cellular functions. The evolutionary basis for their complex and diverse modes of catalytic functions remain enigmatic. Here, based on deep mining of over half million GT-A fold sequences, we define a minimal core component shared among functionally diverse enzymes. We find that variations in the common core and emergence of hypervariable loops extending from the core contributed to GT-A diversity. We provide a phylogenetic framework relating diverse GT-A fold families for the first time and show that inverting and retaining mechanisms emerged multiple times independently during evolution. Using evolutionary information encoded in primary sequences, we trained a machine learning classifier to predict donor specificity with nearly 90% accuracy and deployed it for the annotation of understudied GTs. Our studies provide an evolutionary framework for investigating complex relationships connecting GT-A fold sequence, structure, function and regulation. Carbohydrates are one of the major groups of large biological molecules that regulate nearly all aspects of life. Yet, unlike DNA or proteins, carbohydrates are made without a template to follow. Instead, these molecules are built from a set of sugar-based building blocks by the intricate activities of a large and diverse family of enzymes known as glycosyltransferases. An incomplete understanding of how glycosyltransferases recognize and build diverse carbohydrates presents a major bottleneck in developing therapeutic strategies for diseases associated with abnormalities in these enzymes. It also limits efforts to engineer these enzymes for biotechnology applications and biofuel production. Taujale et al. have now used evolutionary approaches to map the evolution of a major subset of glycosyltransferases from species across the tree of life to understand how these enzymes evolved such precise mechanisms to build diverse carbohydrates. First, a minimal structural unit was defined based on being shared among a group of over half a million unique glycosyltransferase enzymes with different activities. Further analysis then showed that the diverse activities of these enzymes evolved through the accumulation of mutations within this structural unit, as well as in much more variable regions in the enzyme that extend from the minimal unit. Taujale et al. then built an extended family tree for this collection of glycosyltransferases and details of the evolutionary relationships between the enzymes helped them to create a machine learning framework that could predict which sugar-containing molecules were the raw materials for a given glycosyltransferase. This framework could make predictions with nearly 90% accuracy based only on information that can be deciphered from the gene for that enzyme. These findings will provide scientists with new hypotheses for investigating the complex relationships connecting the genetic information about glycosyltransferases with their structures and activities. Further refinement of the machine learning framework may eventually enable the design of enzymes with properties that are desirable for applications in biotechnology.
Collapse
Affiliation(s)
- Rahil Taujale
- Institute of Bioinformatics, University of Georgia, Athens, Georgia.,Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia
| | - Aarya Venkat
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia
| | - Liang-Chin Huang
- Institute of Bioinformatics, University of Georgia, Athens, Georgia
| | - Zhongliang Zhou
- Department of Computer Science, University of Georgia, Athens, Georgia
| | - Wayland Yeung
- Institute of Bioinformatics, University of Georgia, Athens, Georgia
| | - Khaled M Rasheed
- Department of Computer Science, University of Georgia, Athens, Georgia
| | - Sheng Li
- Department of Computer Science, University of Georgia, Athens, Georgia
| | - Arthur S Edison
- Institute of Bioinformatics, University of Georgia, Athens, Georgia.,Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia
| | - Natarajan Kannan
- Institute of Bioinformatics, University of Georgia, Athens, Georgia.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia
| |
Collapse
|
4
|
Miyazaki T, Miyashita R, Nakamura S, Ikegaya M, Kato T, Park EY. Biochemical characterization and mutational analysis of silkworm Bombyx mori β-1,4-N-acetylgalactosaminyltransferase and insight into the substrate specificity of β-1,4-galactosyltransferase family enzymes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 115:103254. [PMID: 31655162 DOI: 10.1016/j.ibmb.2019.103254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
Silkworm Bombyx mori is one of the insect hosts for recombinant protein production at academic and industrial levels. B. mori and other insect cells can produce mammalian proteins with proper posttranslational modifications, such as N-glycosylation, but the structures of N-glycans in B. mori are mainly high mannose- and paucimannose-type, while mammals also produce hybrid- and complex-type glycans. Recently, complex-type N-glycans whose structures are different from mammalian ones have been identified in some insect cell N-glycomes at very low levels compared with levels of high mannose- and paucimannose-type glycans. However, their functions and the enzymes involved in the biosynthesis of insect complex-type N-glycans are not clear, and complex-type N-glycans, except for N-acetylglucosamine-terminated glycans, are still not identified in the B. mori N-glycome. Here, we focused on the β-1,4-galactosyltransferase family (also known as glycosyltransferase family 7, GT7) that contains mammalian β-1,4-galactosyltransferase and insect β-1,4-N-acetylgalactosaminyltransferase. A gene for a GT7 protein (BmGalNAcT) from B. mori was cloned, expressed in a soluble form using a silkworm expression system, and the gene product showed strict β-1,4-N-acetylgalactosaminyltransferase activity but not β-1,4-galactosyltransferase activity. A mutation in Ile298 or Ile310, which are predicted to be located in the active site, reduced its glycosyltransferase activity, suggesting that these residues and the corresponding residues are responsible for substrate specificity of GT7. These results suggested that BmGalNAcT may be involved in the complex-type N-glycans, and moreover, bioinformatics analysis revealed that B. mori might have an extra gene for a GT7 enzyme with different specificity in addition to the known insect GT7 glycosyltransferases.
