1
|
Liu M, Zhang Y, Gu C, Luo J, Shen Y, Huang X, Xu X, Ahmed T, Alodaini HA, Hatamleh AA, Wang Y, Li B. Strain-Specific Infection of Phage AP1 to Rice Bacterial Brown Stripe Pathogen Acidovorax oryzae. PLANTS (BASEL, SWITZERLAND) 2024; 13:3182. [PMID: 39599390 PMCID: PMC11597636 DOI: 10.3390/plants13223182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024]
Abstract
Bacteriophage (phage) AP1 has been reported to effectively lyse Acidovorax oryzae, the causative agent of bacterial brown stripe in rice. However, phage AP1 exhibits strain-specific lysis patterns. In order to enhance the potential of phages for biological control of rice bacterial brown stripe, this study investigated the possible mechanism of strain-specific infection by characterizing phage AP1 and its susceptible (RS-2) and resistant (RS-1) strains. Based on the current classification standards and available database information, phage AP1 was classified into the class Caudoviricetes, and it is a kind of podophage. Comparative analysis of the susceptible and resistant strains showed no significant differences in growth kinetics, motility, biofilm formation, or effector Hcp production. Interestingly, the resistant strain demonstrated enhanced virulence compared to the susceptible strain. Prokaryotic expression studies indicated that six putative structural proteins of phage AP1 exhibited varying degrees of binding affinity (1.90-9.15%) to lipopolysaccharide (LPS). However, pull-down assays and bacterial two-hybrid analyses revealed that only gp66 can interact with four host proteins, which were identified as glycosyltransferase, RcnB, ClpB, and ImpB through immunoprecipitation and mass spectrometry analyses. The role of LPS in the specific infection mechanism of phage AP1 was further elucidated through the construction of knockout mutant strains and complementary strains targeting a unique gene cluster (wbzB, wbzC, wbzE, and wbzF) involved in LPS precursor biosynthesis. These findings provide novel insights into the mechanisms of phage-host specificity, which are crucial for the effective application of phage AP1 in controlling rice bacterial brown stripe.
Collapse
Affiliation(s)
- Mengju Liu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.L.); (Y.Z.); (X.H.); (X.X.); (T.A.)
| | - Yang Zhang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.L.); (Y.Z.); (X.H.); (X.X.); (T.A.)
- Key Laboratory of Plant Genetic Engineering Center of Hebei Province, Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050070, China
| | - Chunyan Gu
- Institute of Plant Protection and Agricultural Product Quality and Safety, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Jinyan Luo
- Department of Plant Quarantine, Shanghai Extension and Service Center of Agriculture Technology, Shanghai 201103, China;
| | - Ying Shen
- Station for the Plant Protection & Quarantine and Control of Agrochemicals of Zhejiang Province, Hangzhou 310004, China;
| | - Xuefang Huang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.L.); (Y.Z.); (X.H.); (X.X.); (T.A.)
| | - Xinyan Xu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.L.); (Y.Z.); (X.H.); (X.X.); (T.A.)
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.L.); (Y.Z.); (X.H.); (X.X.); (T.A.)
- Department of Life Sciences, Western Caspian University, Baku 1001, Azerbaijan
| | - Hissah Abdulrahman Alodaini
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (H.A.A.); (A.A.H.)
| | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (H.A.A.); (A.A.H.)
| | - Yanli Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.L.); (Y.Z.); (X.H.); (X.X.); (T.A.)
