1
|
Deichsel S, Frankenreiter L, Fechner J, Gahr BM, Zimmermann M, Mastel H, Preis I, Preiss A, Nagel AC. Inhibition of the Notch signal transducer CSL by Pkc53E-mediated phosphorylation to fend off parasitic immune challenge in Drosophila. eLife 2024; 12:RP89582. [PMID: 39503739 PMCID: PMC11540305 DOI: 10.7554/elife.89582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
Notch signalling activity regulates hematopoiesis in Drosophila and vertebrates alike. Parasitoid wasp infestation of Drosophila larvae, however, requires a timely downregulation of Notch activity to allow the formation of encapsulation-active blood cells. Here, we show that the Drosophila CSL transcription factor Suppressor of Hairless [Su(H)] is phosphorylated at Serine 269 in response to parasitoid wasp infestation. As this phosphorylation interferes with the DNA binding of Su(H), it reversibly precludes its activity. Accordingly, phospho-deficient Su(H)S269A mutants are immune-compromised. A screen for kinases involved in Su(H) phosphorylation identified Pkc53E, required for normal hematopoiesis as well as for parasitoid immune response. Genetic and molecular interactions support the specificity of the Su(H)-Pkc53E relationship. Moreover, phorbol ester treatment inhibits Su(H) activity in vivo and in human cell culture. We conclude that Pkc53E targets Su(H) during parasitic wasp infestation, thereby remodelling the blood cell population required for wasp egg encapsulation.
Collapse
Affiliation(s)
- Sebastian Deichsel
- Department of Molecular Genetics, Institute of Biology, University of HohenheimStuttgartGermany
- Department of Medical Genetics and Applied Genomics, University of TübingenTübingenGermany
| | - Lisa Frankenreiter
- Department of Molecular Genetics, Institute of Biology, University of HohenheimStuttgartGermany
| | - Johannes Fechner
- Department of Molecular Genetics, Institute of Biology, University of HohenheimStuttgartGermany
- Institute of Biomedical Genetics (IBMG), University of StuttgartStuttgartGermany
| | - Bernd M Gahr
- Department of Molecular Genetics, Institute of Biology, University of HohenheimStuttgartGermany
- Department of Internal Medicine II, Molecular Cardiology, University of UlmUlmGermany
| | - Mirjam Zimmermann
- Department of Molecular Genetics, Institute of Biology, University of HohenheimStuttgartGermany
| | - Helena Mastel
- Department of Molecular Genetics, Institute of Biology, University of HohenheimStuttgartGermany
| | - Irina Preis
- Department of Molecular Genetics, Institute of Biology, University of HohenheimStuttgartGermany
| | - Anette Preiss
- Department of Molecular Genetics, Institute of Biology, University of HohenheimStuttgartGermany
| | - Anja C Nagel
- Department of Molecular Genetics, Institute of Biology, University of HohenheimStuttgartGermany
| |
Collapse
|
2
|
Song M, Zhang M, He S, Li L, Hu H. Ultrasonic neuromodulation mediated by mechanosensitive ion channels: current and future. Front Neurosci 2023; 17:1232308. [PMID: 37583416 PMCID: PMC10423872 DOI: 10.3389/fnins.2023.1232308] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/12/2023] [Indexed: 08/17/2023] Open
Abstract
Ultrasound neuromodulation technology is a promising neuromodulation approach, with the advantages of noninvasiveness, high-resolution, deep penetration and good targeting, which aid in circumventing the side effects of drugs and invasive therapeutic interventions. Ultrasound can cause mechanical effects, activate mechanosensitive ion channels and alter neuronal excitability, producing biological effects. The structural determination of mechanosensitive ion channels will greatly contribute to our understanding of the molecular mechanisms underlying mechanosensory transduction. However, the underlying biological mechanism of ultrasonic neuromodulation remains poorly understood. Hence, this review aims to provide an outline of the properties of ultrasound, the structures of specific mechanosensitive ion channels, and their role in ultrasound neuromodulation.
Collapse
Affiliation(s)
- Mengyao Song
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
| | - Mingxia Zhang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
| | - Sixuan He
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
| | - Le Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
| | - Huijing Hu
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
| |
Collapse
|
3
|
Križaj D, Cordeiro S, Strauß O. Retinal TRP channels: Cell-type-specific regulators of retinal homeostasis and multimodal integration. Prog Retin Eye Res 2023; 92:101114. [PMID: 36163161 PMCID: PMC9897210 DOI: 10.1016/j.preteyeres.2022.101114] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 02/05/2023]
Abstract
Transient receptor potential (TRP) channels are a widely expressed family of 28 evolutionarily conserved cationic ion channels that operate as primary detectors of chemical and physical stimuli and secondary effectors of metabotropic and ionotropic receptors. In vertebrates, the channels are grouped into six related families: TRPC, TRPV, TRPM, TRPA, TRPML, and TRPP. As sensory transducers, TRP channels are ubiquitously expressed across the body and the CNS, mediating critical functions in mechanosensation, nociception, chemosensing, thermosensing, and phototransduction. This article surveys current knowledge about the expression and function of the TRP family in vertebrate retinas, which, while dedicated to transduction and transmission of visual information, are highly susceptible to non-visual stimuli. Every retinal cell expresses multiple TRP subunits, with recent evidence establishing their critical roles in paradigmatic aspects of vertebrate vision that include TRPM1-dependent transduction of ON bipolar signaling, TRPC6/7-mediated ganglion cell phototransduction, TRP/TRPL phototransduction in Drosophila and TRPV4-dependent osmoregulation, mechanotransduction, and regulation of inner and outer blood-retina barriers. TRP channels tune light-dependent and independent functions of retinal circuits by modulating the intracellular concentration of the 2nd messenger calcium, with emerging evidence implicating specific subunits in the pathogenesis of debilitating diseases such as glaucoma, ocular trauma, diabetic retinopathy, and ischemia. Elucidation of TRP channel involvement in retinal biology will yield rewards in terms of fundamental understanding of vertebrate vision and therapeutic targeting to treat diseases caused by channel dysfunction or over-activation.
