1
|
Hernández González JE, de Araujo AS. Alchemical Calculation of Relative Free Energies for Charge-Changing Mutations at Protein-Protein Interfaces Considering Fixed and Variable Protonation States. J Chem Inf Model 2023; 63:6807-6822. [PMID: 37851531 DOI: 10.1021/acs.jcim.3c00972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
The calculation of relative free energies (ΔΔG) for charge-changing mutations at protein-protein interfaces through alchemical methods remains challenging due to variations in the system's net charge during charging steps, the possibility of mutated and contacting ionizable residues occurring in various protonation states, and undersampling issues. In this study, we present a set of strategies, collectively termed TIRST/TIRST-H+, to address some of these challenges. Our approaches combine thermodynamic integration (TI) with the prediction of pKa shifts to calculate ΔΔG values. Moreover, special sets of restraints are employed to keep the alchemically transformed molecules separated. The accuracy of the devised approaches was assessed on a large and diverse data set comprising 164 point mutations of charged residues (Asp, Glu, Lys, and Arg) to Ala at the protein-protein interfaces of complexes with known three-dimensional structures. Mean absolute and root-mean-square errors ranging from 1.38 to 1.66 and 1.89 to 2.44 kcal/mol, respectively, and Pearson correlation coefficients of ∼0.6 were obtained when testing the approaches on the selected data set using the GPU-TI module of Amber18 suite and the ff14SB force field. Furthermore, the inclusion of variable protonation states for the mutated acid residues improved the accuracy of the predicted ΔΔG values. Therefore, our results validate the use of TIRST/TIRST-H+ in prospective studies aimed at evaluating the impact of charge-changing mutations to Ala on the stability of protein-protein complexes.
Collapse
|
2
|
Anton V, Buntenbroich I, Simões T, Joaquim M, Müller L, Buettner R, Odenthal M, Hoppe T, Escobar-Henriques M. E4 ubiquitin ligase promotes mitofusin turnover and mitochondrial stress response. Mol Cell 2023; 83:2976-2990.e9. [PMID: 37595558 PMCID: PMC10434984 DOI: 10.1016/j.molcel.2023.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 05/31/2023] [Accepted: 07/18/2023] [Indexed: 08/20/2023]
Abstract
Ubiquitin-dependent control of mitochondrial dynamics is important for protein quality and neuronal integrity. Mitofusins, mitochondrial fusion factors, can integrate cellular stress through their ubiquitylation, which is carried out by multiple E3 enzymes in response to many different stimuli. However, the molecular mechanisms that enable coordinated responses are largely unknown. Here we show that yeast Ufd2, a conserved ubiquitin chain-elongating E4 enzyme, is required for mitochondrial shape adjustments. Under various stresses, Ufd2 translocates to mitochondria and triggers mitofusin ubiquitylation. This elongates ubiquitin chains on mitofusin and promotes its proteasomal degradation, leading to mitochondrial fragmentation. Ufd2 and its human homologue UBE4B also target mitofusin mutants associated with Charcot-Marie-Tooth disease, a hereditary sensory and motor neuropathy characterized by progressive loss of the peripheral nerves. This underscores the pathophysiological importance of E4-mediated ubiquitylation in neurodegeneration. In summary, we identify E4-dependent mitochondrial stress adaptation by linking various metabolic processes to mitochondrial fusion and fission dynamics.
Collapse
Affiliation(s)
- Vincent Anton
- Institute for Genetics, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Ira Buntenbroich
- Institute for Genetics, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Tânia Simões
- Institute for Genetics, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Mariana Joaquim
- Institute for Genetics, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Leonie Müller
- Institute for Genetics, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Reinhard Buettner
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany; Institute of Pathology, Medical Faculty, University Hospital, University of Cologne, Germany
| | - Margarete Odenthal
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany; Institute of Pathology, Medical Faculty, University Hospital, University of Cologne, Germany
| | - Thorsten Hoppe
- Institute for Genetics, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Mafalda Escobar-Henriques
- Institute for Genetics, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Cologne, Germany.
| |
Collapse
|
3
|
Kampmeyer C, Grønbæk-Thygesen M, Oelerich N, Tatham MH, Cagiada M, Lindorff-Larsen K, Boomsma W, Hofmann K, Hartmann-Petersen R. Lysine deserts prevent adventitious ubiquitylation of ubiquitin-proteasome components. Cell Mol Life Sci 2023; 80:143. [PMID: 37160462 PMCID: PMC10169902 DOI: 10.1007/s00018-023-04782-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/15/2023] [Accepted: 04/17/2023] [Indexed: 05/11/2023]
Abstract
In terms of its relative frequency, lysine is a common amino acid in the human proteome. However, by bioinformatics we find hundreds of proteins that contain long and evolutionarily conserved stretches completely devoid of lysine residues. These so-called lysine deserts show a high prevalence in intrinsically disordered proteins with known or predicted functions within the ubiquitin-proteasome system (UPS), including many E3 ubiquitin-protein ligases and UBL domain proteasome substrate shuttles, such as BAG6, RAD23A, UBQLN1 and UBQLN2. We show that introduction of lysine residues into the deserts leads to a striking increase in ubiquitylation of some of these proteins. In case of BAG6, we show that ubiquitylation is catalyzed by the E3 RNF126, while RAD23A is ubiquitylated by E6AP. Despite the elevated ubiquitylation, mutant RAD23A appears stable, but displays a partial loss of function phenotype in fission yeast. In case of UBQLN1 and BAG6, introducing lysine leads to a reduced abundance due to proteasomal degradation of the proteins. For UBQLN1 we show that arginine residues within the lysine depleted region are critical for its ability to form cytosolic speckles/inclusions. We propose that selective pressure to avoid lysine residues may be a common evolutionary mechanism to prevent unwarranted ubiquitylation and/or perhaps other lysine post-translational modifications. This may be particularly relevant for UPS components as they closely and frequently encounter the ubiquitylation machinery and are thus more susceptible to nonspecific ubiquitylation.
Collapse
Affiliation(s)
- Caroline Kampmeyer
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark
| | - Martin Grønbæk-Thygesen
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark
| | - Nicole Oelerich
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Michael H Tatham
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, UK
| | - Matteo Cagiada
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark
| | - Kresten Lindorff-Larsen
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark
| | - Wouter Boomsma
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark.
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, Cologne, Germany.
| | - Rasmus Hartmann-Petersen
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Grønbæk-Thygesen M, Kampmeyer C, Hofmann K, Hartmann-Petersen R. The moonlighting of RAD23 in DNA repair and protein degradation. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194925. [PMID: 36863450 DOI: 10.1016/j.bbagrm.2023.194925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023]
Abstract
A moonlighting protein is one, which carries out multiple, often wholly unrelated, functions. The RAD23 protein is a fascinating example of this, where the same polypeptide and the embedded domains function independently in both nucleotide excision repair (NER) and protein degradation via the ubiquitin-proteasome system (UPS). Hence, through direct binding to the central NER component XPC, RAD23 stabilizes XPC and contributes to DNA damage recognition. Conversely, RAD23 also interacts directly with the 26S proteasome and ubiquitylated substrates to mediate proteasomal substrate recognition. In this function, RAD23 activates the proteolytic activity of the proteasome and engages specifically in well-characterized degradation pathways through direct interactions with E3 ubiquitin-protein ligases and other UPS components. Here, we summarize the past 40 years of research into the roles of RAD23 in NER and the UPS.