| |
Collapse
|
2
|
Mallick B, Dutta A, Mondal P, Dutta M. Proteomic analysis and protein structure prediction of Shigella phage Sfk20 based on a comparative study using structure prediction approaches. Proteins 2024; 92:637-648. [PMID: 38146101 DOI: 10.1002/prot.26653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 12/27/2023]
Abstract
Bacteriophages are the natural predators of bacteria and are available abundantly everywhere in nature. Lytic phages can specifically infect their bacterial host (through attachment to the receptor) and use their host replication machinery to replicate rapidly, a feature that enables them to kill a disease-causing bacteria. Hence, phage attachment to the host bacteria is the first important step of the infection process. It is reported in this study that the receptor could be an LPS which is responsible for the attachment of the Sfk20 phage to its host (Shigella flexneri 2a). Phage Sfk20 bacteriolytic activity was examined for preliminary optimization of phage titer. The phage Sfk20 viability at different saline conditions was conducted. The LC-MS/MS technique used here for detecting and identifying 40 Sfk20 phage proteins helped us to get an initial understanding of the structural landscape of phage Sfk20. From the identified proteins, six structurally significant proteins were selected for structure prediction using two neural network systems: AlphaFold2 and ESMFold, and one homology modeling software: Phyre2. Later the performance of these modeling systems was compared using various metrics. We conclude from the available and generated information that AlphaFold2 and Phyre2 perform better than ESMFold for predicting Sfk20 phage protein structures.
Collapse
Affiliation(s)
- Bani Mallick
- Division of Electron Microscopy, ICMR-National Institute of Cholera & Enteric Diseases, Kolkata, West Bengal, India
| | - Aninda Dutta
- Division of Electron Microscopy, ICMR-National Institute of Cholera & Enteric Diseases, Kolkata, West Bengal, India
| | - Payel Mondal
- Division of Electron Microscopy, ICMR-National Institute of Cholera & Enteric Diseases, Kolkata, West Bengal, India
| | - Moumita Dutta
- Division of Electron Microscopy, ICMR-National Institute of Cholera & Enteric Diseases, Kolkata, West Bengal, India
| |
Collapse
|
3
|
Filik K, Szermer-Olearnik B, Niedziółka-Jönson J, Roźniecka E, Ciekot J, Pyra A, Matyjaszczyk I, Skurnik M, Brzozowska E. φYeO3-12 phage tail fiber Gp17 as a promising high specific tool for recognition of Yersinia enterocolitica pathogenic serotype O:3. AMB Express 2022; 12:1. [PMID: 34989907 PMCID: PMC8739404 DOI: 10.1186/s13568-021-01341-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/19/2021] [Indexed: 11/10/2022] Open
Abstract
Yersiniosis is an infectious zoonotic disease caused by two enteropathogenic species of Gram-negative genus Yersinia: Yersinia enterocolitica and Yersinia pseudotuberculosis. Pigs and other wild and domestic animals are reservoirs for these bacteria. Infection is usually spread to humans by ingestion of contaminated food. Yersiniosis is considered a rare disease, but recent studies indicate that it is overlooked in the diagnostic process therefore the infections with this bacterium are not often identified. Reliable diagnosis of Yersiniosis by culturing is difficult due to the slow growth of the bacteria easily overgrown by other more rapidly growing microbes unless selec-tive growth media is used. Phage adhesins recognizing bacteria in a specific manner can be an excellent diagnostic tool, es-pecially in the diagnosis of pathogens difficult for culturing. In this study, it was shown that Gp17, the tail fiber protein (TFP) of phage φYeO3-12, specifically recognizes only the pathogenic Yersinia enterocolitica serotype O:3 (YeO:3) bacteria. The ELISA test used in this work confirmed the specific interaction of this protein with YeO:3 and demonstrated a promising tool for developing the pathogen recognition method based on phage adhesins.