Collapse
Affiliation(s)
- David Križaj
- Departments of Ophthalmology, Neurobiology, and Bioengineering, University of Utah, Salt Lake City, USA
| | - Soenke Cordeiro
- Institute of Physiology, Faculty of Medicine, Christian-Albrechts-University Kiel, Germany
| | - Olaf Strauß
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität, Humboldt-University, The Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
4
|
Ignatova II, Frolov RV. Distinct mechanisms of light adaptation of elementary responses in photoreceptors of Dipteran flies and American cockroach. J Neurophysiol 2022; 128:263-277. [PMID: 35730751 DOI: 10.1152/jn.00519.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Of many light adaptation mechanisms optimizing photoreceptor functioning in the compound eyes of insects, those modifying the single photon response, the quantum bump (QB), remain least studied. Here, by recording from photoreceptors of the blow fly Protophormia terraenovae, the hover fly Volucella pellucens and the cockroach Periplaneta americana, we investigated mechanisms of rapid light adaptation by examining how properties of QBs change after light stimulation and multiquantal impulse responses during repetitive stimulation. In P. terraenovae, light stimulation reduced latencies, characteristic durations and amplitudes of QBs in the intensity- and duration-dependent manner. In P. americana, only QB amplitudes decreased consistently. In both species, time constants of QB parameters' recovery increased with the strength and duration of stimulation, reaching about 30 s after bright prolonged 10 s pulses. In the blow fly, changes in QB amplitudes during recovery correlated with changes in half-widths but not latencies, suggesting at least two separate mechanisms of light adaptation: acceleration of QB onset by sensitizing transduction channels, and acceleration of transduction channel inactivation causing QB shortening and diminishment. In the cockroach, light adaptation reduced QB amplitude by apparently lowering the transduction channel availability. Impulse response data in the blow fly and cockroach were consistent with the mechanistic inferences from the QB recovery experiments. However, in the hover fly V. pellucens, impulse response latencies and durations decreased simultaneously whereas amplitudes decreased little, even when bright flashes were applied at high frequencies. These findings indicate existence of dissimilar mechanisms of light adaptation in the microvilli of different species.
Collapse
Affiliation(s)
- Irina I Ignatova
- Nano and Molecular Systems Research Unit, University of Oulu, Oulu, Finland
| | - Roman V Frolov
- Laboratory of Comparative Sensory Physiology, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
5
|
Morphological and electrophysiological specializations of photoreceptors in the love spot of hover fly Volucella pellucens. Vis Neurosci 2021; 38:E015. [PMID: 34635193 DOI: 10.1017/s0952523821000146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Studies of functional variability in the compound eyes of flies reveal superior temporal resolution of photoreceptors from the frontal areas that mediate binocular vision, and in males mate recognition and pursuit. However, the mechanisms underlying differences in performance are not known. Here, we investigated properties of hover fly Volucella pellucens photoreceptors from two regions of the retina, the frontal-dorsal "love spot" and the lateral one. Morphologically, the microvilli of the frontal-dorsal photoreceptors were relatively few in number per rhabdomere cross-section, short and narrow. In electrophysiological experiments involving stimulation with prolonged white-noise and natural time intensity series, frontal-dorsal photoreceptors demonstrated comparatively high corner frequencies and information rates. Investigation of possible mechanisms responsible for their superior performance revealed significant differences in the properties of quantum bumps, and, unexpectedly, relatively high absolute sensitivity of the frontal-dorsal photoreceptors. Analysis of light adaptation indicated that photoreceptors from two regions adapt similarly but because frontal-dorsal photoreceptors were depolarized much stronger by the same stimuli than the lateral photoreceptors, they reached a deeper state of adaptation associated with higher corner frequencies of light response. Recordings from the photoreceptor axons were characterized by spike-like events that can significantly expand the frequency response range. Seamless integration of spikes into the graded voltage responses was enabled by light adaptation mechanisms that accelerate kinetics and decrease duration of depolarizing light response transients.
Collapse
|
6
|
Goretzki B, Guhl C, Tebbe F, Harder JM, Hellmich UA. Unstructural Biology of TRP Ion Channels: The Role of Intrinsically Disordered Regions in Channel Function and Regulation. J Mol Biol 2021; 433:166931. [PMID: 33741410 DOI: 10.1016/j.jmb.2021.166931] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/02/2021] [Accepted: 03/06/2021] [Indexed: 12/13/2022]
Abstract
The first genuine high-resolution single particle cryo-electron microscopy structure of a membrane protein determined was a transient receptor potential (TRP) ion channel, TRPV1, in 2013. This methodical breakthrough opened up a whole new world for structural biology and ion channel aficionados alike. TRP channels capture the imagination due to the sheer endless number of tasks they carry out in all aspects of animal physiology. To date, structures of at least one representative member of each of the six mammalian TRP channel subfamilies as well as of a few non-mammalian families have been determined. These structures were instrumental for a better understanding of TRP channel function and regulation. However, all of the TRP channel structures solved so far are incomplete since they miss important information about highly flexible regions found mostly in the channel N- and C-termini. These intrinsically disordered regions (IDRs) can represent between a quarter to almost half of the entire protein sequence and act as important recruitment hubs for lipids and regulatory proteins. Here, we analyze the currently available TRP channel structures with regard to the extent of these "missing" regions and compare these findings to disorder predictions. We discuss select examples of intra- and intermolecular crosstalk of TRP channel IDRs with proteins and lipids as well as the effect of splicing and post-translational modifications, to illuminate their importance for channel function and to complement the prevalently discussed structural biology of these versatile and fascinating proteins with their equally relevant 'unstructural' biology.
Collapse
Affiliation(s)
- Benedikt Goretzki
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University, Humboldtstrasse 10, 07743 Jena, Germany; Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Charlotte Guhl
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University, Humboldtstrasse 10, 07743 Jena, Germany; Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany; TransMED - Mainz Research School of Translational Medicine, Johannes Gutenberg-University, University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Frederike Tebbe
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University, Humboldtstrasse 10, 07743 Jena, Germany; Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Jean-Martin Harder
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University, Humboldtstrasse 10, 07743 Jena, Germany
| | - Ute A Hellmich
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University, Humboldtstrasse 10, 07743 Jena, Germany; Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany; TransMED - Mainz Research School of Translational Medicine, Johannes Gutenberg-University, University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany; Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University, 07743 Jena, Germany.
| |
Collapse
|
7
|
Klenk JM, Kontny LH, Escobedo-Hinojosa W, Nebel BA, Hauer B. Oxyfunctionalization of nonsteroidal anti-inflammatory drugs by filamentous-fungi. J Appl Microbiol 2019; 127:724-738. [PMID: 31173436 DOI: 10.1111/jam.14342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/04/2019] [Accepted: 06/04/2019] [Indexed: 12/18/2022]
Abstract
AIMS We aimed to expand the microbial biocatalyst platform to generate essential oxyfunctionalized standards for pharmaceutical, toxicological and environmental research. In particular, we examined the production of oxyfunctionalized nonsteroidal anti-inflammatory drugs (NSAIDs) by filamentous-fungi. METHODS AND RESULTS Four NSAIDs; diclofenac, ibuprofen, naproxen and mefenamic acid were used as substrates for oxyfunctionalization in a biocatalytic process involving three filamentous-fungi strains; Beauveria bassiana, Clitocybe nebularis and Mucor hiemalis. Oxyfunctionalized metabolites that are major degradation intermediates formed by Cytochrome P450 monooxygenases in human metabolism were produced in isolated yields of up to 99% using 1 g l-1 of substrate. In addition, a novel compound, 3',4'-dihydroxydiclofenac, was produced by B. bassiana. Proteomic analysis identified CYP548A5 that might be responsible for diclofenac oxyfunctionalization in B. bassiana. CONCLUSIONS Efficient fungi catalysed oxyfunctionalization was achieved when using NSAIDs as substrates. High purities and isolated yields of the produced metabolites were achieved. SIGNIFICANCE AND IMPACT OF THE STUDY The lack of current efficient synthetic strategies for oxyfunctionalization of NSAIDs is a bottleneck to perform pharmacokinetic, pharmacodynamic and toxicological analysis for the pharmaceutical industry. Additionally, oxyfunctionalized derivatives are needed for tracking the fate and impact of such metabolites in the environment. Herein, we described a fungi catalysed process that surpasses previously reported strategies in terms of efficiency, to synthesize oxyfunctionalized NSAIDs.