Collapse
Affiliation(s)
- Martin Grønbæk-Thygesen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Denmark.
| | - Caroline Kampmeyer
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Denmark
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, Germany
| | - Rasmus Hartmann-Petersen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Denmark.
| |
Collapse
|
5
|
Das A, Thapa P, Santiago U, Shanmugam N, Banasiak K, Dąbrowska K, Nolte H, Szulc NA, Gathungu RM, Cysewski D, Krüger M, Dadlez M, Nowotny M, Camacho CJ, Hoppe T, Pokrzywa W. A heterotypic assembly mechanism regulates CHIP E3 ligase activity. EMBO J 2022; 41:e109566. [PMID: 35762422 PMCID: PMC9340540 DOI: 10.15252/embj.2021109566] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 12/24/2022] Open
Abstract
CHIP (C-terminus of Hsc70-interacting protein) and its worm ortholog CHN-1 are E3 ubiquitin ligases that link the chaperone system with the ubiquitin-proteasome system (UPS). CHN-1 can cooperate with UFD-2, another E3 ligase, to accelerate ubiquitin chain formation; however, the basis for the high processivity of this E3s set has remained obscure. Here, we studied the molecular mechanism and function of the CHN-1-UFD-2 complex in Caenorhabditis elegans. Our data show that UFD-2 binding promotes the cooperation between CHN-1 and ubiquitin-conjugating E2 enzymes by stabilizing the CHN-1 U-box dimer. However, HSP70/HSP-1 chaperone outcompetes UFD-2 for CHN-1 binding, thereby promoting a shift to the autoinhibited CHN-1 state by acting on a conserved residue in its U-box domain. The interaction with UFD-2 enables CHN-1 to efficiently ubiquitylate and regulate S-adenosylhomocysteinase (AHCY-1), a key enzyme in the S-adenosylmethionine (SAM) regeneration cycle, which is essential for SAM-dependent methylation. Our results define the molecular mechanism underlying the synergistic cooperation of CHN-1 and UFD-2 in substrate ubiquitylation.
Collapse
Affiliation(s)
- Aniruddha Das
- Laboratory of Protein MetabolismInternational Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | - Pankaj Thapa
- Laboratory of Protein MetabolismInternational Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | - Ulises Santiago
- Department of Computational and Systems BiologyUniversity of PittsburghPittsburghPAUSA
| | - Nilesh Shanmugam
- Laboratory of Protein MetabolismInternational Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | - Katarzyna Banasiak
- Laboratory of Protein MetabolismInternational Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | | | - Hendrik Nolte
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
- Present address:
Max‐Planck‐Institute for Biology of AgeingCologneGermany
| | - Natalia A Szulc
- Laboratory of Protein MetabolismInternational Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | | | | | - Marcus Krüger
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
- Center for Molecular Medicine (CMMC), Faculty of MedicineUniversity Hospital of CologneCologneGermany
| | - Michał Dadlez
- Institute of Biochemistry and BiophysicsPASWarsawPoland
| | - Marcin Nowotny
- Laboratory of Protein StructureInternational Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | - Carlos J Camacho
- Department of Computational and Systems BiologyUniversity of PittsburghPittsburghPAUSA
| | - Thorsten Hoppe
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
- Center for Molecular Medicine (CMMC), Faculty of MedicineUniversity Hospital of CologneCologneGermany
| | - Wojciech Pokrzywa
- Laboratory of Protein MetabolismInternational Institute of Molecular and Cell Biology in WarsawWarsawPoland
| |
Collapse
|
6
|
Trenner J, Monaghan J, Saeed B, Quint M, Shabek N, Trujillo M. Evolution and Functions of Plant U-Box Proteins: From Protein Quality Control to Signaling. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:93-121. [PMID: 35226816 DOI: 10.1146/annurev-arplant-102720-012310] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Posttranslational modifications add complexity and diversity to cellular proteomes. One of the most prevalent modifications across eukaryotes is ubiquitination, which is orchestrated by E3 ubiquitin ligases. U-box-containing E3 ligases have massively expanded in the plant kingdom and have diversified into plant U-box proteins (PUBs). PUBs likely originated from two or three ancestral forms, fusing with diverse functional subdomains that resulted in neofunctionalization. Their emergence and diversification may reflect adaptations to stress during plant evolution, reflecting changes in the needs of plant proteomes to maintain cellular homeostasis. Through their close association with protein kinases, they are physically linked to cell signaling hubs and activate feedback loops by dynamically pairing with E2-ubiquitin-conjugating enzymes to generate distinct ubiquitin polymers that themselves act as signals. Here, we complement current knowledgewith comparative genomics to gain a deeper understanding of PUB function, focusing on their evolution and structural adaptations of key U-box residues, as well as their various roles in plant cells.
Collapse
Affiliation(s)
- Jana Trenner
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany; ,
| | | | - Bushra Saeed
- Institute of Biology II, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany; ,
| | - Marcel Quint
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany; ,
| | - Nitzan Shabek
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, California, USA;
| | - Marco Trujillo
- Institute of Biology II, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany; ,
| |
Collapse
|
7
|
Zhang H, Xue Y, Yang X, Liu J, Liu Q. Toxoplasma gondii UBL-UBA shuttle proteins regulate several important cellular processes. FASEB J 2021; 35:e21898. [PMID: 34727385 DOI: 10.1096/fj.202100662rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/06/2021] [Accepted: 08/18/2021] [Indexed: 11/11/2022]
Abstract
Toxoplasma gondii is an obligate intracellular apicomplexan parasite causing lethal diseases in immunocompromised patients. UBL-UBA shuttle proteins (DDI1, RAD23, and DSK2) are important components of the ubiquitin-proteasome system. By degrading ubiquitinated proteins, UBL-UBA shuttle proteins regulate many cellular processes. However, the specific processes regulated by UBL-UBA shuttle proteins remain elusive. Here, we revealed that the deletion of shuttle proteins results in a selective accumulation of ubiquitinated proteins in the nucleus and aberrant DNA replication. ROP18 was mistargeted and accumulated in the shuttle protein mutant strain, resulting in the recruitment of immunity-related GTPases to the parasitophorous vacuole membrane (PVM). Furthermore, the mistargeting of ROP18 and the recruitment of Irgb6 to the PVM were also observed in the DDI1 mutant strain. DDI1 is a nonclassical UBL-UBA shuttle protein homologous to the HIV-1 protease. Molecular docking showed that DDI1 was a potential target of HIV-1 protease inhibitors. However, these inhibitors blocked the growth of T gondii in vitro but not in vivo. In conclusion, the Toxoplasma UBL-UBA shuttle protein regulates several important cellular processes and the mistargeting of ROP18 may be a representative of the abnormal homeostasis caused by shuttle protein mutation.
Collapse
Affiliation(s)
- Heng Zhang
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yangfei Xue
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xu Yang
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jing Liu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qun Liu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Toxoplasma gondii UBL-UBA Shuttle Protein DSK2s Are Important for Parasite Intracellular Replication. Int J Mol Sci 2021; 22:ijms22157943. [PMID: 34360709 PMCID: PMC8348199 DOI: 10.3390/ijms22157943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022] Open
Abstract
Toxoplasma gondii (T. gondii) is an important human and veterinary pathogen causing life-threatening disease in immunocompromised patients. The UBL-UBA shuttle protein family are important components of the ubiquitin–proteasome system. Here, we identified a novel UBL-UBA shuttle protein DSK2b that is charactered by an N-terminal ubiquitin-like domain (UBL) and a C-terminal ubiquitin-associated domain (UBA). DSK2b was localized in the cytoplasm and nucleus. The deletion of dsk2b did not affect the degradation of ubiquitinated proteins, parasite growth in vitro or virulence in mice. The double-gene knockout of dsk2b and its paralogs dsk2a (ΔΔdsk2adsk2b) results in a significant accumulation of ubiquitinated proteins and the asynchronous division of T. gondii. The growth of ΔΔdsk2adsk2b was significantly inhibited in vitro, while virulence in mice was not attenuated. In addition, autophagy occurred in the ΔΔdsk2adsk2b, which was speculated to degrade the accumulated ubiquitinated proteins in the parasites. Overall, DSK2b is a novel UBL-UBA shuttle protein contributing to the degradation of ubiquitinated proteins and is important for the synchronous cell division of T. gondii.