Collapse
Affiliation(s)
- Karolina Filik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 R. Weigl St, 53114 Wroclaw, Poland
| | - Bożena Szermer-Olearnik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 R. Weigl St, 53114 Wroclaw, Poland
| | - Joanna Niedziółka-Jönson
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44, 5201-224 Warsaw, Poland
| | - Ewa Roźniecka
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44, 5201-224 Warsaw, Poland
| | - Jarosław Ciekot
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 R. Weigl St, 53114 Wroclaw, Poland
| | - Anna Pyra
- Faculty of Chemistry, University of Wroclaw, 14 F. Joliot-Curie St, 50383 Wroclaw, Poland
| | - Irwin Matyjaszczyk
- Department of Mycology and Genetics, Institute of Genetics and Microbiology, University of Wrocław, 51-148 Wroclaw, Poland
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Faculty of Medicine, Human Microbiome Research Program, University of Helsinki, Helsinki, Finland
- Division of Clinical Microbiology, Helsinki University Hospital, HUSLAB, Helsinki, Finland
| | - Ewa Brzozowska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 R. Weigl St, 53114 Wroclaw, Poland
| |
Collapse
|
4
|
Filik K, Szermer-Olearnik B, Wernecki M, Happonen LJ, Pajunen MI, Nawaz A, Qasim MS, Jun JW, Mattinen L, Skurnik M, Brzozowska E. The Podovirus ϕ80-18 Targets the Pathogenic American Biotype 1B Strains of Yersinia enterocolitica. Front Microbiol 2020; 11:1356. [PMID: 32636826 PMCID: PMC7316996 DOI: 10.3389/fmicb.2020.01356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/27/2020] [Indexed: 01/31/2023] Open
Abstract
We report here the complete genome sequence and characterization of Yersinia bacteriophage vB_YenP_ϕ80-18. ϕ80-18 was isolated in 1991 using a Y. enterocolitica serotype O:8 strain 8081 as a host from a sewage sample in Turku, Finland, and based on its morphological and genomic features is classified as a podovirus. The genome is 42 kb in size and has 325 bp direct terminal repeats characteristic for podoviruses. The genome contains 57 predicted genes, all encoded in the forward strand, of which 29 showed no similarity to any known genes. Phage particle proteome analysis identified altogether 24 phage particle-associated proteins (PPAPs) including those identified as structural proteins such as major capsid, scaffolding and tail component proteins. In addition, also the DNA helicase, DNA ligase, DNA polymerase, 5'-exonuclease, and the lytic glycosylase proteins were identified as PPAPs, suggesting that they might be injected together with the phage genome into the host cell to facilitate the take-over of the host metabolism. The phage-encoded RNA-polymerase and DNA-primase were not among the PPAPs. Promoter search predicted the presence of four phage and eleven host RNA polymerase -specific promoters in the genome, suggesting that early transcription of the phage is host RNA-polymerase dependent and that the phage RNA polymerase takes over later. The phage tolerates pH values between 2 and 12, and is stable at 50°C but is inactivated at 60°C. It grows slowly with a 50 min latent period and has apparently a low burst size. Electron microscopy revealed that the phage has a head diameter of about 60 nm, and a short tail of 20 nm. Whole-genome phylogenetic analysis confirmed that ϕ80-18 belongs to the Autographivirinae subfamily of the Podoviridae family, that it is 93.2% identical to Yersinia phage fHe-Yen3-01. Host range analysis showed that ϕ80-18 can infect in addition to Y. enterocolitica serotype O:8 strains also strains of serotypes O:4, O:4,32, O:20 and O:21, the latter ones representing similar to Y. enterocolitica serotype O:8, the American pathogenic biotype 1B strains. In conclusion, the phage ϕ80-18 is a promising candidate for the biocontrol of the American biotype 1B Y. enterocolitica.