Collapse
Affiliation(s)
- Takatsugu Miyazaki
- Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan; Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Ryunosuke Miyashita
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Shuntaro Nakamura
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Marina Ikegaya
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Tatsuya Kato
- Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan; Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Enoch Y Park
- Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan; Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
5
|
Emerging structural insights into glycosyltransferase-mediated synthesis of glycans. Nat Chem Biol 2019; 15:853-864. [PMID: 31427814 DOI: 10.1038/s41589-019-0350-2] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/17/2019] [Indexed: 12/27/2022]
Abstract
Glycans linked to proteins and lipids play key roles in biology; thus, accurate replication of cellular glycans is crucial for maintaining function following cell division. The fact that glycans are not copied from genomic templates suggests that fidelity is provided by the catalytic templates of glycosyltransferases that accurately add sugars to specific locations on growing oligosaccharides. To form new glycosidic bonds, glycosyltransferases bind acceptor substrates and orient a specific hydroxyl group, frequently one of many, for attack of the donor sugar anomeric carbon. Several recent crystal structures of glycosyltransferases with bound acceptor substrates reveal that these enzymes have common core structures that function as scaffolds upon which variable loops are inserted to confer substrate specificity and correctly orient the nucleophilic hydroxyl group. The varied approaches for acceptor binding site assembly suggest an ongoing evolution of these loop regions provides templates for assembly of the diverse glycan structures observed in biology.
Collapse
|
6
|
Dahbi S, Jacquinet JC, Bertin-Jung I, Robert A, Ramalanjaona N, Gulberti S, Fournel-Gigleux S, Lopin-Bon C. Synthesis of a library of variously modified 4-methylumbelliferyl xylosides and a structure-activity study of human β4GalT7. Org Biomol Chem 2017; 15:9653-9669. [PMID: 29116283 DOI: 10.1039/c7ob02530k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Proteoglycans (PGs) are complex macromolecules that are composed of glycosaminoglycan (GAG) chains covalently attached to a core protein through a tetrasaccharide linker. The biosynthesis of PGs is complex and involves a large number of glycosyltranferases. Here we present a structure-activity study of human β4GalT7, which transfers the first Gal residue onto a xyloside moiety of the linkage region. An efficient and regiocontrolled synthesis of a library of modified analogs of 4-methylumbelliferyl xyloside (XylMU) is reported herein. Hydroxyl groups at the position C-2, C-3 or C-4 have been epimerized and/or replaced by a hydrogen or a fluorine, while the anomeric oxygen was replaced by either a sulfur or a sulfone. The effect of these compounds on human β4GalT7 activity in vitro and on GAG biosynthesis in cellulo was then evaluated.