Collapse
|
9
|
Kurkowiak M, Grasso G, Faktor J, Scheiblecker L, Winniczuk M, Mayordomo MY, O'Neill JR, Oster B, Vojtesek B, Al-Saadi A, Marek-Trzonkowska N, Hupp TR. An integrated DNA and RNA variant detector identifies a highly conserved three base exon in the MAP4K5 kinase locus. RNA Biol 2021; 18:2556-2575. [PMID: 34190025 PMCID: PMC8632122 DOI: 10.1080/15476286.2021.1932345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
RNA variants that emerge from editing and alternative splicing form important regulatory stages in protein signalling. In this report, we apply an integrated DNA and RNA variant detection workbench to define the range of RNA variants that deviate from the reference genome in a human melanoma cell model. The RNA variants can be grouped into (i) classic ADAR-like or APOBEC-like RNA editing events and (ii) multiple-nucleotide variants (MNVs) including three and six base pair in-frame non-canonical unmapped exons. We focus on validating representative genes of these classes. First, clustered non-synonymous RNA edits (A-I) in the CDK13 gene were validated by Sanger sequencing to confirm the integrity of the RNA variant detection workbench. Second, a highly conserved RNA variant in the MAP4K5 gene was detected that results most likely from the splicing of a non-canonical three-base exon. The two RNA variants produced from the MAP4K5 locus deviate from the genomic reference sequence and produce V569E or V569del isoform variants. Low doses of splicing inhibitors demonstrated that the MAP4K5-V569E variant emerges from an SF3B1-dependent splicing event. Mass spectrometry of the recombinant SBP-tagged MAP4K5V569E and MAP4K5V569del proteins pull-downs in transfected cell systems was used to identify the protein-protein interactions of these two MAP4K5 isoforms and propose possible functions. Together these data highlight the utility of this integrated DNA and RNA variant detection platform to detect RNA variants in cancer cells and support future analysis of RNA variant detection in cancer tissue.
Collapse
Affiliation(s)
- Małgorzata Kurkowiak
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, 80-822 Gdańsk, Poland
| | - Giuseppa Grasso
- University of Edinburgh, Institute of Genetics and Molecular Medicine, Edinburgh Cancer Research Centre, Edinburgh, Scotland, UK
| | - Jakub Faktor
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, 80-822 Gdańsk, Poland.,Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Lisa Scheiblecker
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Małgorzata Winniczuk
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, 80-822 Gdańsk, Poland
| | - Marcos Yebenes Mayordomo
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, 80-822 Gdańsk, Poland.,University of Edinburgh, Institute of Genetics and Molecular Medicine, Edinburgh Cancer Research Centre, Edinburgh, Scotland, UK
| | - J Robert O'Neill
- Cambridge Oesophagogastric Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Bodil Oster
- QIAGEN Aarhus, Silkeborgvej 2, 8000 Aarhus, Denmark
| | - Borek Vojtesek
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Ali Al-Saadi
- University of Edinburgh, Institute of Genetics and Molecular Medicine, Edinburgh Cancer Research Centre, Edinburgh, Scotland, UK
| | - Natalia Marek-Trzonkowska
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, 80-822 Gdańsk, Poland.,Laboratory of Immunoregulation and Cellular Therapies, Department of Family Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Ted R Hupp
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, 80-822 Gdańsk, Poland.,University of Edinburgh, Institute of Genetics and Molecular Medicine, Edinburgh Cancer Research Centre, Edinburgh, Scotland, UK
| |
Collapse
|
10
|
Abstract
The 26S proteasome is the most complex ATP-dependent protease machinery, of ~2.5 MDa mass, ubiquitously found in all eukaryotes. It selectively degrades ubiquitin-conjugated proteins and plays fundamentally indispensable roles in regulating almost all major aspects of cellular activities. To serve as the sole terminal "processor" for myriad ubiquitylation pathways, the proteasome evolved exceptional adaptability in dynamically organizing a large network of proteins, including ubiquitin receptors, shuttle factors, deubiquitinases, AAA-ATPase unfoldases, and ubiquitin ligases, to enable substrate selectivity and processing efficiency and to achieve regulation precision of a vast diversity of substrates. The inner working of the 26S proteasome is among the most sophisticated, enigmatic mechanisms of enzyme machinery in eukaryotic cells. Recent breakthroughs in three-dimensional atomic-level visualization of the 26S proteasome dynamics during polyubiquitylated substrate degradation elucidated an extensively detailed picture of its functional mechanisms, owing to progressive methodological advances associated with cryogenic electron microscopy (cryo-EM). Multiple sites of ubiquitin binding in the proteasome revealed a canonical mode of ubiquitin-dependent substrate engagement. The proteasome conformation in the act of substrate deubiquitylation provided insights into how the deubiquitylating activity of RPN11 is enhanced in the holoenzyme and is coupled to substrate translocation. Intriguingly, three principal modes of coordinated ATP hydrolysis in the heterohexameric AAA-ATPase motor were discovered to regulate intermediate functional steps of the proteasome, including ubiquitin-substrate engagement, deubiquitylation, initiation of substrate translocation and processive substrate degradation. The atomic dissection of the innermost working of the 26S proteasome opens up a new era in our understanding of the ubiquitin-proteasome system and has far-reaching implications in health and disease.
Collapse
Affiliation(s)
- Youdong Mao
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, 02215, Massachusetts, USA. .,School of Physics, Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| |
Collapse
|
11
|
Li L, Li B, Xie C, Zhang T, Borassi C, Estevez JM, Li X, Liu X. Arabidopsis RAD23B regulates pollen development by mediating degradation of KRP1. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4010-4019. [PMID: 32242227 DOI: 10.1093/jxb/eraa167] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
The ubiquitin (Ub)/26S proteasome system (UPS) plays a key role in plant growth, development, and survival by directing the turnover of numerous regulatory proteins. In the UPS, the ubiquitin-like (UBL) and ubiquitin-associated (UBA) domains function as hubs for ubiquitin-mediated protein degradation. Radiation sensitive 23 (RAD23), which has been identified as a UBL/UBA protein, contributes to the progression of the cell cycle, stress responses, ER proteolysis, and DNA repair. Here, we report that pollen development is arrested at the microspore stage in a rad23b null mutant. We demonstrate that RAD23B can directly interact with KIP-related protein 1 (KRP1) through its UBL-UBA domains. In addition, plants overexpressing KRP1 have defects in pollen development, which is a phenotype similar to the rad23b mutant. RAD23B promotes the degradation of KRP1 in vivo, which is accumulated following treatment with the proteasome inhibitor MG132. Our results indicate that RAD23B plays an important in pollen development by controlling the turnover of the key cell cycle protein, KRP1.
Collapse
Affiliation(s)
- Lan Li
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation Hunan University, Changsha, P. R. China
| | - Bin Li
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation Hunan University, Changsha, P. R. China
| | - Chong Xie
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation Hunan University, Changsha, P. R. China
| | - Teng Zhang
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation Hunan University, Changsha, P. R. China
| | - Cecilia Borassi
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires CP, Argentina
| | - José M Estevez
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires CP, Argentina
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile and Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Xiushan Li
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation Hunan University, Changsha, P. R. China
| | - Xuanming Liu
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation Hunan University, Changsha, P. R. China
| |
Collapse
|
12
|
Sharma B, Taganna J. Genome-wide analysis of the U-box E3 ubiquitin ligase enzyme gene family in tomato. Sci Rep 2020; 10:9581. [PMID: 32533036 PMCID: PMC7293263 DOI: 10.1038/s41598-020-66553-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022] Open
Abstract
E3 ubiquitin ligases are a central modifier of plant signaling pathways that act through targeting proteins to the degradation pathway. U-box E3 ubiquitin ligases are a distinct class of E3 ligases that utilize intramolecular interactions for its scaffold stabilization. U-box E3 ubiquitin ligases are prevalent in plants in comparison to animals. However, the evolutionary aspects, genetic organizations, and functional fate of the U-box E3 gene family in plant development, especially in tomato is not well understood. In the present study, we have performed in-silico genome-wide analysis of the U-box E3 ubiquitin ligase gene family in Solanum lycopersicum. We have identified 62 U-box genes with U-box/Ub Fusion Degradation 2 (UFD2) domain. The chromosomal localization, phylogenetic analysis, gene structure, motifs, gene duplication, syntenic regions, promoter, physicochemical properties, and ontology were investigated. The U-box gene family showed significant conservation of the U-box domain throughout the gene family. Duplicated genes discerned noticeable functional transitions among duplicated genes. The gene expression profiles of U-box E3 family members show involvement in abiotic and biotic stress signaling as well as hormonal pathways. We found remarkable participation of the U-box gene family in the vegetative and reproductive tissue development. It is predicted to be actively regulating flowering time and endosperm formation. Our study provides a comprehensive picture of distribution, structural features, promoter elements, evolutionary relationship, and gene expression of the U-box gene family in the tomato. We predict the crucial participation of the U-box gene family in tomato plant development and stress responses.