Collapse
Affiliation(s)
- Karolina Filik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Bożena Szermer-Olearnik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Maciej Wernecki
- Department of Microbiology, Institute of Genetics and Microbiology, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland
| | - Lotta J Happonen
- Department of Biosciences, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Maria I Pajunen
- Research Programme Unit Immunobiology, Department of Bacteriology and Immunology, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ayesha Nawaz
- Research Programme Unit Immunobiology, Department of Bacteriology and Immunology, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Muhammad Suleman Qasim
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Jin Woo Jun
- Department of Aquaculture, The Korea National College of Agriculture and Fisheries, Jeonju, South Korea
| | - Laura Mattinen
- Research Programme Unit Immunobiology, Department of Bacteriology and Immunology, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikael Skurnik
- Research Programme Unit Immunobiology, Department of Bacteriology and Immunology, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Division of Clinical Microbiology, Helsinki University Hospital, HUSLAB, Helsinki, Finland
| | - Ewa Brzozowska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
5
|
Biochemical features of the novel Tail Tubular Protein A of Yersinia phage phiYeO3-12. Sci Rep 2020; 10:4196. [PMID: 32144374 PMCID: PMC7060351 DOI: 10.1038/s41598-020-61145-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 02/20/2020] [Indexed: 11/08/2022] Open
Abstract
Tail Tubular Protein A (TTPA) was long thought to be strictly a structural protein of environmental bacteriophages. However, our recent work has suggested that some TTPAs have additional functional features and thus are dual-function proteins. This study introduces a new TTPA family member, TTPAgp11, which belongs to Yersinia phage phiYeO3-12. We cloned the gene, expressed it and then purified the phage protein. The protein, including its hydrolytic activity, was characterized. Our enzymatic activity tests showed that TTPAgp11 displayed hydrolytic activity towards Red-starch, suggesting that this enzyme could be classified as part as the α - 1, 4-glucosidase family. Protein folding and aggregation tests indicated that TTPAgp11 is a single-domain protein whose aggregation can be induced by maltose or N-acetylglucosamine. The spatial structure of TTPAgp11 seemed to resemble that of the first reported dual-function TTPA, TTPAgp31, which was isolated from Klebsiella pneumoniae phage 32.
Collapse
|
6
|
Ou L, Ang L, Chujun Z, Jingyu H, Yongli M, Shenjing Y, Junhua H, Xu G, Yulong Y, Rui Y, Jinpan H, Bin D, Xiufang H. Identification and characterization of six glycosyltransferases involved in the biosynthesis of a new bacterial exopolysaccharide in Paenibacillus elgii. Appl Microbiol Biotechnol 2017; 102:1357-1366. [PMID: 29199353 DOI: 10.1007/s00253-017-8673-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 02/06/2023]
Abstract
Paenibacillus elgii B69 produces a new xylose-containing exopolysaccharide (EPS) that effectively removes the pollutants from wastewater through flocculation. However, information about the biosynthesis of this EPS is limited. In this study, sequence analysis showed six putative glycosyltransferases (GTs) genes in polysaccharide gene clusters involved in glycosidic linkages of repeating units. Each gene was deleted and phenotypes were examined to understand the functions of these genes. Two of the genes were deleted successfully to encode a priming glucose GT and a side-chain xylose GT, but other genes were unsuccessfully deleted because of the accumulation of toxic intermediate products. The six genes were cloned and expressed in Escherichia coli, and the corresponding enzymes were purified. The activity of GTs was analyzed through mass spectrometry by using the purified membrane fraction as a lipid carrier receptor after a hexasaccharide repeated unit was reconstructed in vitro. The specificities of six different GTs and the building order of the hexasaccharide were characterized. This study provided a basis for future research on the biosynthetic pathway of EPS in Paenibacillus or other genera.
Collapse
Affiliation(s)
- Li Ou
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China. .,The department of development technology of marine resources, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Li Ang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhang Chujun
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Huang Jingyu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Meng Yongli
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yuan Shenjing
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Huang Junhua
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Gao Xu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yao Yulong
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yin Rui
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Hu Jinpan
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ding Bin
- Zhejiang Chinese Medical University, Hangzhou, 310018, China
| | - Hu Xiufang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
7
|