Collapse
Affiliation(s)
- J M Klenk
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - L H Kontny
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - W Escobedo-Hinojosa
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - B A Nebel
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - B Hauer
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
8
|
Klenk JM, Fischer MP, Dubiel P, Sharma M, Rowlinson B, Grogan G, Hauer B. Identification and characterization of cytochrome P450 1232A24 and 1232F1 from Arthrobacter sp. and their role in the metabolic pathway of papaverine. J Biochem 2019; 166:51-66. [DOI: 10.1093/jb/mvz010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/12/2019] [Indexed: 11/13/2022] Open
Abstract
AbstractCytochrome P450 monooxygenases (P450s) play crucial roles in the cell metabolism and provide an unsurpassed diversity of catalysed reactions. Here, we report the identification and biochemical characterization of two P450s from Arthrobacter sp., a Gram-positive organism known to degrade the opium alkaloid papaverine. Combining phylogenetic and genomic analysis suggested physiological roles for P450s in metabolism and revealed potential gene clusters with redox partners facilitating the reconstitution of the P450 activities in vitro. CYP1232F1 catalyses the para demethylation of 3,4-dimethoxyphenylacetic acid to homovanillic acid while CYP1232A24 continues demethylation to 3,4-dihydroxyphenylacetic acid. Interestingly, the latter enzyme is also able to perform both demethylation steps with preference for the meta position. The crystal structure of CYP1232A24, which shares only 29% identity to previous published structures of P450s helped to rationalize the preferred demethylation specificity for the meta position and also the broader substrate specificity profile. In addition to the detailed characterization of the two P450s using their physiological redox partners, we report the construction of a highly active whole-cell Escherichia coli biocatalyst expressing CYP1232A24, which formed up to 1.77 g l−1 3,4-dihydroxyphenylacetic acid. Our results revealed the P450s’ role in the metabolic pathway of papaverine enabling further investigation and application of these biocatalysts.
Collapse
Affiliation(s)
- Jan M Klenk
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, Stuttgart, Germany
| | - Max-Philipp Fischer
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, Stuttgart, Germany
| | - Paulina Dubiel
- Department of Chemistry, University of York, Heslington, York, UK
| | - Mahima Sharma
- Department of Chemistry, University of York, Heslington, York, UK
| | | | - Gideon Grogan
- Department of Chemistry, University of York, Heslington, York, UK
| | - Bernhard Hauer
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, Stuttgart, Germany
| |
Collapse
|
9
|
Voolstra O, Strauch L, Mayer M, Huber A. Functional characterization of the three Drosophila retinal degeneration C (RDGC) protein phosphatase isoforms. PLoS One 2018; 13:e0204933. [PMID: 30265717 PMCID: PMC6161916 DOI: 10.1371/journal.pone.0204933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/17/2018] [Indexed: 11/26/2022] Open
Abstract
Drosophila retinal degeneration C (RDGC) is the founding member of the PPEF family of protein phosphatases. RDGC mediates dephosphorylation of the visual pigment rhodopsin and the TRP ion channel. From the rdgC locus, three protein isoforms, termed RDGC-S, -M, and -L, with different N-termini are generated. Due to fatty acylation, RDGC-M and -L are attached to the plasma membrane while RDGC-S is soluble. To assign physiological roles to these RDGC isoforms, we constructed flies that express various combinations of RDGC protein isoforms. Expression of the RDGC-L isoform alone did not fully prevent rhodopsin hyperphosphorylation and resulted in impaired photoreceptor physiology and in decelerated TRP dephosphorylation at Ser936. However, expression of RDGC-L alone as well as RDGC-S/M was sufficient to prevent degeneration of photoreceptor cells which is a hallmark of the rdgC null mutant. Membrane-attached RDGC-M displayed higher activity of TRP dephosphorylation than the soluble isoform RDGC-S. Taken together, in vivo activities of RDGC splice variants are controlled by their N-termini.
Collapse
Affiliation(s)
- Olaf Voolstra
- Department of Biochemistry, Institute of Physiology, University of Hohenheim, Stuttgart, Germany
- * E-mail:
| | - Lisa Strauch
- Department of Biochemistry, Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Matthias Mayer
- Department of Biochemistry, Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Armin Huber
- Department of Biochemistry, Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
10
|
Strauch L, Pfannstiel J, Huber A, Voolstra O. Solubility and subcellular localization of the three Drosophila RDGC phosphatase variants are determined by acylation. FEBS Lett 2018; 592:2403-2413. [PMID: 29920663 DOI: 10.1002/1873-3468.13163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/06/2018] [Accepted: 06/11/2018] [Indexed: 01/26/2023]
Abstract
Protein phosphorylation is an abundant molecular switch that regulates a multitude of cellular processes. In contrast to other subfamilies of phosphoprotein phosphatases, the PPEF subfamily is only poorly investigated. Drosophila retinal degeneration C (RDGC) constitutes the founding member of the PPEF subfamily. RDGC dephosphorylates the visual pigment rhodopsin and the ion channel TRP.However, rdgC null mutant flies exhibit rhodopsin and TRP hyperphosphorylation, altered photoreceptor physiology, and retinal degeneration. Here, we report the identification of a third RDGC protein variant and show that the three RDGC isoforms harbor different N-termini that determine solubility and subcellular targeting due to fatty acylation. Taken together, solubility and subcellular targeting of RDGC splice variants are determined by their N-termini.
Collapse
Affiliation(s)
- Lisa Strauch
- Department of Biosensorics, Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Jens Pfannstiel
- Core Facility, Mass Spectrometry Unit, University of Hohenheim, Stuttgart, Germany
| | - Armin Huber
- Department of Biosensorics, Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Olaf Voolstra
- Department of Biosensorics, Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
11
|
Nagel AC, Auer JS, Schulz A, Pfannstiel J, Yuan Z, Collins CE, Kovall RA, Preiss A. Phosphorylation of Suppressor of Hairless impedes its DNA-binding activity. Sci Rep 2017; 7:11820. [PMID: 28928428 PMCID: PMC5605572 DOI: 10.1038/s41598-017-11952-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/01/2017] [Indexed: 02/07/2023] Open
Abstract
Notch signalling activity governs cellular differentiation in higher metazoa, where Notch signals are transduced by the transcription factor CSL, called Suppressor of Hairless [Su(H)] in Drosophila. Su(H) operates as molecular switch on Notch target genes: within activator complexes, including intracellular Notch, or within repressor complexes, including the antagonist Hairless. Mass spectrometry identified phosphorylation on Serine 269 in Su(H), potentially serving as a point of cross-regulation by other signalling pathways. To address the biological significance, we generated phospho-deficient [Su(H)S269A] and phospho-mimetic [Su(H)S269D] variants: the latter displayed reduced transcriptional activity despite unaltered protein interactions with co-activators and -repressors. Based on the Su(H) structure, Ser269 phosphorylation may interfere with DNA-binding, which we confirmed by electro-mobility shift assay and isothermal titration calorimetry. Overexpression of Su(H)S269D during fly development demonstrated reduced transcriptional regulatory activity, similar to the previously reported DNA-binding defective mutant Su(H)R266H. As both are able to bind Hairless and Notch proteins, Su(H)S269D and Su(H)R266H provoked dominant negative effects upon overexpression. Our data imply that Ser269 phosphorylation impacts Notch signalling activity by inhibiting DNA-binding of Su(H), potentially affecting both activation and repression. Ser269 is highly conserved in vertebrate CSL homologues, opening the possibility of a general and novel mechanism of modulating Notch signalling activity.