Collapse
Affiliation(s)
- Bhaskar Sharma
- TERI School of Advanced Studies, 10 Institutional Area, Vasant Kunj, New Delhi, Delhi, 110070, India.
- School of Life and Environmental Sciences, Faculty of Science, Engineering, and Built Environment, Deakin University, Geelong, VIC-3220, Australia.
| | - Joemar Taganna
- SciBiz Informatics, 2/F Unit 3 CFI Building, Maharlika Highway, Brgy. Guindapunan, Palo, Leyte, 6501, Philippines
| |
Collapse
|
13
|
Finley D, Prado MA. The Proteasome and Its Network: Engineering for Adaptability. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a033985. [PMID: 30833452 DOI: 10.1101/cshperspect.a033985] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The proteasome, the most complex protease known, degrades proteins that have been conjugated to ubiquitin. It faces the unique challenge of acting enzymatically on hundreds and perhaps thousands of structurally diverse substrates, mechanically unfolding them from their native state and translocating them vectorially from one specialized compartment of the enzyme to another. Moreover, substrates are modified by ubiquitin in myriad configurations of chains. The many unusual design features of the proteasome may have evolved in part to endow this enzyme with a robust ability to process substrates regardless of their identity. The proteasome plays a major role in preserving protein homeostasis in the cell, which requires adaptation to a wide variety of stress conditions. Modulation of proteasome function is achieved through a large network of proteins that interact with it dynamically, modify it enzymatically, or fine-tune its levels. The resulting adaptability of the proteasome, which is unique among proteases, enables cells to control the output of the ubiquitin-proteasome pathway on a global scale.
Collapse
Affiliation(s)
- Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Miguel A Prado
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
14
|
Abstract
As the endpoint for the ubiquitin-proteasome system, the 26S proteasome is the principal proteolytic machine responsible for regulated protein degradation in eukaryotic cells. The proteasome's cellular functions range from general protein homeostasis and stress response to the control of vital processes such as cell division and signal transduction. To reliably process all the proteins presented to it in the complex cellular environment, the proteasome must combine high promiscuity with exceptional substrate selectivity. Recent structural and biochemical studies have shed new light on the many steps involved in proteasomal substrate processing, including recognition, deubiquitination, and ATP-driven translocation and unfolding. In addition, these studies revealed a complex conformational landscape that ensures proper substrate selection before the proteasome commits to processive degradation. These advances in our understanding of the proteasome's intricate machinery set the stage for future studies on how the proteasome functions as a major regulator of the eukaryotic proteome.
Collapse
Affiliation(s)
- Jared A M Bard
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA;
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, California 94720, USA
| | - Ellen A Goodall
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA;
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, California 94720, USA
| | - Eric R Greene
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA;
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, California 94720, USA
| | - Erik Jonsson
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA;
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, California 94720, USA
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, California 94720, USA
| | - Ken C Dong
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA;
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, California 94720, USA
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, California 94720, USA
| | - Andreas Martin
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA;
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, California 94720, USA
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
15
|
Hellerschmied D, Roessler M, Lehner A, Gazda L, Stejskal K, Imre R, Mechtler K, Dammermann A, Clausen T. UFD-2 is an adaptor-assisted E3 ligase targeting unfolded proteins. Nat Commun 2018; 9:484. [PMID: 29396393 PMCID: PMC5797217 DOI: 10.1038/s41467-018-02924-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 01/09/2018] [Indexed: 11/09/2022] Open
Abstract
Muscle development requires the coordinated activities of specific protein folding and degradation factors. UFD-2, a U-box ubiquitin ligase, has been reported to play a central role in this orchestra regulating the myosin chaperone UNC-45. Here, we apply an integrative in vitro and in vivo approach to delineate the substrate-targeting mechanism of UFD-2 and elucidate its distinct mechanistic features as an E3/E4 enzyme. Using Caenorhabditis elegans as model system, we demonstrate that UFD-2 is not regulating the protein levels of UNC-45 in muscle cells, but rather shows the characteristic properties of a bona fide E3 ligase involved in protein quality control. Our data demonstrate that UFD-2 preferentially targets unfolded protein segments. Moreover, the UNC-45 chaperone can serve as an adaptor protein of UFD-2 to poly-ubiquitinate unfolded myosin, pointing to a possible role of the UFD-2/UNC-45 pair in maintaining proteostasis in muscle cells.
Collapse
Affiliation(s)
- Doris Hellerschmied
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06511, USA
| | - Max Roessler
- Max F. Perutz Laboratories (MFPL), University of Vienna, Doktor-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Anita Lehner
- Vienna Biocenter Core Facilities, Doktor-Bohr-Gasse 3, 1030, Vienna, Austria
| | - Linn Gazda
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Karel Stejskal
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Richard Imre
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Karl Mechtler
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Alexander Dammermann
- Max F. Perutz Laboratories (MFPL), University of Vienna, Doktor-Bohr-Gasse 9, 1030, Vienna, Austria.
| | - Tim Clausen
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria.
- Medical University of Vienna, Vienna BioCenter (VBC), 1030, Vienna, Austria.
| |
Collapse
|
16
|
Whiteley AM, Prado MA, Peng I, Abbas AR, Haley B, Paulo JA, Reichelt M, Katakam A, Sagolla M, Modrusan Z, Lee DY, Roose-Girma M, Kirkpatrick DS, McKenzie BS, Gygi SP, Finley D, Brown EJ. Ubiquilin1 promotes antigen-receptor mediated proliferation by eliminating mislocalized mitochondrial proteins. eLife 2017; 6. [PMID: 28933694 PMCID: PMC5608509 DOI: 10.7554/elife.26435] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 08/22/2017] [Indexed: 12/14/2022] Open
Abstract
Ubiquilins (Ubqlns) are a family of ubiquitin receptors that promote the delivery of hydrophobic and aggregated ubiquitinated proteins to the proteasome for degradation. We carried out a proteomic analysis of a B cell lymphoma-derived cell line, BJAB, that requires UBQLN1 for survival to identify UBQLN1 client proteins. When UBQLN1 expression was acutely inhibited, 120 mitochondrial proteins were enriched in the cytoplasm, suggesting that the accumulation of mitochondrial client proteins in the absence of UBQLN1 is cytostatic. Using a Ubqln1−/− mouse strain, we found that B cell receptor (BCR) ligation of Ubqln1−/− B cells led to a defect in cell cycle entry. As in BJAB cells, mitochondrial proteins accumulated in BCR-stimulated cells, leading to protein synthesis inhibition and cell cycle block. Thus, UBQLN1 plays an important role in clearing mislocalized mitochondrial proteins upon cell stimulation, and its absence leads to suppression of protein synthesis and cell cycle arrest.