Shashkov AS, Liu B, Kenyon JJ, Popova AV, Shneider MM, Senchenkova SN, Arbatsky NP, Miroshnikov KA, Wang L, Knirel YA. Structures of the K35 and K15 capsular polysaccharides of Acinetobacter baumannii LUH5535 and LUH5554 containing amino and diamino uronic acids. Carbohydr Res 2017; 448:28-34. [DOI: 10.1016/j.carres.2017.05.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/10/2017] [Accepted: 05/23/2017] [Indexed: 01/02/2023]
|
8
|
Related structures of neutral capsular polysaccharides of Acinetobacter baumannii isolates that carry related capsule gene clusters KL43, KL47, and KL88. Carbohydr Res 2016; 435:173-179. [DOI: 10.1016/j.carres.2016.10.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/13/2016] [Accepted: 10/20/2016] [Indexed: 12/15/2022]
|
9
|
Kenyon JJ, Speciale I, Hall RM, De Castro C. Structure of repeating unit of the capsular polysaccharide from Acinetobacter baumannii D78 and assignment of the K4 gene cluster. Carbohydr Res 2016; 434:12-17. [DOI: 10.1016/j.carres.2016.07.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/23/2016] [Accepted: 07/12/2016] [Indexed: 01/17/2023]
|
10
|
Leskinen K, Blasdel BG, Lavigne R, Skurnik M. RNA-Sequencing Reveals the Progression of Phage-Host Interactions between φR1-37 and Yersinia enterocolitica. Viruses 2016; 8:111. [PMID: 27110815 PMCID: PMC4848604 DOI: 10.3390/v8040111] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/05/2016] [Accepted: 04/13/2016] [Indexed: 01/05/2023] Open
Abstract
Despite the expanding interest in bacterial viruses (bacteriophages), insights into the intracellular development of bacteriophage and its impact on bacterial physiology are still scarce. Here we investigate during lytic infection the whole-genome transcription of the giant phage vB_YecM_φR1-37 (φR1-37) and its host, the gastroenteritis causing bacterium Yersinia enterocolitica. RNA sequencing reveals that the gene expression of φR1-37 does not follow a pattern typical observed in other lytic bacteriophages, as only selected genes could be classified as typically early, middle or late genes. The majority of the genes appear to be expressed constitutively throughout infection. Additionally, our study demonstrates that transcription occurs mainly from the positive strand, while the negative strand encodes only genes with low to medium expression levels. Interestingly, we also detected the presence of antisense RNA species, as well as one non-coding intragenic RNA species. Gene expression in the phage-infected cell is characterized by the broad replacement of host transcripts with phage transcripts. However, the host response in the late phase of infection was also characterized by up-regulation of several specific bacterial gene products known to be involved in stress response and membrane stability, including the Cpx pathway regulators, ATP-binding cassette (ABC) transporters, phage- and cold-shock proteins.
Collapse
Affiliation(s)
- Katarzyna Leskinen
- Department of Bacteriology and Immunology, Medicum, and Research Programs Unit, Immunobiology, University of Helsinki, P.O.Box 21 (Haartmaninkatu 3), FIN-00014 HY Helsinki, Finland.
| | - Bob G Blasdel
- Laboratory of Gene Technology, KU Leuven, BE-3001 Leuven, Belgium.
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, BE-3001 Leuven, Belgium.
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, and Research Programs Unit, Immunobiology, University of Helsinki, P.O.Box 21 (Haartmaninkatu 3), FIN-00014 HY Helsinki, Finland.
- Division of Clinical Microbiology, Helsinki University Hospital, HUSLAB, FIN-00270 Helsinki, Finland.
| |
Collapse
|
11
|
Shashkov AS, Kenyon JJ, Arbatsky NP, Shneider MM, Popova AV, Miroshnikov KA, Volozhantsev NV, Knirel YA. Structures of three different neutral polysaccharides of Acinetobacter baumannii, NIPH190, NIPH201, and NIPH615, assigned to K30, K45, and K48 capsule types, respectively, based on capsule biosynthesis gene clusters. Carbohydr Res 2015; 417:81-8. [DOI: 10.1016/j.carres.2015.09.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 09/05/2015] [Accepted: 09/05/2015] [Indexed: 11/27/2022]
|
12
|
Reuter S, Corander J, de Been M, Harris S, Cheng L, Hall M, Thomson NR, McNally A. Directional gene flow and ecological separation in Yersinia enterocolitica. Microb Genom 2015; 1:e000030. [PMID: 28348815 PMCID: PMC5320568 DOI: 10.1099/mgen.0.000030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/09/2015] [Indexed: 01/07/2023] Open
Abstract
Yersinia enterocolitica is a common cause of food-borne gastroenteritis worldwide. Recent work defining the phylogeny of the genus Yersinia subdivided Y. enterocolitica into six distinct phylogroups. Here, we provide detailed analyses of the evolutionary processes leading to the emergence of these phylogroups. The dominant phylogroups isolated from human infections, PG3–5, show very little diversity at the sequence level, but do present marked patterns of gain and loss of functions, including those involved in pathogenicity and metabolism, including the acquisition of phylogroup-specific O-antigen loci. We tracked gene flow across the species in the core and accessory genome, and show that the non-pathogenic PG1 strains act as a reservoir for diversity, frequently acting as donors in recombination events. Analysis of the core and accessory genome also suggested that the different Y. enterocolitica phylogroups may be ecologically separated, in contrast to the long-held belief of common shared ecological niches across the Y. enterocolitica species.