Collapse
Affiliation(s)
- Anja C Nagel
- Institut für Genetik (240), University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany.
| | - Jasmin S Auer
- Institut für Genetik (240), University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| | - Adriana Schulz
- Institut für Genetik (240), University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| | - Jens Pfannstiel
- Core Facility Hohenheim, Mass Spectrometry Unit University of Hohenheim, 70599, Stuttgart, Germany
| | - Zhenyu Yuan
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Courtney E Collins
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Rhett A Kovall
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Anette Preiss
- Institut für Genetik (240), University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| |
Collapse
|
12
|
Katz B, Voolstra O, Tzadok H, Yasin B, Rhodes-Modrov E, Bartels JP, Strauch L, Huber A, Minke B. The latency of the light response is modulated by the phosphorylation state of Drosophila TRP at a specific site. Channels (Austin) 2017; 11:678-685. [PMID: 28762890 DOI: 10.1080/19336950.2017.1361073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Drosophila photoreceptors respond to oscillating light of high frequency (∼100 Hz), while increasing the oscillating light intensity raises the maximally detected frequency. Recently, we reported that dephosphorylation of the light-activated TRP ion channel at S936 is a fast, graded, light-, and Ca2+-dependent process. We further found that this process affects the detection limit of high frequency oscillating light. Accordingly, transgenic Drosophila, which do not undergo phosphorylation at the S936-TRP site (trpS936A), revealed a short time-interval before following the high stimulus frequency (oscillation-lock response) in both dark- and light-adapted flies. In contrast, the trpS936D transgenic flies, which mimic constant phosphorylation, showed a long-time interval to oscillation-lock response in both dark- and light-adapted flies. Here we extend these findings by showing that dark-adapted trpS936A flies reveal light-induced current (LIC) with short latency relative to trpWT or trpS936D flies, indicating that the channels are a limiting factor of response kinetics. The results indicate that properties of the light-activated channels together with the dynamic light-dependent process of TRP phosphorylation at the S936 site determine response kinetics.
Collapse
Affiliation(s)
- Ben Katz
- a Department of Medical Neurobiology , Faculty of Medicine and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University , Jerusalem , Israel
| | - Olaf Voolstra
- b Department of Biosensorics , Institute of Physiology, University of Hohenheim , Stuttgart , Germany
| | - Hanan Tzadok
- a Department of Medical Neurobiology , Faculty of Medicine and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University , Jerusalem , Israel
| | - Bushra Yasin
- a Department of Medical Neurobiology , Faculty of Medicine and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University , Jerusalem , Israel
| | - Elisheva Rhodes-Modrov
- a Department of Medical Neurobiology , Faculty of Medicine and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University , Jerusalem , Israel
| | - Jonas-Peter Bartels
- b Department of Biosensorics , Institute of Physiology, University of Hohenheim , Stuttgart , Germany
| | - Lisa Strauch
- b Department of Biosensorics , Institute of Physiology, University of Hohenheim , Stuttgart , Germany
| | - Armin Huber
- b Department of Biosensorics , Institute of Physiology, University of Hohenheim , Stuttgart , Germany
| | - Baruch Minke
- a Department of Medical Neurobiology , Faculty of Medicine and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University , Jerusalem , Israel
| |
Collapse
|
13
|
The Phosphorylation State of the Drosophila TRP Channel Modulates the Frequency Response to Oscillating Light In Vivo. J Neurosci 2017; 37:4213-4224. [PMID: 28314815 DOI: 10.1523/jneurosci.3670-16.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/13/2017] [Accepted: 02/28/2017] [Indexed: 11/21/2022] Open
Abstract
Drosophila photoreceptors respond to oscillating light of high frequency (∼100 Hz), while the detected maximal frequency is modulated by the light rearing conditions, thus enabling high sensitivity to light and high temporal resolution. However, the molecular basis for this adaptive process is unclear. Here, we report that dephosphorylation of the light-activated transient receptor potential (TRP) ion channel at S936 is a fast, graded, light-dependent, and Ca2+-dependent process that is partially modulated by the rhodopsin phosphatase retinal degeneration C (RDGC). Electroretinogram measurements of the frequency response to oscillating lights in vivo revealed that dark-reared flies expressing wild-type TRP exhibited a detection limit of oscillating light at relatively low frequencies, which was shifted to higher frequencies upon light adaptation. Strikingly, preventing phosphorylation of the S936-TRP site by alanine substitution in transgenic Drosophila (trpS936A ) abolished the difference in frequency response between dark-adapted and light-adapted flies, resulting in high-frequency response also in dark-adapted flies. In contrast, inserting a phosphomimetic mutation by substituting the S936-TRP site to aspartic acid (trpS936D ) set the frequency response of light-adapted flies to low frequencies typical of dark-adapted flies. Light-adapted rdgC mutant flies showed relatively high S936-TRP phosphorylation levels and light-dark phosphorylation dynamics. These findings suggest that RDGC is one but not the only phosphatase involved in pS936-TRP dephosphorylation. Together, this study indicates that TRP channel dephosphorylation is a regulatory process that affects the detection limit of oscillating light according to the light rearing condition, thus adjusting dynamic processing of visual information under varying light conditions.SIGNIFICANCE STATEMENTDrosophila photoreceptors exhibit high temporal resolution as manifested in frequency response to oscillating light of high frequency (≤∼100 Hz). Light rearing conditions modulate the maximal frequency detected by photoreceptors, thus enabling them to maintain high sensitivity to light and high temporal resolution. However, the precise mechanisms for this process are not fully understood. Here, we show by combination of biochemistry and in vivo electrophysiology that transient receptor potential (TRP) channel dephosphorylation at a specific site is a fast, light-activated and Ca2+-dependent regulatory process. TRP dephosphorylation affects the detection limit of oscillating light according to the adaptation state of the photoreceptor cells by shifting the detection limit to higher frequencies upon light adaptation. This novel mechanism thus adjusts dynamic processing of visual information under varying light conditions.