Collapse
Affiliation(s)
- Samir Dahbi
- Univ. Orléans et CNRS, ICOA, UMR 7311, F-45067 Orléans, France.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Saliba M, Ramalanjaona N, Gulberti S, Bertin-Jung I, Thomas A, Dahbi S, Lopin-Bon C, Jacquinet JC, Breton C, Ouzzine M, Fournel-Gigleux S. Probing the acceptor active site organization of the human recombinant β1,4-galactosyltransferase 7 and design of xyloside-based inhibitors. J Biol Chem 2015; 290:7658-70. [PMID: 25568325 PMCID: PMC4367269 DOI: 10.1074/jbc.m114.628123] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Among glycosaminoglycan (GAG) biosynthetic enzymes, the human β1,4-galactosyltransferase 7 (hβ4GalT7) is characterized by its unique capacity to take over xyloside derivatives linked to a hydrophobic aglycone as substrates and/or inhibitors. This glycosyltransferase is thus a prime target for the development of regulators of GAG synthesis in therapeutics. Here, we report the structure-guided design of hβ4GalT7 inhibitors. By combining molecular modeling, in vitro mutagenesis, and kinetic measurements, and in cellulo analysis of GAG anabolism and decorin glycosylation, we mapped the organization of the acceptor binding pocket, in complex with 4-methylumbelliferone-xylopyranoside as prototype substrate. We show that its organization is governed, on one side, by three tyrosine residues, Tyr194, Tyr196, and Tyr199, which create a hydrophobic environment and provide stacking interactions with both xylopyranoside and aglycone rings. On the opposite side, a hydrogen-bond network is established between the charged amino acids Asp228, Asp229, and Arg226, and the hydroxyl groups of xylose. We identified two key structural features, i.e. the strategic position of Tyr194 forming stacking interactions with the aglycone, and the hydrogen bond between the His195 nitrogen backbone and the carbonyl group of the coumarinyl molecule to develop a tight binder of hβ4GalT7. This led to the synthesis of 4-deoxy-4-fluoroxylose linked to 4-methylumbelliferone that inhibited hβ4GalT7 activity in vitro with a Ki 10 times lower than the Km value and efficiently impaired GAG synthesis in a cell assay. This study provides a valuable probe for the investigation of GAG biology and opens avenues toward the development of bioactive compounds to correct GAG synthesis disorders implicated in different types of malignancies.
Collapse
Affiliation(s)
- Mineem Saliba
- From the UMR 7365 CNRS-Université de Lorraine, Biopôle-Faculté de Médecine, CS 50184, 54505 Vandoeuvre-lès-Nancy Cedex
| | - Nick Ramalanjaona
- From the UMR 7365 CNRS-Université de Lorraine, Biopôle-Faculté de Médecine, CS 50184, 54505 Vandoeuvre-lès-Nancy Cedex
| | - Sandrine Gulberti
- From the UMR 7365 CNRS-Université de Lorraine, Biopôle-Faculté de Médecine, CS 50184, 54505 Vandoeuvre-lès-Nancy Cedex
| | - Isabelle Bertin-Jung
- From the UMR 7365 CNRS-Université de Lorraine, Biopôle-Faculté de Médecine, CS 50184, 54505 Vandoeuvre-lès-Nancy Cedex
| | - Aline Thomas
- the University Grenoble Alpes, CERMAV, BP 53, 38041 Grenoble Cedex 9, and
| | - Samir Dahbi
- the UMR 7311 CNRS-Institut de Chimie Organique et Analytique, Université d'Orléans-Pôle de Chimie, Rue de Chartres, 45067 Orléans Cedex 02, France
| | - Chrystel Lopin-Bon
- the UMR 7311 CNRS-Institut de Chimie Organique et Analytique, Université d'Orléans-Pôle de Chimie, Rue de Chartres, 45067 Orléans Cedex 02, France
| | - Jean-Claude Jacquinet
- the UMR 7311 CNRS-Institut de Chimie Organique et Analytique, Université d'Orléans-Pôle de Chimie, Rue de Chartres, 45067 Orléans Cedex 02, France
| | - Christelle Breton
- the University Grenoble Alpes, CERMAV, BP 53, 38041 Grenoble Cedex 9, and
| | - Mohamed Ouzzine
- From the UMR 7365 CNRS-Université de Lorraine, Biopôle-Faculté de Médecine, CS 50184, 54505 Vandoeuvre-lès-Nancy Cedex
| | - Sylvie Fournel-Gigleux
- From the UMR 7365 CNRS-Université de Lorraine, Biopôle-Faculté de Médecine, CS 50184, 54505 Vandoeuvre-lès-Nancy Cedex,
| |
Collapse
|
8
|
Siegbahn A, Manner S, Persson A, Tykesson E, Holmqvist K, Ochocinska A, Rönnols J, Sundin A, Mani K, Westergren-Thorsson G, Widmalm G, Ellervik U. Rules for priming and inhibition of glycosaminoglycan biosynthesis; probing the β4GalT7 active site. Chem Sci 2014. [DOI: 10.1039/c4sc01244e] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Xylose is the optimal substrate for β4GalT7, an essential enzyme in GAG biosynthesis, but analogs act as effective inhibitors.