Collapse
Affiliation(s)
- Sandra Reuter
- Pathogen Genomics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK.,Pathogen Research Group, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Jukka Corander
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Mark de Been
- Department of Medical Microbiology, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Simon Harris
- Pathogen Genomics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Lu Cheng
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Miquette Hall
- Pathogen Research Group, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Nicholas R Thomson
- Pathogen Genomics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK.,Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Alan McNally
- Pathogen Research Group, Nottingham Trent University, Nottingham NG11 8NS, UK
| |
Collapse
|
13
|
Leskinen K, Li CM, Varjosalo M, Li Z, Skurnik M. Expression of the Yersinia enterocolitica O:3 LPS O-antigen and outer core gene clusters is RfaH-dependent. Microbiology (Reading) 2015; 161:1282-94. [DOI: 10.1099/mic.0.000076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
14
|
Beczała A, Ovchinnikova OG, Datta N, Mattinen L, Knapska K, Radziejewska-Lebrecht J, Holst O, Skurnik M. Structure and genetic basis of Yersinia similis serotype O:9 O-specific polysaccharide. Innate Immun 2013; 21:3-16. [DOI: 10.1177/1753425913514783] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The O-polysaccharide (OPS, O-Ag) cap of LPS is a major virulence factor of Yersinia species and also serves as a receptor for the binding of lytic bacteriophage φR1-37. Currently, the OPS-based serotyping scheme for the Yersinia pseudotuberculosis complex includes 21 known O-serotypes that follow three distinct lineages: Y. pseudotuberculosis sensu stricto, Y. similis and the Korean group of strains. Elucidation of the Y. pseudotuberculosis complex OPS structures and characterization of the OPS genetics (altogether 18 O-serotypes studied thus far) allows a better understanding of the relationships among the various O serotypes and will facilitate the analysis of the evolutionary processes giving rise to new serotypes. Here we present the characterization of the OPS structure and gene cluster of Y. similis O:9. Bacteriophage φR1-37, which uses the Y. similis O:9 OPS as a receptor, also infects a number of Y. enterocolitica serotypes, including O:3, O:5,27, O:9 and O:50. The Y. similis O:9 OPS structure resembled none of the receptor structures of the Y. enterocolitica strains, suggesting that φR1-37 can recognize several surface receptors, thus promoting broad host specificity.