Collapse
|
14
|
Hardie RC, Juusola M. Phototransduction in Drosophila. Curr Opin Neurobiol 2015; 34:37-45. [DOI: 10.1016/j.conb.2015.01.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 01/10/2015] [Indexed: 10/24/2022]
|
15
|
Voolstra O, Spät P, Oberegelsbacher C, Claussen B, Pfannstiel J, Huber A. Light-dependent phosphorylation of the Drosophila inactivation no afterpotential D (INAD) scaffolding protein at Thr170 and Ser174 by eye-specific protein kinase C. PLoS One 2015; 10:e0122039. [PMID: 25799587 PMCID: PMC4370639 DOI: 10.1371/journal.pone.0122039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 02/09/2015] [Indexed: 12/02/2022] Open
Abstract
Drosophila inactivation no afterpotential D (INAD) is a PDZ domain-containing scaffolding protein that tethers components of the phototransduction cascade to form a supramolecular signaling complex. Here, we report the identification of eight INAD phosphorylation sites using a mass spectrometry approach. PDZ1, PDZ2, and PDZ4 each harbor one phosphorylation site, three phosphorylation sites are located in the linker region between PDZ1 and 2, one site is located between PDZ2 and PDZ3, and one site is located in the N-terminal region. Using a phosphospecific antibody, we found that INAD phosphorylated at Thr170/Ser174 was located within the rhabdomeres of the photoreceptor cells, suggesting that INAD becomes phosphorylated in this cellular compartment. INAD phosphorylation at Thr170/Ser174 depends on light, the phototransduction cascade, and on eye-Protein kinase C that is attached to INAD via one of its PDZ domains.
Collapse
Affiliation(s)
- Olaf Voolstra
- Department of Biosensorics, Institute of Physiology, Universität Hohenheim, Stuttgart, Germany
- * E-mail:
| | - Philipp Spät
- Department of Biosensorics, Institute of Physiology, Universität Hohenheim, Stuttgart, Germany
| | - Claudia Oberegelsbacher
- Department of Biosensorics, Institute of Physiology, Universität Hohenheim, Stuttgart, Germany
| | - Björn Claussen
- Department of Biosensorics, Institute of Physiology, Universität Hohenheim, Stuttgart, Germany
| | - Jens Pfannstiel
- Mass Spectrometry Core Facility, Universität Hohenheim, Stuttgart, Germany
| | - Armin Huber
- Department of Biosensorics, Institute of Physiology, Universität Hohenheim, Stuttgart, Germany
- Mass Spectrometry Core Facility, Universität Hohenheim, Stuttgart, Germany
| |
Collapse
|
16
|
Mayer K, Albrecht S, Schaller A. Targeted Analysis of Protein Phosphorylation by 2D Electrophoresis. Methods Mol Biol 2015; 1306:167-176. [PMID: 25930702 DOI: 10.1007/978-1-4939-2648-0_13] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Two-dimensional (2D) gel electrophoresis combines isoelectric focusing in the first and SDS polyacrylamide gel electrophoresis in the second dimension to separate complex mixtures of proteins with unequalled resolution and sensitivity. It is well suited for the analysis of posttranslational protein modifications as most of them affect the isoelectric point and, therefore, the focusing behavior of the protein in the first dimension. It is particularly useful for low-abundance proteins, as it provides a first indication of PTMs, before establishing methods for protein isolation. For targeted proteomics of more abundant proteins, 2D electrophoresis itself may be the method of choice for the isolation of posttranslationally modified isoforms of the protein of interest for mass spectrometric analyses. Protein phosphorylation can be detected by use of phospho-specific stains or antibodies, or by comparing spot patterns of a protein sample before and after phosphatase treatment. Here we describe a simple method, combining 2D gel electrophoresis and western blot analysis with dephosphorylation by λ-phosphatase to analyze the phosphorylation status of oxophytodienoic acid reductase 3 in protein extracts from different organs of tomato and Arabidopsis plants.
Collapse
Affiliation(s)
- Kristin Mayer
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Emil-Wolff-Str. 25, Stuttgart, 70599, Germany,
| | | | | |
Collapse
|
17
|
Fahrenkrug J, Falktoft B, Georg B, Hannibal J, Kristiansen SB, Klausen TK. Phosphorylation of rat melanopsin at Ser-381 and Ser-398 by light/dark and its importance for intrinsically photosensitive ganglion cells (ipRGCs) cellular Ca2+ signaling. J Biol Chem 2014; 289:35482-93. [PMID: 25378407 PMCID: PMC4271233 DOI: 10.1074/jbc.m114.586529] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The G protein-coupled light-sensitive receptor melanopsin is involved in non-image-forming light responses including circadian timing. The predicted secondary structure of melanopsin indicates a long cytoplasmic tail with many potential phosphorylation sites. Using bioinformatics, we identified a number of amino acids with a high probability of being phosphorylated. We generated antibodies against melanopsin phosphorylated at Ser-381 and Ser-398, respectively. The antibody specificity was verified by immunoblotting and immunohistochemical staining of HEK-293 cells expressing rat melanopsin mutated in Ser-381 or Ser-398. Using the antibody recognizing phospho-Ser-381 melanopsin, we demonstrated by immunoblotting and immunohistochemical staining in HEK-293 cells expressing rat melanopsin that the receptor is phosphorylated in this position during the dark and dephosphorylated when light is turned on. On the contrary, we found that melanopsin at Ser-398 was unphosphorylated in the dark and became phosphorylated after light stimulation. The light-induced changes in phosphorylation at both Ser-381 and Ser-398 were rapid and lasted throughout the 4-h experimental period. Furthermore, phosphorylation at Ser-381 and Ser-398 was independent of each other. The changes in phosphorylation were confirmed in vivo by immunohistochemical staining of rat retinas during light and dark. We further demonstrated that mutation of Ser-381 and Ser-398 in melanopsin-expressing HEK-293 cells affected the light-induced Ca2+ response, which was significantly reduced as compared with wild type. Examining the light-evoked Ca2+ response in a melanopsin Ser-381 plus Ser-398 double mutant provided evidence that the phosphorylation events were independent.
Collapse
Affiliation(s)
- Jan Fahrenkrug
- From the Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg Hospital, DK-2400 Copenhagen NV, Denmark and
| | - Birgitte Falktoft
- From the Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg Hospital, DK-2400 Copenhagen NV, Denmark and
| | - Birgitte Georg
- From the Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg Hospital, DK-2400 Copenhagen NV, Denmark and
| | - Jens Hannibal
- From the Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg Hospital, DK-2400 Copenhagen NV, Denmark and
| | - Sarah B Kristiansen
- From the Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg Hospital, DK-2400 Copenhagen NV, Denmark and
| | - Thomas K Klausen
- Department of Biology, Faculty of Science, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
18
|
Veley KM, Maksaev G, Frick EM, January E, Kloepper SC, Haswell ES. Arabidopsis MSL10 has a regulated cell death signaling activity that is separable from its mechanosensitive ion channel activity. THE PLANT CELL 2014; 26:3115-31. [PMID: 25052715 PMCID: PMC4145136 DOI: 10.1105/tpc.114.128082] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 06/19/2014] [Accepted: 06/27/2014] [Indexed: 05/08/2023]
Abstract
Members of the MscS superfamily of mechanosensitive ion channels function as osmotic safety valves, releasing osmolytes under increased membrane tension. MscS homologs exhibit diverse topology and domain structure, and it has been proposed that the more complex members of the family might have novel regulatory mechanisms or molecular functions. Here, we present a study of MscS-Like (MSL)10 from Arabidopsis thaliana that supports these ideas. High-level expression of MSL10-GFP in Arabidopsis induced small stature, hydrogen peroxide accumulation, ectopic cell death, and reactive oxygen species- and cell death-associated gene expression. Phosphomimetic mutations in the MSL10 N-terminal domain prevented these phenotypes. The phosphorylation state of MSL10 also regulated its ability to induce cell death when transiently expressed in Nicotiana benthamiana leaves but did not affect subcellular localization, assembly, or channel behavior. Finally, the N-terminal domain of MSL10 was sufficient to induce cell death in tobacco, independent of phosphorylation state. We conclude that the plant-specific N-terminal domain of MSL10 is capable of inducing cell death, this activity is regulated by phosphorylation, and MSL10 has two separable activities-one as an ion channel and one as an inducer of cell death. These findings further our understanding of the evolution and significance of mechanosensitive ion channels.