Collapse
Affiliation(s)
- Anna Siegbahn
- Centre for Analysis and Synthesis
- Centre for Chemistry and Chemical Engineering
- Lund University
- SE-221 00 Lund, Sweden
| | - Sophie Manner
- Centre for Analysis and Synthesis
- Centre for Chemistry and Chemical Engineering
- Lund University
- SE-221 00 Lund, Sweden
| | - Andrea Persson
- Centre for Analysis and Synthesis
- Centre for Chemistry and Chemical Engineering
- Lund University
- SE-221 00 Lund, Sweden
- Department of Experimental Medical Science
| | - Emil Tykesson
- Department of Experimental Medical Science
- Lund University
- SE-221 00 Lund, Sweden
| | - Karin Holmqvist
- Centre for Analysis and Synthesis
- Centre for Chemistry and Chemical Engineering
- Lund University
- SE-221 00 Lund, Sweden
| | - Agata Ochocinska
- Centre for Analysis and Synthesis
- Centre for Chemistry and Chemical Engineering
- Lund University
- SE-221 00 Lund, Sweden
| | - Jerk Rönnols
- Department of Organic Chemistry
- Arrhenius Laboratory
- Stockholm University
- SE-106 91 Stockholm, Sweden
| | - Anders Sundin
- Centre for Analysis and Synthesis
- Centre for Chemistry and Chemical Engineering
- Lund University
- SE-221 00 Lund, Sweden
| | - Katrin Mani
- Department of Experimental Medical Science
- Lund University
- SE-221 00 Lund, Sweden
| | | | - Göran Widmalm
- Department of Organic Chemistry
- Arrhenius Laboratory
- Stockholm University
- SE-106 91 Stockholm, Sweden
| | - Ulf Ellervik
- Centre for Analysis and Synthesis
- Centre for Chemistry and Chemical Engineering
- Lund University
- SE-221 00 Lund, Sweden
| |
Collapse
|
9
|
Tsutsui Y, Ramakrishnan B, Qasba PK. Crystal structures of β-1,4-galactosyltransferase 7 enzyme reveal conformational changes and substrate binding. J Biol Chem 2013; 288:31963-70. [PMID: 24052259 PMCID: PMC3814792 DOI: 10.1074/jbc.m113.509984] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/13/2013] [Indexed: 11/06/2022] Open
Abstract
The β-1,4-galactosyltransferase 7 (β4GalT7) enzyme is involved in proteoglycan synthesis. In the presence of a manganese ion, it transfers galactose from UDP-galactose to xylose on a proteoglycan acceptor substrate. We present here the crystal structures of human β4GalT7 in open and closed conformations. A comparison of these crystal structures shows that, upon manganese and UDP or UDP-Gal binding, the enzyme undergoes conformational changes involving a small and a long loop. We also present the crystal structures of Drosophila wild-type β4GalT7 and D211N β4GalT7 mutant enzymes in the closed conformation in the presence of the acceptor substrate xylobiose and the donor substrate UDP-Gal, respectively. To understand the catalytic mechanism, we have crystallized the ternary complex of D211N β4GalT7 mutant enzyme in the presence of manganese with the donor and the acceptor substrates together in the same crystal structure. The galactose moiety of the bound UDP-Gal molecule forms seven hydrogen bonds with the protein molecule. The nonreducing end of the xylose moiety of xylobiose binds to the hydrophobic acceptor sugar binding pocket created by the conformational changes, whereas its extended xylose moiety forms hydrophobic interactions with a Tyr residue. In the ternary complex crystal structure, the nucleophile O4 oxygen atom of the xylose molecule is found in close proximity to the C1 and O5 atoms of the galactose moiety. This is the first time that a Michaelis complex of a glycosyltransferase has been described, and it clearly suggests an SN2 type catalytic mechanism for the β4GalT7 enzyme.