Collapse
Affiliation(s)
- Agnieszka Beczała
- Division of Structural Biochemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Airway Research Center North (ARCN), Borstel, Germany
- Department of Microbiology, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Olga G Ovchinnikova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Neeta Datta
- Department of Bacteriology and Immunology, Haartman Institute, and Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland
| | - Laura Mattinen
- Department of Bacteriology and Immunology, Haartman Institute, and Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland
| | - Katarzyna Knapska
- Department of Bacteriology and Immunology, Haartman Institute, and Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland
| | - Joanna Radziejewska-Lebrecht
- Department of Microbiology, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Otto Holst
- Division of Structural Biochemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Airway Research Center North (ARCN), Borstel, Germany
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Haartman Institute, and Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland
- Helsinki University Central Hospital Laboratory Diagnostics, Helsinki, Finland
| |
Collapse
|
15
|
Abstract
The bacteriophage vB_YecM-ϕR1-37 (ϕR1-37) is a lytic yersiniophage that can propagate naturally in different Yersinia species carrying the correct lipopolysaccharide receptor. This large-tailed phage has deoxyuridine (dU) instead of thymidine in its DNA. In this study, we determined the genomic sequence of phage ϕR1-37, mapped parts of the phage transcriptome, characterized the phage particle proteome, and characterized the virion structure by cryo-electron microscopy and image reconstruction. The 262,391-bp genome of ϕR1-37 is one of the largest sequenced phage genomes, and it contains 367 putative open reading frames (ORFs) and 5 tRNA genes. Mass-spectrometric analysis identified 69 phage particle structural proteins with the genes scattered throughout the genome. A total of 269 of the ORFs (73%) lack homologues in sequence databases. Based on terminator and promoter sequences identified from the intergenic regions, the phage genome was predicted to consist of 40 to 60 transcriptional units. Image reconstruction revealed that the ϕR1-37 capsid consists of hexameric capsomers arranged on a T=27 lattice similar to the bacteriophage ϕKZ. The tail of ϕR1-37 has a contractile sheath. We conclude that phage ϕR1-37 is a representative of a novel phage type that carries the dU-containing genome in a ϕKZ-like head.
Collapse
|
16
|
Beczała A, Duda KA, Skurnik M, Holst O. The structure of the O-specific polysaccharide of the lipopolysaccharide from Yersinia enterocolitica serotype O:50 strain 3229. Carbohydr Res 2012; 359:97-101. [PMID: 22925771 DOI: 10.1016/j.carres.2012.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/30/2012] [Accepted: 06/02/2012] [Indexed: 11/25/2022]
Abstract
The genus Yersinia represents Gram-negative bacteria that are widely distributed in the environment and possess lipopolysaccharide (LPS) as a major molecule on the surface of the bacterial envelope. LPS is composed of an anchoring lipid, termed lipid A, and a polysaccharide part which not only determines the bacterial serotype but may also serve as a bacteriophage receptor. Here we present the structure of the O-polysaccharide (O-PS) of Yersinia enterocolitica O:50 phage ΦR1-37-sensitive strain 3229. The structural characterization was performed utilizing 1D and 2D nuclear magnetic resonance spectroscopy and chemical analyses. The structure of the O-PS biological repeating unit was identified as →2)-α-L-Rhap-(1→3)-α-L-FucpNAc-(1→3)-α-L-FucpNAc-(1→3)-β-D-GlcpNAc-(1→.
Collapse
Affiliation(s)
- Agnieszka Beczała
- Division of Structural Biochemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany.
| | | | | | | |
Collapse
|
17
|
Bacterial cell surface structures in Yersinia enterocolitica. Arch Immunol Ther Exp (Warsz) 2012; 60:199-209. [PMID: 22484801 DOI: 10.1007/s00005-012-0168-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 01/30/2012] [Indexed: 01/13/2023]
Abstract
Yersinia enterocolitica is a widespread member of the family of Enterobacteriaceae that contains both non-virulent and virulent isolates. Pathogenic Y. enterocolitica strains, especially belonging to serotypes O:3, O:5,27, O:8 and O:9 are etiologic agents of yersiniosis in animals and humans. Y. enterocolitica cell surface structures that play a significant role in virulence have been subject to many investigations. These include outer membrane (OM) glycolipids such as lipopolysaccharide (LPS) and enterobacterial common antigen (ECA) and several cell surface adhesion proteins present only in virulent Y. enterocolitica, i.e., Inv, YadA and Ail. While the yadA gene is located on the Yersinia virulence plasmid the Ail, Inv, LPS and ECA are chromosomally encoded. These structures ensure the correct architecture of the OM, provide adhesive properties as well as resistance to antimicrobial peptides and to host innate immune response mechanisms.