Collapse
Affiliation(s)
- Kira M Veley
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | - Grigory Maksaev
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | - Elizabeth M Frick
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | - Emma January
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | - Sarah C Kloepper
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | | |
Collapse
|
19
|
Wang Y, Li Z, Liu D, Xu J, Wei X, Yan L, Yang C, Lou Z, Shui W. Assessment of BAK1 activity in different plant receptor-like kinase complexes by quantitative profiling of phosphorylation patterns. J Proteomics 2014; 108:484-93. [PMID: 24953020 DOI: 10.1016/j.jprot.2014.06.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 05/17/2014] [Accepted: 06/02/2014] [Indexed: 10/25/2022]
Abstract
UNLABELLED Plant receptor-like kinases (RLKs) constitute a large family of receptors coordinating developmental programs with adaptation to environmental stresses including immune defenses. BRI1-ASSOCIATED KINASE 1 (BAK1), a member of the plant RLK family, forms receptor complexes with multiple RLK proteins including BRI1, FLS2, EFR and BIK1 to regulate responses to growth hormones or PAMPs. RLK activation and signal initiation involve protein complex formation and phosphorylation/dephosphorylation between BAK1 and its interacting partners. To gain new insight into how phosphorylation contributes to BAK1-mediated signaling specificity, we first mapped the phosphorylation patterns of BAK1 associated with different RLK partners (BRI1, FLS2, EFR and BIK1). Quantitative phospho-pattern profiling by label-free mass spectrometry revealed that differential phosphorylation patterns of RLK partners resulted from altered BAK1 phosphorylation status. More interestingly, the study of two BAK1 mutants (T450A and C408Y) both showing severe defect in immune defense yet normal growth phenotype suggested that varied phosphorylation patterns of RLK partners by BAK1 could be the molecular basis for selective regulation of multiple BAK1-dependent pathways. Taken together, this phospho-pattern profiling strategy allowed for explicit assessment of BAK1 kinase activity in different RLK complexes, which would facilitate elucidation of BAK1 diverse functions in plant development, defense, and adaptation. BIOLOGICAL SIGNIFICANCE BAK1 is a functionally important co-receptor known to interact with different receptor-like kinases (RLKs) to coordinate plant development and immune defenses. Our study first mapped the phosphorylation patterns of BAK1 associated with four RLK partners (BRI1, FLS2, EFR and BIK1), and further revealed that differential phosphorylation patterns of multiple RLK partners resulted from altered BAK1 phosphorylation status. More interestingly, the study of two BAK1 mutants suggested that varied phosphorylation patterns of RLK partners by BAK1 could be the basis for selective regulation of signaling pathways. Taken together, this phospho-pattern profiling strategy allowed for explicit assessment of BAK1 kinase activity in different RLK complexes, which would facilitate elucidation of BAK1 diverse functions in plant development, defense, and adaptation.
Collapse
Affiliation(s)
- Yilin Wang
- College of Life Sciences, Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China; High-Throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Zhucui Li
- College of Life Sciences, Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China; High-Throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Dan Liu
- College of Life Sciences, Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China; High-Throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Jinhua Xu
- College of Life Sciences, Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China; High-Throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Xiaochao Wei
- College of Life Sciences, Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China; High-Throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Liming Yan
- Laboratory of Structural Biology and MOE Laboratory of Protein Science, School of Medicine and Life Sciences, Tsinghua University, Beijing 100084, China
| | - Cheng Yang
- High-Throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin 300457, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Zhiyong Lou
- Laboratory of Structural Biology and MOE Laboratory of Protein Science, School of Medicine and Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wenqing Shui
- College of Life Sciences, Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| |
Collapse
|
20
|
Proteomic survey reveals altered energetic patterns and metabolic failure prior to retinal degeneration. J Neurosci 2014; 34:2797-812. [PMID: 24553922 DOI: 10.1523/jneurosci.2982-13.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inherited mutations that lead to misfolding of the visual pigment rhodopsin (Rho) are a prominent cause of photoreceptor neuron (PN) degeneration and blindness. How Rho proteotoxic stress progressively impairs PN viability remains unknown. To identify the pathways that mediate Rho toxicity in PNs, we performed a comprehensive proteomic profiling of retinas from Drosophila transgenics expressing Rh1(P37H), the equivalent of mammalian Rho(P23H), the most common Rho mutation linked to blindness in humans. Profiling of young Rh1(P37H) retinas revealed a coordinated upregulation of energy-producing pathways and attenuation of energy-consuming pathways involving target of rapamycin (TOR) signaling, which was reversed in older retinas at the onset of PN degeneration. We probed the relevance of these metabolic changes to PN survival by using a combination of pharmacological and genetic approaches. Chronic suppression of TOR signaling, using the inhibitor rapamycin, strongly mitigated PN degeneration, indicating that TOR signaling activation by chronic Rh1(P37H) proteotoxic stress is deleterious for PNs. Genetic inactivation of the endoplasmic reticulum stress-induced JNK/TRAF1 axis as well as the APAF-1/caspase-9 axis, activated by damaged mitochondria, dramatically suppressed Rh1(P37H)-induced PN degeneration, identifying the mitochondria as novel mediators of Rh1(P37H) toxicity. We thus propose that chronic Rh1(P37H) proteotoxic stress distorts the energetic profile of PNs leading to metabolic imbalance, mitochondrial failure, and PN degeneration and therapies normalizing metabolic function might be used to alleviate Rh1(P37H) toxicity in the retina. Our study offers a glimpse into the intricate higher order interactions that underlie PN dysfunction and provides a useful resource for identifying other molecular networks that mediate Rho toxicity in PNs.