Collapse
Affiliation(s)
- Alexandra M Whiteley
- Department of Infectious Disease, Genentech, South San Francisco, United States.,Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Miguel A Prado
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Ivan Peng
- Department of Translational Immunology, Genentech, South San Francisco, United States
| | - Alexander R Abbas
- Department of Bioinformatics, Genentech, South San Francisco, United States
| | - Benjamin Haley
- Department of Molecular Biology, Genentech, South San Francisco, United States
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Mike Reichelt
- Department of Pathology, Genentech, South San Francisco, United States
| | - Anand Katakam
- Department of Pathology, Genentech, South San Francisco, United States
| | - Meredith Sagolla
- Department of Pathology, Genentech, South San Francisco, United States
| | - Zora Modrusan
- Department of Microchemistry, Proteomics, and Lipidomics, Genentech, South San Francisco, United States
| | - Dong Yun Lee
- Department of Infectious Disease, Genentech, South San Francisco, United States
| | - Merone Roose-Girma
- Department of Microchemistry, Proteomics, and Lipidomics, Genentech, South San Francisco, United States
| | - Donald S Kirkpatrick
- Department of Microchemistry, Proteomics, and Lipidomics, Genentech, South San Francisco, United States
| | - Brent S McKenzie
- Department of Translational Immunology, Genentech, South San Francisco, United States
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Eric J Brown
- Department of Infectious Disease, Genentech, South San Francisco, United States
| |
Collapse
|
17
|
A New Method, "Reverse Yeast Two-Hybrid Array" (RYTHA), Identifies Mutants that Dissociate the Physical Interaction Between Elg1 and Slx5. Genetics 2017; 206:1683-1697. [PMID: 28476868 DOI: 10.1534/genetics.117.200451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 04/27/2017] [Indexed: 11/18/2022] Open
Abstract
The vast majority of processes within the cell are carried out by proteins working in conjunction. The Yeast Two-Hybrid (Y2H) methodology allows the detection of physical interactions between any two interacting proteins. Here, we describe a novel systematic genetic methodology, "Reverse Yeast Two-Hybrid Array" (RYTHA), that allows the identification of proteins required for modulating the physical interaction between two given proteins. Our assay starts with a yeast strain in which the physical interaction of interest can be detected by growth on media lacking histidine, in the context of the Y2H methodology. By combining the synthetic genetic array technology, we can systematically screen mutant libraries of the yeast Saccharomyces cerevisiae to identify trans-acting mutations that disrupt the physical interaction of interest. We apply this novel method in a screen for mutants that disrupt the interaction between the N-terminus of Elg1 and the Slx5 protein. Elg1 is part of an alternative replication factor C-like complex that unloads PCNA during DNA replication and repair. Slx5 forms, together with Slx8, a SUMO-targeted ubiquitin ligase (STUbL) believed to send proteins to degradation. Our results show that the interaction requires both the STUbL activity and the PCNA unloading by Elg1, and identify topoisomerase I DNA-protein cross-links as a major factor in separating the two activities. Thus, we demonstrate that RYTHA can be applied to gain insights about particular pathways in yeast, by uncovering the connection between the proteasomal ubiquitin-dependent degradation pathway, DNA replication, and repair machinery, which can be separated by the topoisomerase-mediated cross-links to DNA.
Collapse
|
18
|
Liu C, Liu W, Ye Y, Li W. Ufd2p synthesizes branched ubiquitin chains to promote the degradation of substrates modified with atypical chains. Nat Commun 2017; 8:14274. [PMID: 28165462 PMCID: PMC5303827 DOI: 10.1038/ncomms14274] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/14/2016] [Indexed: 12/17/2022] Open
Abstract
Ubiquitination of a subset of proteins by ubiquitin chain elongation factors (E4), represented by Ufd2p in Saccharomyces cerevisiae, is a pivotal regulator for many biological processes. However, the mechanism of Ufd2p-mediated ubiquitination is largely unclear. Here, we show that Ufd2p catalyses K48-linked multi-monoubiquitination on K29-linked ubiquitin chains assembled by the ubiquitin ligase (Ufd4p), resulting in branched ubiquitin chains. This reaction depends on the interaction of K29-linked ubiquitin chains with two N-terminal loops of Ufd2p. Only following the addition of K48-linked ubiquitin to substrates modified with K29-linked ubiquitin chains, can the substrates be escorted to the proteasome for degradation. We demonstrate that this ubiquitin chain linkage switching reaction is essential for ERAD, oleic acid and acid pH resistance in yeast. Thus, our results suggest that Ufd2p functions by switching ubiquitin chain linkages to allow the degradation of proteins modified with a ubiquitin linkage, which is normally not targeted to the proteasome. How ubiquitination affects the proteins it modifies varies according to the type of linkage between ubiquitin moieties. Here, Liu et al. show how yeast Udf2p promotes K48 linkage formation onto K29-linked chains to generate branched K29-K48 ubiquitin chains that target its substrate to the proteasome.
Collapse
Affiliation(s)
- Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Weixiao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
19
|
He Z, Huang T, Ao K, Yan X, Huang Y. Sumoylation, Phosphorylation, and Acetylation Fine-Tune the Turnover of Plant Immunity Components Mediated by Ubiquitination. FRONTIERS IN PLANT SCIENCE 2017; 8:1682. [PMID: 29067028 PMCID: PMC5641357 DOI: 10.3389/fpls.2017.01682] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/13/2017] [Indexed: 05/20/2023]
Abstract
Ubiquitination-mediated protein degradation plays a crucial role in the turnover of immune proteins through rapid alteration of protein levels. Specifically, the over-accumulation of immune proteins and consequent activation of immune responses in uninfected cells is prevented through degradation. Protein post-translational modifications can influence and affect ubiquitination. There is accumulating evidence that suggests sumoylation, phosphorylation, and acetylation differentially affect the stability of immune-related proteins, so that control over the accumulation or degradation of proteins is fine-tuned. In this paper, we review the function and mechanism of sumoylation, phosphorylation, acetylation, and ubiquitination in plant disease resistance responses, focusing on how ubiquitination reacts with sumoylation, phosphorylation, and acetylation to regulate plant disease resistance signaling pathways. Future research directions are suggested in order to provide ideas for signaling pathway studies, and to advance the implementation of disease resistance proteins in economically important crops.
Collapse
Affiliation(s)
- Zhouqing He
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Tingting Huang
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Kevin Ao
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Xiaofang Yan
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Yan Huang
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
- *Correspondence: Yan Huang,
| |
Collapse
|
20
|
Chen X, Walters KJ. (1)H, (15)N, (13)C resonance assignments for Saccharomyces cerevisiae Rad23 UBL domain. BIOMOLECULAR NMR ASSIGNMENTS 2016; 10:291-295. [PMID: 27188292 PMCID: PMC5042828 DOI: 10.1007/s12104-016-9686-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 05/09/2016] [Indexed: 06/05/2023]
Abstract
Rad23 functions in nucleotide excision repair and proteasome-mediated protein degradation. It has four distinct structural domains that are connected by flexible linker regions, including an N-terminal ubiquitin-like (UBL) domain that binds proteasomes. We report in this NMR study the (1)H, (15)N and (13)C resonance assignments for the backbone and side chain atoms of the Rad23 UBL domain (Rad23(UBL)) with BioMagResBank accession number 25825. We find that a Rad23 proline amino acid (P20) located in a loop undergoes isomerization. The secondary structural elements predicted from the NMR data fit well to that of the Rad23(UBL) when complexed with E4 ubiquitin ligase Ufd2, as reported in a crystallographic structure. These complete assignments can be used to study the protein dynamics of the Rad23(UBL) and its interaction of with other ubiquitin receptors or proteasome subunits.
Collapse
Affiliation(s)
- Xiang Chen
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Kylie J Walters
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| |
Collapse
|
21
|
Chen X, Randles L, Shi K, Tarasov SG, Aihara H, Walters KJ. Structures of Rpn1 T1:Rad23 and hRpn13:hPLIC2 Reveal Distinct Binding Mechanisms between Substrate Receptors and Shuttle Factors of the Proteasome. Structure 2016; 24:1257-1270. [PMID: 27396824 DOI: 10.1016/j.str.2016.05.018] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/10/2016] [Accepted: 05/25/2016] [Indexed: 12/14/2022]
Abstract
Three receptors (Rpn1/S2/PSMD2, Rpn10/S5a, Rpn13/Adrm1) in the proteasome bind substrates by interacting with conjugated ubiquitin chains and/or shuttle factors (Rad23/HR23, Dsk2/PLIC/ubiquilin, Ddi1) that carry ubiquitinated substrates to proteasomes. We solved the structure of two such receptors with their preferred shuttle factor, namely hRpn13(Pru):hPLIC2(UBL) and scRpn1 T1:scRad23(UBL). We find that ubiquitin folds in Rad23 and Dsk2 are fine-tuned by residue substitutions to achieve high affinity for Rpn1 and Rpn13, respectively. A single substitution in hPLIC2 yields enhanced interactions with the Rpn13 ubiquitin contact surface and sterically blocks hRpn13 binding to its preferred ubiquitin chain type, K48-linked chains. Rpn1 T1 binds two ubiquitins in tandem and we find that Rad23 binds exclusively to the higher-affinity Helix28/Helix30 site. Rad23 contacts at Helix28/Helix30 are optimized compared to ubiquitin by multiple conservative amino acid substitutions. Thus, shuttle factors deliver substrates to proteasomes through fine-tuned ubiquitin-like surfaces.