Collapse
|
18
|
Skurnik M, Toivonen S. Identification of distinct lipopolysaccharide patterns among Yersinia enterocolitica and Y. enterocolitica-like bacteria. BIOCHEMISTRY (MOSCOW) 2012; 76:823-31. [PMID: 21999544 DOI: 10.1134/s0006297911070133] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The lipopolysaccharide (LPS) of strains representing various serotypes of Yersinia enterocolitica and Y. enterocolitica-like bacteria was studied by deoxycholate-PAGE and silver staining analysis. Four main types of LPS were detected based on the O-polysaccharide (O-PS): (i) LPS with homopolymeric O-PS, (ii) LPS with ladder-forming heteropolymeric O-PS, (iii) LPS with single-length O-PS, and (iv) semi-rough LPS without O-PS. Within the first three types, several subvariants were detected. Selected serotypes representing all above LPS types are sensitive to bacteriophage φR1-37 indicating that they share the phage receptor, a hexasaccharide called outer core in Y. enterocolitica O:3. Whereas phage φR1-37-resistant mutants of homopolymeric O-PS have lost only the outer core, those of ladder-forming or single-length O-PS have lost also the O-PS suggesting that in the latter ones the outer core is bridging between O-PS and lipid A-core. This work forms a basis of further structural, biochemical and genetic studies of these LPSs.
Collapse
Affiliation(s)
- M Skurnik
- Department of Bacteriology and Immunology, Haartman Institute, Infection Biology Research Program, University of Helsinki, Finland.
| | | |
Collapse
|
19
|
Skurnik M. Yersinia surface structures and bacteriophages. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 954:293-301. [PMID: 22782776 DOI: 10.1007/978-1-4614-3561-7_37] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mikael Skurnik
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Finland.
| |
Collapse
|
20
|
Pinta E, Li Z, Batzilla J, Pajunen M, Kasanen T, Rabsztyn K, Rakin A, Skurnik M. Identification of three oligo-/polysaccharide-specific ligases in Yersinia enterocolitica. Mol Microbiol 2011; 83:125-36. [DOI: 10.1111/j.1365-2958.2011.07918.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
21
|
Identification of the lipopolysaccharide core of Yersinia pestis and Yersinia pseudotuberculosis as the receptor for bacteriophage φA1122. J Bacteriol 2011; 193:4963-72. [PMID: 21764935 DOI: 10.1128/jb.00339-11] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
φA1122 is a T7-related bacteriophage infecting most isolates of Yersinia pestis, the etiologic agent of plague, and used by the CDC in the identification of Y. pestis. φA1122 infects Y. pestis grown both at 20 °C and at 37 °C. Wild-type Yersinia pseudotuberculosis strains are also infected but only when grown at 37 °C. Since Y. pestis expresses rough lipopolysaccharide (LPS) missing the O-polysaccharide (O-PS) and expression of Y. pseudotuberculosis O-PS is largely suppressed at temperatures above 30 °C, it has been assumed that the phage receptor is rough LPS. We present here several lines of evidence to support this. First, a rough derivative of Y. pseudotuberculosis was also φA1122 sensitive when grown at 22 °C. Second, periodate treatment of bacteria, but not proteinase K treatment, inhibited the phage binding. Third, spontaneous φA1122 receptor mutants of Y. pestis and rough Y. pseudotuberculosis could not be isolated, indicating that the receptor was essential for bacterial growth under the applied experimental conditions. Fourth, heterologous expression of the Yersinia enterocolitica O:3 LPS outer core hexasaccharide in both Y. pestis and rough Y. pseudotuberculosis effectively blocked the phage adsorption. Fifth, a gradual truncation of the core oligosaccharide into the Hep/Glc (L-glycero-D-manno-heptose/D-glucopyranose)-Kdo/Ko (3-deoxy-D-manno-oct-2-ulopyranosonic acid/D-glycero-D-talo-oct-2-ulopyranosonic acid) region in a series of LPS mutants was accompanied by a decrease in phage adsorption, and finally, a waaA mutant expressing only lipid A, i.e., also missing the Kdo/Ko region, was fully φA1122 resistant. Our data thus conclusively demonstrated that the φA1122 receptor is the Hep/Glc-Kdo/Ko region of the LPS core, a common structure in Y. pestis and Y. pseudotuberculosis.
Collapse
|