Collapse
|
21
|
Post-Translational Modifications of TRP Channels. Cells 2014; 3:258-87. [PMID: 24717323 PMCID: PMC4092855 DOI: 10.3390/cells3020258] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 03/25/2014] [Accepted: 03/27/2014] [Indexed: 01/07/2023] Open
Abstract
Transient receptor potential (TRP) channels constitute an ancient family of cation channels that have been found in many eukaryotic organisms from yeast to human. TRP channels exert a multitude of physiological functions ranging from Ca2+ homeostasis in the kidney to pain reception and vision. These channels are activated by a wide range of stimuli and undergo covalent post-translational modifications that affect and modulate their subcellular targeting, their biophysical properties, or channel gating. These modifications include N-linked glycosylation, protein phosphorylation, and covalent attachment of chemicals that reversibly bind to specific cysteine residues. The latter modification represents an unusual activation mechanism of ligand-gated ion channels that is in contrast to the lock-and-key paradigm of receptor activation by its agonists. In this review, we summarize the post-translational modifications identified on TRP channels and, when available, explain their physiological role.
Collapse
|
22
|
Abstract
The Drosophila "transient receptor potential" channel is the prototypical TRP channel, belonging to and defining the TRPC subfamily. Together with a second TRPC channel, trp-like (TRPL), TRP mediates the transducer current in the fly's photoreceptors. TRP and TRPL are also implicated in olfaction and Malpighian tubule function. In photoreceptors, TRP and TRPL are localised in the ~30,000 packed microvilli that form the photosensitive "rhabdomere"-a light-guiding rod, housing rhodopsin and the rest of the phototransduction machinery. TRP (but not TRPL) is assembled into multimolecular signalling complexes by a PDZ-domain scaffolding protein (INAD). TRPL (but not TRP) undergoes light-regulated translocation between cell body and rhabdomere. TRP and TRPL are also found in photoreceptor synapses where they may play a role in synaptic transmission. Like other TRPC channels, TRP and TRPL are activated by a G protein-coupled phospholipase C (PLCβ4) cascade. Although still debated, recent evidence indicates the channels can be activated by a combination of PIP2 depletion and protons released by the PLC reaction. PIP2 depletion may act mechanically as membrane area is reduced by cleavage of PIP2's bulky inositol headgroup. TRP, which dominates the light-sensitive current, is Ca(2+) selective (P Ca:P Cs >50:1), whilst TRPL has a modest Ca(2+) permeability (P Ca:P Cs ~5:1). Ca(2+) influx via the channels has profound positive and negative feedback roles, required for the rapid response kinetics, with Ca(2+) rapidly facilitating TRP (but not TRPL) and also inhibiting both channels. In trp mutants, stimulation by light results in rapid depletion of microvillar PIP2 due to lack of Ca(2+) influx required to inhibit PLC. This accounts for the "transient receptor potential" phenotype that gives the family its name and, over a period of days, leads to light-dependent retinal degeneration. Gain-of-function trp mutants with uncontrolled Ca(2+) influx also undergo retinal degeneration due to Ca(2+) cytotoxicity. In vertebrate retina, mice knockout studies suggest that TRPC6 and TRPC7 mediate a PLCβ4-activated transducer current in intrinsically photosensitive retinal ganglion cells, expressing melanopsin. TRPA1 has been implicated as a "photo-sensing" TRP channel in human melanocytes and light-sensitive neurons in the body wall of Drosophila.
Collapse
|
23
|
Samways DSK. Applications for mass spectrometry in the study of ion channel structure and function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 806:237-61. [PMID: 24952185 DOI: 10.1007/978-3-319-06068-2_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Ion channels are intrinsic membrane proteins that form gated ion-permeable pores across biological membranes. Depending on the type, ion channels exhibit sensitivities to a diverse range of stimuli including changes in membrane potential, binding by diffusible ligands, changes in temperature and direct mechanical force. The purpose of these proteins is to facilitate the passive diffusion of ions down their respective electrochemical gradients into and out of the cell, and between intracellular compartments. In doing so, ion channels can affect transmembrane potentials and regulate the intracellular homeostasis of the important second messenger, Ca(2+). The ion channels of the plasma membrane are of particular clinical interest due to their regulation of cell excitability and cytosolic Ca(2+) levels, and the fact that they are most amenable to manipulation by exogenously applied drugs and toxins. A critical step in improving the pharmacopeia of chemicals available that influence the activity of ion channels is understanding how their three-dimensional structure imparts function. Here, progress has been slow relative to that for soluble protein structures in large part due to the limitations of applying conventional structure determination methods, such as X-ray crystallography, nuclear magnetic resonance imaging, and mass spectrometry, to membrane proteins. Although still an underutilized technique in the assessment of membrane protein structure, recent advances have pushed mass spectrometry to the fore as an important complementary approach to studying the structure and function of ion channels. In addition to revealing the subtle conformational changes in ion channel structure that accompany gating and permeation, mass spectrometry is already being used effectively for identifying tissue-specific posttranslational modifications and mRNA splice variants. Furthermore, the use of mass spectrometry for high-throughput proteomics analysis, which has proven so successful for soluble proteins, is already providing valuable insight into the functional interactions of ion channels within the context of the macromolecular-signaling complexes that they inhabit in vivo. In this chapter, the potential for mass spectrometry as a complementary approach to the study of ion channel structure and function will be reviewed with examples of its application.
Collapse
Affiliation(s)
- Damien S K Samways
- Department of Biology, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699, USA,
| |
Collapse
|
24
|
Voolstra O, Bartels JP, Oberegelsbacher C, Pfannstiel J, Huber A. Phosphorylation of the Drosophila transient receptor potential ion channel is regulated by the phototransduction cascade and involves several protein kinases and phosphatases. PLoS One 2013; 8:e73787. [PMID: 24040070 PMCID: PMC3767779 DOI: 10.1371/journal.pone.0073787] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 07/29/2013] [Indexed: 12/02/2022] Open
Abstract
Protein phosphorylation plays a cardinal role in regulating cellular processes in eukaryotes. Phosphorylation of proteins is controlled by protein kinases and phosphatases. We previously reported the light-dependent phosphorylation of the Drosophila transient receptor potential (TRP) ion channel at multiple sites. TRP generates the receptor potential upon stimulation of the photoreceptor cell by light. An eye-enriched protein kinase C (eye-PKC) has been implicated in the phosphorylation of TRP by in vitro studies. Other kinases and phosphatases of TRP are elusive. Using phosphospecific antibodies and mass spectrometry, we here show that phosphorylation of most TRP sites depends on the phototransduction cascade and the activity of the TRP ion channel. A candidate screen to identify kinases and phosphatases provided in vivo evidence for an involvement of eye-PKC as well as other kinases and phosphatases in TRP phosphorylation.