Collapse
Affiliation(s)
- Yuko Tsutsui
- From the Structural Glycobiology Section and Basic Research Program, SAIC-Frederick, Inc., Nanobiology Program, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702
| | - Boopathy Ramakrishnan
- From the Structural Glycobiology Section and Basic Research Program, SAIC-Frederick, Inc., Nanobiology Program, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702
| | - Pradman K. Qasba
- From the Structural Glycobiology Section and Basic Research Program, SAIC-Frederick, Inc., Nanobiology Program, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702
| |
Collapse
|
10
|
Ramakrishnan B, Moncrief AJ, Davis TA, Holland LA, Qasba PK. Investigations on β1,4-galactosyltransferase I using 6-sulfo-GlcNAc as an acceptor sugar substrate. Glycoconj J 2013; 30:835-42. [PMID: 23942731 DOI: 10.1007/s10719-013-9488-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 06/18/2013] [Accepted: 07/12/2013] [Indexed: 11/28/2022]
Abstract
6-sulfate modified N-acetylglucosamine (6-sulfo-GlcNAc) is often found as part of many biologically important carbohydrate epitopes such as 6-sulfo-Le(X). In these epitopes, the 6-sulfo-GlcNAc moiety is extended by a galactose sugar in a β1-4 linkage. The β4GalT1 enzyme transfers galactose (Gal) from UDP-Gal to N-acetylglucosamine (GlcNAc) in the presence of manganese. Here we report that the β4GalT1 enzyme transfers Gal to the 6-sulfo-GlcNAc and 4-methylumbelliferyl-6-sulfo-N-acetyl-β-D-glucosaminide (6-sulfo-βGlcNAc-MU) acceptor substrates, although with very low efficiency. To understand the effect that the 6-sulfate group on the GlcNAc acceptor has on the catalytic activity of the β4GalT1 molecule, we have determined the crystal structure of the catalytic domain of bovine β4GalT1 mutant enzyme M344H-β4GalT1 complex with the 6-sulfo-GlcNAc molecule. In the crystal structure, the 6-sulfo-GlcNAc is bound to the protein in a way that is similar to the GlcNAc molecule. However, the 6-sulfate group engages in additional interactions with the hydrophobic region, residues 276-285, of the protein molecule, and this group is found wedged between the aromatic side chains of Phe-280 and Trp314 residues. Since the side chain of the Trp314 residue undergoes conformational changes during the catalytic cycle of the enzyme, molecular interaction between Trp314 and the 6-sulfate group might hinder this conformational change. Therefore, the lack of a favorable binding environment, together with hindrance to the conformational changes, might be responsible for the poor catalytic activity.
Collapse
Affiliation(s)
- Boopathy Ramakrishnan
- Structural Glycobiology Section, Basic Science Laboratory, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD, 21702, USA
| | | | | | | | | |
Collapse
|
11
|
Ramakrishnan B, Qasba PK. In vitro folding of β-1,4galactosyltransferase and polypeptide-α-N-acetylgalactosaminyltransferase from the inclusion bodies. Methods Mol Biol 2013; 1022:321-33. [PMID: 23765672 DOI: 10.1007/978-1-62703-465-4_24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The aim of this article is to present a unique in vitro folding technique for glycosyltransferases to generate active proteins that can be used for X-ray crystallographic and bioconjugation protocols. Although a number of in vitro refolding methods are available, β1,4galactosyltransferases in large quantities can be made using the current protocol only. This technique is not only limited to glycosyltransferases alone but has been successfully used to refold single-chain antibodies and other molecules. Although this in vitro folding method is quite similar to other methods, it differs from them by the use of S-sulfonation of the inclusion bodies before setting up the in vitro refolding of the protein.