Collapse
Affiliation(s)
- Xiang Chen
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Leah Randles
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Ke Shi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sergey G Tarasov
- Biophysics Resource, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kylie J Walters
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
22
|
Förster F, Schuller JM, Unverdorben P, Aufderheide A. Emerging mechanistic insights into AAA complexes regulating proteasomal degradation. Biomolecules 2014; 4:774-94. [PMID: 25102382 PMCID: PMC4192671 DOI: 10.3390/biom4030774] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 06/11/2014] [Accepted: 07/21/2014] [Indexed: 12/25/2022] Open
Abstract
The 26S proteasome is an integral element of the ubiquitin-proteasome system (UPS) and, as such, responsible for regulated degradation of proteins in eukaryotic cells. It consists of the core particle, which catalyzes the proteolysis of substrates into small peptides, and the regulatory particle, which ensures specificity for a broad range of substrates. The heart of the regulatory particle is an AAA-ATPase unfoldase, which is surrounded by non-ATPase subunits enabling substrate recognition and processing. Cryo-EM-based studies revealed the molecular architecture of the 26S proteasome and its conformational rearrangements, providing insights into substrate recognition, commitment, deubiquitylation and unfolding. The cytosol proteasomal degradation of polyubiquitylated substrates is tuned by various associating cofactors, including deubiquitylating enzymes, ubiquitin ligases, shuttling ubiquitin receptors and the AAA-ATPase Cdc48/p97. Cdc48/p97 and its cofactors function upstream of the 26S proteasome, and their modular organization exhibits some striking analogies to the regulatory particle. In archaea PAN, the closest regulatory particle homolog and Cdc48 even have overlapping functions, underscoring their intricate relationship. Here, we review recent insights into the structure and dynamics of the 26S proteasome and its associated machinery, as well as our current structural knowledge on the Cdc48/p97 and its cofactors that function in the ubiquitin-proteasome system (UPS).
Collapse
Affiliation(s)
- Friedrich Förster
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, Martinsried D-82152, Germany.
| | - Jan M Schuller
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, Martinsried D-82152, Germany.
| | - Pia Unverdorben
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, Martinsried D-82152, Germany.
| | - Antje Aufderheide
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, Martinsried D-82152, Germany.
| |
Collapse
|
23
|
Ishii T, Funakoshi M, Kobayashi H, Sekiguchi T. Yeast Irc22 Is a Novel Dsk2-Interacting Protein that Is Involved in Salt Tolerance. Cells 2014; 3:180-98. [PMID: 24709957 PMCID: PMC4092868 DOI: 10.3390/cells3020180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/14/2014] [Accepted: 03/15/2014] [Indexed: 02/05/2023] Open
Abstract
The yeast ubiquitin-like and ubiquitin-associated protein Dsk2 is one of the ubiquitin receptors that function in the ubiquitin-proteasome pathway. We screened the Dsk2-interacting proteins in Saccharomyces cerevisiae by a two-hybrid assay and identified a novel Dsk2-interacting protein, Irc22, the gene locus of which has previously been described as YEL001C, but the function of which is unknown. IRC22/YEL001C encodes 225 amino acid residues with a calculated molecular weight of 25 kDa. The Irc22 protein was detected in yeast cells. IRC22 was a nonessential gene for yeast growth, and its homologs were found among ascomycetous yeasts. Irc22 interacted with Dsk2 in yeast cells, but not with Rad23 and Ddi1. Ubiquitin-dependent degradation was impaired mildly by over-expression or disruption of IRC22. Compared with the wild-type strain, dsk2Δ exhibited salt sensitivity while irc22Δ exhibited salt tolerance at high temperatures. The salt-tolerant phenotype that was observed in irc22Δ disappeared in the dsk2Δirc22Δ double disruptant, indicating that DSK2 is positively and IRC22 is negatively involved in salt stress tolerance. IRC22 disruption did not affect any responses to DNA damage and oxidative stress when comparing the irc22Δ and wild-type strains. Collectively, these results suggest that Dsk2 and Irc22 are involved in salt stress tolerance in yeast.
Collapse
Affiliation(s)
- Takashi Ishii
- Research Center for Control of Aging, Fukuoka Dental College, Tamura 2-15-1, Sawara-ku, Fukuoka 814-0193, Japan.
| | - Minoru Funakoshi
- Department of Molecular Biology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Hideki Kobayashi
- Center for Faculty Development, Okayama University, Tsushima-naka 2-1-1, Kita-ku, Okayama 700-8530, Japan.
| | - Takeshi Sekiguchi
- Department of Molecular Biology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
24
|
Stork S, Lau J, Moog D, Maier UG. Three old and one new: protein import into red algal-derived plastids surrounded by four membranes. PROTOPLASMA 2013; 250:1013-1023. [PMID: 23612938 DOI: 10.1007/s00709-013-0498-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 04/08/2013] [Indexed: 06/02/2023]
Abstract
Engulfment of a red or green alga by another eukaryote and subsequent reduction of the symbiont to an organelle, termed a complex plastid, is a process known as secondary endosymbiosis and is shown in a diverse group of eukaryotic organisms. Important members are heterokontophytes, haptophytes, cryptophytes, and apicomplexan parasites, all of them with complex plastids of red algal origin surrounded by four membranes. Although the evolutionary relationship between these organisms is still debated, they share common mechanisms for plastid protein import. In this review, we describe recent findings and current models on preprotein import into complex plastids with a special focus on the second outermost plastid membrane. Derived from the plasma membrane of the former endosymbiont, the evolution of protein transport across this so-called periplastidal membrane most likely represented the challenge in the transition from an endosymbiont to a host-dependent organelle. Here, remodeling and relocation of the symbiont endoplasmic reticulum-associated degradation (ERAD) machinery gave rise to a translocon complex termed symbiont-specific ERAD-like machinery and provides a fascinating insight into complex cellular evolution.
Collapse
Affiliation(s)
- Simone Stork
- Laboratory for Cell Biology, Philipps-Universität Marburg, Karl-von-Frisch Str.8, 35032, Marburg, Germany
| | | | | | | |
Collapse
|
25
|
Structure of the Sgt2/Get5 complex provides insights into GET-mediated targeting of tail-anchored membrane proteins. Proc Natl Acad Sci U S A 2013; 110:1327-32. [PMID: 23297211 DOI: 10.1073/pnas.1207518110] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Small, glutamine-rich, tetratricopeptide repeat protein 2 (Sgt2) is the first known port of call for many newly synthesized tail-anchored (TA) proteins released from the ribosome and destined for the GET (Guided Entry of TA proteins) pathway. This leads them to the residential membrane of the endoplasmic reticulum via an alternative to the cotranslational, signal recognition particle-dependent mechanism that their topology denies them. In yeast, the first stage of the GET pathway involves Sgt2 passing TA proteins on to the Get4/Get5 complex through a direct interaction between the N-terminal (NT) domain of Sgt2 and the ubiquitin-like (UBL) domain of Get5. Here we characterize this interaction at a molecular level by solving both a solution structure of Sgt2_NT, which adopts a unique helical fold, and a crystal structure of the Get5_UBL. Furthermore, using reciprocal chemical shift perturbation data and experimental restraints, we solve a structure of the Sgt2_NT/Get5_UBL complex, validate it via site-directed mutagenesis, and empirically determine its stoichiometry using relaxation experiments and isothermal titration calorimetry. Taken together, these data provide detailed structural information about the interaction between two key players in the coordinated delivery of TA protein substrates into the GET pathway.