Collapse
Affiliation(s)
- Olaf Voolstra
- Department of Biosensorics, Institute of Physiology, Universität Hohenheim, Stuttgart, Germany
| | - Jonas-Peter Bartels
- Department of Biosensorics, Institute of Physiology, Universität Hohenheim, Stuttgart, Germany
| | - Claudia Oberegelsbacher
- Department of Biosensorics, Institute of Physiology, Universität Hohenheim, Stuttgart, Germany
| | - Jens Pfannstiel
- The Life Science Center, Universität Hohenheim, Stuttgart, Germany
| | - Armin Huber
- Department of Biosensorics, Institute of Physiology, Universität Hohenheim, Stuttgart, Germany
- The Life Science Center, Universität Hohenheim, Stuttgart, Germany
| |
Collapse
|
25
|
Xu J, Wei X, Yan L, Liu D, Ma Y, Guo Y, Peng C, Zhou H, Yang C, Lou Z, Shui W. Identification and functional analysis of phosphorylation residues of the Arabidopsis BOTRYTIS-INDUCED KINASE1. Protein Cell 2013; 4:771-81. [PMID: 24104392 DOI: 10.1007/s13238-013-3053-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 07/26/2013] [Indexed: 11/30/2022] Open
Abstract
Arabidopsis BOTRYTIS-INDUCED KINASE1 (BIK1) is a receptor-like cytoplasmic kinase acting early in multiple signaling pathways important for plant growth and innate immunity. It is known to form a signaling complex with a cell-surface receptor FLS2 and a co-receptor kinase BAK1 to transduce signals upon perception of pathogen-associated molecular patterns (PAMPs). Although site-specific phosphorylation is speculated to mediate the activation and function of BIK1, few studies have been devoted to complete profiling of BIK1 phosphorylation residues. Here, we identified nineteen in vitro autophosphorylation sites of BIK1 including three phosphotyrosine sites, thereby proving BIK1 is a dual-specificity kinase for the first time. The kinase activity of BIK1 substitution mutants were explicitly assessed using quantitative mass spectrometry (MS). Thr-237, Thr-242 and Tyr-250 were found to most significantly affect BIK1 activity in autophosphorylation and phosphorylation of BAK1 in vitro. A structural model of BIK1 was built to further illustrate the molecular functions of specific phosphorylation residues. We also mapped new sites of FLS2 phosphorylation by BIK1, which are different from those by BAK1. These in vitro results could provide new hypotheses for more in-depth in vivo studies leading to deeper understanding of how phosphorylation contributes to BIK1 activation and mediates downstream signaling specificity.
Collapse
Affiliation(s)
- Jinhua Xu
- College of Life Sciences and Tianjin State Laboratory of Protein Science, Nankai University, Tianjin, 300071, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Katz B, Oberacker T, Richter D, Tzadok H, Peters M, Minke B, Huber A. Drosophila TRP and TRPL are assembled as homomultimeric channels in vivo. J Cell Sci 2013; 126:3121-33. [PMID: 23687378 DOI: 10.1242/jcs.123505] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Family members of the cationic transient receptor potential (TRP) channels serve as sensors and transducers of environmental stimuli. The ability of different TRP channel isoforms of specific subfamilies to form heteromultimers and the structural requirements for channel assembly are still unresolved. Although heteromultimerization of different mammalian TRP channels within single subfamilies has been described, even within a subfamily (such as TRPC) not all members co-assemble with each other. In Drosophila photoreceptors two TRPC channels, TRP and TRP-like protein (TRPL) are expressed together in photoreceptors where they generate the light-induced current. The formation of functional TRP-TRPL heteromultimers in cell culture and in vitro has been reported. However, functional in vivo assays have shown that each channel functions independently of the other. Therefore, the issue of whether TRP and TRPL form heteromultimers in vivo is still unclear. In the present study we investigated the ability of TRP and TRPL to form heteromultimers, and the structural requirements for channel assembly, by studying assembly of GFP-tagged TRP and TRPL channels and chimeric TRP and TRPL channels, in vivo. Interaction studies of tagged and native channels as well as native and chimeric TRP-TRPL channels using co-immunoprecipitation, immunocytochemistry and electrophysiology, critically tested the ability of TRP and TRPL to interact. We found that TRP and TRPL assemble exclusively as homomultimeric channels in their native environment. The above analyses revealed that the transmembrane regions of TRP and TRPL do not determine assemble specificity of these channels. However, the C-terminal regions of both TRP and TRPL predominantly specify the assembly of homomeric TRP and TRPL channels.
Collapse
Affiliation(s)
- Ben Katz
- Department of Medical Neurobiology, Faculty of Medicine and the Edmond and Lily Safra Center for Brain Sciences, Hebrew University, Jerusalem 91120, Israel
| | | | | | | | | | | | | |
Collapse
|
27
|
Cerny AC, Oberacker T, Pfannstiel J, Weigold S, Will C, Huber A. Mutation of light-dependent phosphorylation sites of the Drosophila transient receptor potential-like (TRPL) ion channel affects its subcellular localization and stability. J Biol Chem 2013; 288:15600-13. [PMID: 23592784 DOI: 10.1074/jbc.m112.426981] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Drosophila phototransduction cascade terminates in the opening of the ion channel transient receptor potential (TRP) and TRP-like (TRPL). Contrary to TRP, TRPL undergoes light-dependent subcellular trafficking between rhabdomeric photoreceptor membranes and an intracellular storage compartment, resulting in long term light adaptation. Here, we identified in vivo phosphorylation sites of TRPL that affect TRPL stability and localization. Quantitative mass spectrometry revealed a light-dependent change in the TRPL phosphorylation pattern. Mutation of eight C-terminal phosphorylation sites neither affected multimerization of the channels nor the electrophysiological response of flies expressing the mutated channels. However, these mutations resulted in mislocalization and enhanced degradation of TRPL after prolonged dark-adaptation. Mutation of subsets of the eight C-terminal phosphorylation sites also led to a reduction of TRPL content and partial mislocalization in the dark. This suggests that a light-dependent switch in the phosphorylation pattern of the TRPL channel mediates stable expression of TRPL in the rhabdomeres upon prolonged dark-adaptation.
Collapse
Affiliation(s)
- Alexander C Cerny
- Department of Biosensorics, Institute of Physiology, University of Hohenheim, 70599 Stuttgart, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Bousquet SM, Monet M, Boulay G. The serine 814 of TRPC6 is phosphorylated under unstimulated conditions. PLoS One 2011; 6:e18121. [PMID: 21448286 PMCID: PMC3063223 DOI: 10.1371/journal.pone.0018121] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 02/22/2011] [Indexed: 11/30/2022] Open
Abstract
TRPC are nonselective cation channels involved in calcium entry. Their regulation by phosphorylation has been shown to modulate their routing and activity. TRPC6 activity increases following phosphorylation by Fyn, and is inhibited by protein kinase G and protein kinase C. A previous study by our group showed that TRPC6 is phosphorylated under unstimulated conditions in a human embryonic kidney cells line (HEK293). To investigate the mechanism responsible for this phosphorylation, we used a MS/MS approach combined with metabolic labeling and showed that the serine at position 814 is phosphorylated in unstimulated cells. The mutation of Ser(814) into Ala decreased basal phosphorylation but did not modify TRPC6 activity. Even though Ser(814) is within a consensus site for casein kinase II (CK2), we showed that CK2 is not involved in the phosphorylation of TRPC6 and does not modify its activity. In summary, we identified a new basal phosphorylation site (Ser(814)) on TRPC6 and showed that CK2 is not responsible for the phosphorylation of this site.
Collapse
Affiliation(s)
- Simon M. Bousquet
- Department of Pharmacology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Michael Monet
- Department of Pharmacology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Guylain Boulay
- Department of Pharmacology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|