Collapse
Affiliation(s)
- Boopathy Ramakrishnan
- Structural Glycobiology Section and Basic Science Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | |
Collapse
|
12
|
Breton C, Fournel-Gigleux S, Palcic MM. Recent structures, evolution and mechanisms of glycosyltransferases. Curr Opin Struct Biol 2012; 22:540-9. [PMID: 22819665 DOI: 10.1016/j.sbi.2012.06.007] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 05/30/2012] [Accepted: 06/27/2012] [Indexed: 12/19/2022]
Abstract
Cellular glycome assembly requires the coordinated action of a large number of glycosyltransferases that catalyse the transfer of a sugar residue from a donor to specific acceptor molecules. This enzyme family is very ancient, encompassing all three domains of life. There has been considerable recent progress in structural glycobiology with the determination of crystal structures of several important glycosyltransferase members, showing novel folds and variations around a common α/β scaffold. Structural, kinetic and inhibitor data have led to the emergence of various scenarios with respect to their evolutionary history and reaction mechanisms thus highlighting the different solutions that nature has selected to catalyse glycosyl transfer.
Collapse
Affiliation(s)
- Christelle Breton
- CERMAV-CNRS, University of Grenoble 1, BP 53, 38041 Grenoble, France.
| | | | | |
Collapse
|
13
|
Chang A, Singh S, Phillips GN, Thorson JS. Glycosyltransferase structural biology and its role in the design of catalysts for glycosylation. Curr Opin Biotechnol 2011; 22:800-8. [PMID: 21592771 DOI: 10.1016/j.copbio.2011.04.013] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Revised: 04/11/2011] [Accepted: 04/19/2011] [Indexed: 12/19/2022]
Abstract
Glycosyltransferases (GTs) are ubiquitous in nature and are required for the transfer of sugars to a variety of important biomolecules. This essential enzyme family has been a focus of attention from both the perspective of a potential drug target and a catalyst for the development of vaccines, biopharmaceuticals and small molecule therapeutics. This review attempts to consolidate the emerging lessons from Leloir (nucleotide-dependent) GT structural biology studies and recent applications of these fundamentals toward rational engineering of glycosylation catalysts.
Collapse
Affiliation(s)
- Aram Chang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
14
|
Biochemical and thermodynamic characterization of mutated β1,4-galactosyltransferase 7 involved in the progeroid form of the Ehlers-Danlos syndrome. Biochem J 2010; 432:303-11. [PMID: 20809901 DOI: 10.1042/bj20100921] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Three mutations of the B4GALT7 gene [encoding β1,4-GalT7 (β1,4-galactosyltransferase 7)], corresponding to A186D, L206P and R270C, have been identified in patients with the progeroid form of the Ehlers-Danlos syndrome and are described as being associated with the reduction or loss of β1,4-GalT7 activity. However, the molecular basis of the reduction or loss of activity remained to be determined. In the present study, wild-type, A186D, L206P and R270C β1,4-GalT7 were expressed in CHO618 cells as membrane proteins and in Escherichia coli as soluble proteins fused to MBP (maltose-binding protein). The ability of the expressed proteins to transfer galactose from donor to acceptor substrates was systematically characterized by kinetic analysis. The physicochemical properties of soluble proteins were explored by isothermal titration calorimetry, which is a method of choice when determining the thermodynamic parameters of the binding of substrates. Together, the results showed that: (i) the L206P mutation abolished the activity when L206P β1,4GalT7 was either inserted in the membrane or expressed as a soluble MBP-full-length fusion protein; (ii) the A186D mutation weakly impaired the binding of the donor substrate; and (iii) the R270C mutation strongly impaired the binding of the acceptor substrate. Moreover, the ex vivo consequences of the mutations were investigated by evaluating the priming efficiency of xylosides on GAG (glycosaminoglycan) chain initiation. The results demonstrate a quantitative effect on GAG biosynthesis, depending on the mutation; GAG biosynthesis was fully inhibited by the L206P mutation and decreased by the R270C mutation, whereas the A186D mutation did not affect GAG biosynthesis severely.