Collapse
|
26
|
Abstract
The chaperone-related, ubiquitin-selective AAA (ATPase associated with a variety of cellular activities) protein Cdc48 (also known as TER94, p97 and VCP) is a key regulator of intracellular proteolysis in eukaryotes. It uses the energy derived from ATP hydrolysis to segregate ubiquitylated proteins from stable assemblies with proteins, membranes and chromatin. Originally characterized as essential factor in proteasomal degradation pathways, Cdc48 was recently found to control lysosomal protein degradation as well. Moreover, impaired lysosomal proteolysis due to mutational inactivation of Cdc48 causes protein aggregation diseases in humans. This review introduces the major systems of intracellular proteolysis in eukaryotes and the role of protein ubiquitylation. It then discusses in detail structure, mechanism and cellular functions of Cdc48 with an emphasis on protein degradation pathways in yeast.
Collapse
Affiliation(s)
- Alexander Buchberger
- Department of Biochemistry, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany,
| |
Collapse
|
27
|
Structures of the Sgt2/SGTA dimerization domain with the Get5/UBL4A UBL domain reveal an interaction that forms a conserved dynamic interface. Cell Rep 2012; 2:1620-32. [PMID: 23142665 DOI: 10.1016/j.celrep.2012.10.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 09/25/2012] [Accepted: 10/08/2012] [Indexed: 10/27/2022] Open
Abstract
In the cytoplasm, the correct delivery of membrane proteins is an essential and highly regulated process. The posttranslational targeting of the important tail-anchor membrane (TA) proteins has recently been under intense investigation. A specialized pathway, called the guided entry of TA proteins (GET) pathway in yeast and the transmembrane domain recognition complex (TRC) pathway in vertebrates, recognizes endoplasmic-reticulum-targeted TA proteins and delivers them through a complex series of handoffs. An early step is the formation of a complex between Sgt2/SGTA, a cochaperone with a presumed ubiquitin-like-binding domain (UBD), and Get5/UBL4A, a ubiquitin-like domain (UBL)-containing protein. We structurally characterize this UBD/UBL interaction for both yeast and human proteins. This characterization is supported by biophysical studies that demonstrate that complex formation is mediated by electrostatics, generating an interface that has high-affinity with rapid kinetics. In total, this work provides a refined model of the interplay of Sgt2 homologs in TA targeting.
Collapse
|
28
|
Distribution of the SELMA translocon in secondary plastids of red algal origin and predicted uncoupling of ubiquitin-dependent translocation from degradation. EUKARYOTIC CELL 2012; 11:1472-81. [PMID: 23042132 DOI: 10.1128/ec.00183-12] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Protein import into complex plastids of red algal origin is a multistep process including translocons of different evolutionary origins. The symbiont-derived ERAD-like machinery (SELMA), shown to be of red algal origin, is proposed to be the transport system for preprotein import across the periplastidal membrane of heterokontophytes, haptophytes, cryptophytes, and apicomplexans. In contrast to the canonical endoplasmic reticulum-associated degradation (ERAD) system, SELMA translocation is suggested to be uncoupled from proteasomal degradation. We investigated the distribution of known and newly identified SELMA components in organisms with complex plastids of red algal origin by intensive data mining, thereby defining a set of core components present in all examined organisms. These include putative pore-forming components, a ubiquitylation machinery, as well as a Cdc48 complex. Furthermore, the set of known 20S proteasomal components in the periplastidal compartment (PPC) of diatoms was expanded. These newly identified putative SELMA components, as well as proteasomal subunits, were in vivo localized as PPC proteins in the diatom Phaeodactylum tricornutum. The presented data allow us to speculate about the specific features of SELMA translocation in contrast to the canonical ERAD system, especially the uncoupling of translocation from degradation.
Collapse
|
29
|
Finley D, Ulrich HD, Sommer T, Kaiser P. The ubiquitin-proteasome system of Saccharomyces cerevisiae. Genetics 2012; 192:319-60. [PMID: 23028185 PMCID: PMC3454868 DOI: 10.1534/genetics.112.140467] [Citation(s) in RCA: 332] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/28/2012] [Indexed: 12/14/2022] Open
Abstract
Protein modifications provide cells with exquisite temporal and spatial control of protein function. Ubiquitin is among the most important modifiers, serving both to target hundreds of proteins for rapid degradation by the proteasome, and as a dynamic signaling agent that regulates the function of covalently bound proteins. The diverse effects of ubiquitylation reflect the assembly of structurally distinct ubiquitin chains on target proteins. The resulting ubiquitin code is interpreted by an extensive family of ubiquitin receptors. Here we review the components of this regulatory network and its effects throughout the cell.
Collapse
Affiliation(s)
- Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Helle D. Ulrich
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, EN6 3LD, United Kingdom
| | - Thomas Sommer
- Max-Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Peter Kaiser
- Department of Biological Chemistry, University of California, Irvine, California 92697
| |
Collapse
|
30
|
Transfer of Ho endonuclease and Ufo1 to the proteasome by the UbL-UbA shuttle protein, Ddi1, analysed by complex formation in vitro. PLoS One 2012; 7:e39210. [PMID: 22815701 PMCID: PMC3398040 DOI: 10.1371/journal.pone.0039210] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 05/21/2012] [Indexed: 01/20/2023] Open
Abstract
The F-box protein, Ufo1, recruits Ho endonuclease to the SCFUfo1 complex for ubiquitylation. Both ubiquitylated Ho and Ufo1 are transferred by the UbL-UbA protein, Ddi1, to the 19S Regulatory Particle (RP) of the proteasome for degradation. The Ddi1-UbL domain binds Rpn1 of the 19S RP, the Ddi1-UbA domain binds ubiquitin chains on the degradation substrate. Here we used complex reconstitution in vitro to identify stages in the transfer of Ho and Ufo1 from the SCFUfo1 complex to the proteasome. We report SCFUfo1 complex at the proteasome formed in the presence of Ho. Subsequently Ddi1 is recruited to this complex by interaction between the Ddi1-UbL domain and Ufo1. The core of Ddi1 binds both Ufo1 and Rpn1; this interaction confers specificity of SCFUfo1 for Ddi1. The substrate-shield model predicts that Ho would protect Ufo1 from degradation and we find that Ddi1 binds Ho, Ufo1, and Rpn1 simultaneously forming a complex for transfer of Ho to the 19S RP. In contrast, in the absence of Ho, Rpn1 displaces Ufo1 from Ddi1 indicating a higher affinity of the Ddi1-UbL for the 19S RP. However, at high Rpn1 levels there is synergistic binding of Ufo1 to Ddi1 that is dependent on the Ddi1-UbA domain. Our interpretation is that in the absence of substrate, the Ddi1-UbL binds Rpn1 while the Ddi1-UbA binds ubiquitin chains on Ufo1. This would promote degradation of Ufo1 and disassembly of SCFUfo1 complexes.
Collapse
|
31
|
Li J, Li J, Miyahira A, Sun J, Liu Y, Cheng G, Liang H. Crystal structure of the ubiquitin-like domain of human TBK1. Protein Cell 2012; 3:383-91. [PMID: 22610919 PMCID: PMC4057185 DOI: 10.1007/s13238-012-2929-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 03/31/2012] [Indexed: 01/07/2023] Open
Abstract
TANK-binding kinase 1 (TBK1) is an important enzyme in the regulation of cellular antiviral effects. TBK1 regulates the activity of the interferon regulatory factors IRF3 and IRF7, thereby playing a key role in type I interferon (IFN) signaling pathways. The structure of TBK1 consists of an N-terminal kinase domain, a middle ubiquitin-like domain (ULD), and a C-terminal elongated helical domain. It has been reported that the ULD of TBK1 regulates kinase activity, playing an important role in signaling and mediating interactions with other molecules in the IFN pathway. In this study, we present the crystal structure of the ULD of human TBK1 and identify several conserved residues by multiple sequence alignment. We found that a hydrophobic patch in TBK1, containing residues Leu316, Ile353, and Val382, corresponding to the "Ile44 hydrophobic patch" observed in ubiquitin, was conserved in TBK1, IκB kinase epsilon (IKKɛ/IKKi), IκB kinase alpha (IKKα), and IκB kinase beta (IKKβ). In comparison with the structure of the IKKβ ULD domain of Xenopus laevis, we speculate that the Ile44 hydrophobic patch of TBK1 is present in an intramolecular binding surface between ULD and the C-terminal elongated helices. The varying surface charge distributions in the ULD domains of IKK and IKK-related kinases may be relevant to their specificity for specific partners.