Collapse
|
15
|
Ramakrishnan B, Qasba PK. Structure-based evolutionary relationship of glycosyltransferases: a case study of vertebrate β1,4-galactosyltransferase, invertebrate β1,4-N-acetylgalactosaminyltransferase and α-polypeptidyl-N-acetylgalactosaminyltransferase. Curr Opin Struct Biol 2010; 20:536-42. [PMID: 20705453 PMCID: PMC2974045 DOI: 10.1016/j.sbi.2010.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 07/02/2010] [Accepted: 07/19/2010] [Indexed: 02/07/2023]
Abstract
Cell surface glycans play important cellular functions and are synthesized by glycosyltransferases. Structure and function studies show that the donor sugar specificity of the invertebrate β1,4-N-acetyl-glactosaminyltransferase (β4GalNAc-T) and the vertebrate β1,4-galactosyltransferase I (β4Gal-T1) are related by a single amino acid residue change. Comparison of the catalytic domain crystal structures of the β4Gal-T1 and the α-polypeptidyl-GalNAc-T (αppGalNAc-T) shows that their protein structure and sequences are similar. Therefore, it seems that the invertebrate β4GalNAc-T and the catalytic domain of αppGalNAc-T might have emerged from a common primordial gene. When vertebrates emerged from invertebrates, the amino acid that determines the donor sugar specificity of the invertebrate β4GalNAc-T might have mutated, thus converting the enzyme to a β4Gal-T1 in vertebrates.
Collapse
Affiliation(s)
- Boopathy Ramakrishnan
- Structural Glycobiology Section, Center for Cancer Research Nanobiology Program, Center for Cancer Research, NCI-Frederick, Frederick, MD 21702
- Basic Research Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, Center for Cancer Research, NCI-Frederick, Frederick, MD 21702
| | - Pradman K. Qasba
- Structural Glycobiology Section, Center for Cancer Research Nanobiology Program, Center for Cancer Research, NCI-Frederick, Frederick, MD 21702
| |
Collapse
|
16
|
Talhaoui I, Bui C, Oriol R, Mulliert G, Gulberti S, Netter P, Coughtrie MWH, Ouzzine M, Fournel-Gigleux S. Identification of key functional residues in the active site of human {beta}1,4-galactosyltransferase 7: a major enzyme in the glycosaminoglycan synthesis pathway. J Biol Chem 2010; 285:37342-58. [PMID: 20843813 DOI: 10.1074/jbc.m110.151951] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycosaminoglycans (GAGs) play a central role in many pathophysiological events, and exogenous xyloside substrates of β1,4-galactosyltransferase 7 (β4GalT7), a major enzyme of GAG biosynthesis, have interesting biomedical applications. To predict functional peptide regions important for substrate binding and activity of human β4GalT7, we conducted a phylogenetic analysis of the β1,4-galactosyltransferase family and generated a molecular model using the x-ray structure of Drosophila β4GalT7-UDP as template. Two evolutionary conserved motifs, (163)DVD(165) and (221)FWGWGREDDE(230), are central in the organization of the enzyme active site. This model was challenged by systematic engineering of point mutations, combined with in vitro and ex vivo functional assays. Investigation of the kinetic properties of purified recombinant wild-type β4GalT7 and selected mutants identified Trp(224) as a key residue governing both donor and acceptor substrate binding. Our results also suggested the involvement of the canonical carboxylate residue Asp(228) acting as general base in the reaction catalyzed by human β4GalT7. Importantly, ex vivo functional tests demonstrated that regulation of GAG synthesis is highly responsive to modification of these key active site amino acids. Interestingly, engineering mutants at position 224 allowed us to modify the affinity and to modulate the specificity of human β4GalT7 toward UDP-sugars and xyloside acceptors. Furthermore, the W224H mutant was able to sustain decorin GAG chain substitution but not GAG synthesis from exogenously added xyloside. Altogether, this study provides novel insight into human β4GalT7 active site functional domains, allowing manipulation of this enzyme critical for the regulation of GAG synthesis. A better understanding of the mechanism underlying GAG assembly paves the way toward GAG-based therapeutics.
Collapse
Affiliation(s)
- Ibtissam Talhaoui
- Faculté de Médecine, UMR 7561 CNRS-Université de Nancy I, BP 184, 54505 Vandoeuvre-lès-Nancy, France
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Molecular characterization of β1,4-galactosyltransferase 7 genetic mutations linked to the progeroid form of Ehlers-Danlos syndrome (EDS). FEBS Lett 2010; 584:3962-8. [DOI: 10.1016/j.febslet.2010.08.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 07/26/2010] [Accepted: 08/02/2010] [Indexed: 11/21/2022]
|