Collapse
Affiliation(s)
- Jian Li
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China ,Graduate School of the Chinese Academy of Sciences, Beijing, 100101 China
| | - Jun Li
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China ,Graduate School of the Chinese Academy of Sciences, Beijing, 100101 China
| | - Andrea Miyahira
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095 USA
| | - Jian Sun
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China ,Graduate School of the Chinese Academy of Sciences, Beijing, 100101 China
| | - Yingfang Liu
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Genhong Cheng
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095 USA
| | - Huanhuan Liang
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
32
|
Hänzelmann P, Schäfer A, Völler D, Schindelin H. Structural insights into functional modes of proteins involved in ubiquitin family pathways. Methods Mol Biol 2012; 832:547-76. [PMID: 22350912 DOI: 10.1007/978-1-61779-474-2_39] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The conjugation of ubiquitin and related modifiers to selected proteins represents a general mechanism to alter the function of these protein targets, thereby increasing the complexity of the cellular proteome. Ubiquitylation is catalyzed by a hierarchical enzyme cascade consisting of ubiquitin activating, ubiquitin conjugating, and ubiquitin ligating enzymes, and their combined action results in a diverse topology of ubiquitin-linkages on the modified proteins. Counteracting this machinery are various deubiquitylating enzymes while ubiquitin recognition in all its facets is accomplished by numerous ubiquitin-binding elements. In the following chapter, we attempt to provide an overview on enzymes involved in ubiquitylation as well as the removal of ubiquitin and proteins involved in the recognition and binding of ubiquitin from a structural biologist's perspective.
Collapse
Affiliation(s)
- Petra Hänzelmann
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | | | | | | |
Collapse
|
33
|
Stingele J, Roder UW, Raasi S. Surface plasmon resonance to measure interactions of UbFs with their binding partners. Methods Mol Biol 2012; 832:263-277. [PMID: 22350892 DOI: 10.1007/978-1-61779-474-2_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Ubiquitin family modifiers (UbFs) are protein-protein interaction modules acting within a variety of cellular processes. In combination with other techniques, surface plasmon resonance (SPR)-based technology has been used to characterize the interactions of UbFs with their binding partners. SPR binding assays allow the real-time detection of binding events with unlabeled analytes, yet are often hindered by the requirement for careful sample preparation and optimized assay conditions. This chapter aims to share our experience in SPR analysis of UbFs and provide helpful hints in sample preparation, experimental design, evaluation, and data interpretation.
Collapse
Affiliation(s)
- Julian Stingele
- Department of Molecular Cell Biology, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | | | | |
Collapse
|
34
|
Ubiquitin chains in the Dsk2 UBL domain mediate Dsk2 stability and protein degradation in yeast. Biochem Biophys Res Commun 2011; 411:555-61. [DOI: 10.1016/j.bbrc.2011.06.183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 06/29/2011] [Indexed: 11/22/2022]
|
35
|
Hänzelmann P, Buchberger A, Schindelin H. Hierarchical Binding of Cofactors to the AAA ATPase p97. Structure 2011; 19:833-43. [DOI: 10.1016/j.str.2011.03.018] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 03/19/2011] [Accepted: 03/22/2011] [Indexed: 10/18/2022]
|
36
|
Liu Y, Ye Y. Proteostasis regulation at the endoplasmic reticulum: a new perturbation site for targeted cancer therapy. Cell Res 2011; 21:867-83. [PMID: 21537343 PMCID: PMC3203708 DOI: 10.1038/cr.2011.75] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
To deal with the constant challenge of protein misfolding in the endoplasmic reticulum (ER), eukaryotic cells have evolved an ER protein quality control (ERQC) mechanism that is integrated with an adaptive stress response. The ERQC pathway is comprised of factors residing in the ER lumen that function in the identification and retention of aberrantly folded proteins, factors in the ER membrane for retrotranslocation of misfolded polypeptides, and enzymes in the cytosol that degrade retrotranslocated proteins. The integrated stress response (termed ER stress or unfolded protein response, UPR) contains several signaling branches elicited from the ER membrane, which fine-tune the rate of protein synthesis and entry into the ER to match the ER folding capacity. The fitness of the cell, particularly those bearing a high secretory burden, is critically dependent on functional integrity of the ER, which in turn relies on these stress-attenuating mechanisms to maintain protein homeostasis, or proteostasis. Aberrant proteostasis can trigger cellular apoptosis, making these adaptive stress response systems attractive targets for perturbation in treatment of cell malignancies. Here, we review our current understanding of how the cell preserves ER proteostasis and discuss how we may harness the mechanistic information on this process to develop new cancer therapeutics.
Collapse
Affiliation(s)
- Yanfen Liu
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0540, USA
| | - Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0540, USA
| |
Collapse
|
37
|
Cellular functions of Ufd2 and Ufd3 in proteasomal protein degradation depend on Cdc48 binding. Mol Cell Biol 2011; 31:1528-39. [PMID: 21282470 DOI: 10.1128/mcb.00962-10] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The chaperone-related AAA ATPase Cdc48 (p97/VCP in higher eukaryotes) segregates ubiquitylated proteins for subsequent degradation by the 26S proteasome or for nonproteolytic fates. The specific outcome of Cdc48 activity is controlled by the evolutionary conserved cofactors Ufd2 and Ufd3, which antagonistically regulate the substrates' ubiquitylation states. In contrast to the interaction of Ufd3 and Cdc48, the interaction between the ubiquitin chain elongating enzyme Ufd2 and Cdc48 has not been precisely mapped. Consequently, it is still unknown whether physiological functions of Ufd2 in fact require Cdc48 binding. Here, we show that Ufd2 binds to the C-terminal tail of Cdc48, unlike the human Ufd2 homologue E4B, which interacts with the N domain of p97. The binding sites for Ufd2 and Ufd3 on Cdc48 overlap and depend critically on the conserved residue Y834 but are not identical. Saccharomyces cerevisiae cdc48 mutants altered in residue Y834 or lacking the C-terminal tail are viable and exhibit normal growth. Importantly, however, loss of Ufd2 and Ufd3 binding in these mutants phenocopies defects of Δufd2 and Δufd3 mutants in the ubiquitin fusion degradation (UFD) and Ole1 fatty acid desaturase activation (OLE) pathways. These results indicate that key cellular functions of Ufd2 and Ufd3 in proteasomal protein degradation require their interaction with Cdc48.
Collapse
|
38
|
Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
39
|
Chen YW, Tajima T, Agrawal S. The crystal structure of the ubiquitin-like (UbL) domain of human homologue A of Rad23 (hHR23A) protein. Protein Eng Des Sel 2010; 24:131-8. [PMID: 21047872 DOI: 10.1093/protein/gzq084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The human homologue of the yeast Rad23 protein, hHR23A, plays dual roles in DNA repair as well as in translocating polyubiquitinated proteins to the proteasome. We determined the three-dimensional structure of its ubiquitin-like (UbL) domain by X-ray crystallography. It has the same overall structure and fold characteristics as ubiquitin and other members of the UbL domain family, with overall root mean square deviations in Cα positions in the range of 1.0-1.3 Å. There are local differences in the α1-β3 loop where hHR23A UbL domain has three more residues constituting a bigger loop. Analysis of the crystal packing revealed a possible dimeric arrangement mediated by the three residues (Leu10, Ile49 and Met75) that are known to be critical for molecular interactions. In contrast to the overall well-defined structure, these three residues are either disordered or have multiple conformations, suggesting that conformation variability is an important property of the binding surface. The electrostatic potentials at the binding surface are conserved among the family, with the hHR23B domain being the most similar to this structure. The intra-molecular complexes formed by the UbL domain of hHR23A with its UbA1 or UbA2 domains was studied by comparative homology modelling, which suggests these two interactions are structurally similar and are mutually exclusive.
Collapse
Affiliation(s)
- Yu Wai Chen
- King's College London, Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, London SE11UL, UK.
| | | | | |
Collapse
|