1
|
Zhou L, Ho BM, Chan HYE, Tong Y, Du L, He JN, Ng DSC, Tham CC, Pang CP, Chu WK. Emerging Roles of cGAS-STING Signaling in Mediating Ocular Inflammation. J Innate Immun 2023; 15:739-750. [PMID: 37778330 PMCID: PMC10616671 DOI: 10.1159/000533897] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Cyclic GMP-AMP (cGAMP) synthase (cGAS), a sensor of cytosolic DNA, recognizes cytoplasmic nucleic acids to activate the innate immune responses via generation of the second messenger cGAMP and subsequent activation of the stimulator of interferon genes (STINGs). The cGAS-STING signaling has multiple immunologic and physiological functions in all human vital organs. It mediates protective innate immune defense against DNA-containing pathogen infection, confers intrinsic antitumor immunity via detecting tumor-derived DNA, and gives rise to autoimmune and inflammatory diseases upon aberrant activation by cytosolic leakage of self-genomic and mitochondrial DNA. Disruptions in these functions are associated with the pathophysiology of various immunologic and neurodegenerative diseases. Recent evidence indicates important roles of the cGAS-STING signaling in mediating inflammatory responses in ocular inflammatory and inflammation-associated diseases, such as keratitis, diabetic retinopathy, age-related macular degeneration, and uveitis. In this review, we summarize the recently emerging evidence of cGAS-STING signaling in mediating ocular inflammatory responses and affecting pathogenesis of these complex eye diseases. We attempt to provide insightful perspectives on future directions of investigating cGAS-STING signaling in ocular inflammation. Understanding how cGAS-STING signaling is modulated to mediate ocular inflammatory responses would allow future development of novel therapeutic strategies to treat ocular inflammation and autoimmunity.
Collapse
Affiliation(s)
- Linbin Zhou
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Bo Man Ho
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Hoi Ying Emily Chan
- Medicine Programme Global Physician-Leadership Stream, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Yan Tong
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Lin Du
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Jing Na He
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Danny Siu-Chun Ng
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Clement C. Tham
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Wai Kit Chu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
- Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| |
Collapse
|
2
|
Wang H, Su Y, Chen D, Li Q, Shi S, Huang X, Fang M, Yang M. Advances in the mechanisms and applications of inhibitory oligodeoxynucleotides against immune-mediated inflammatory diseases. Front Pharmacol 2023; 14:1119431. [PMID: 36825156 PMCID: PMC9941346 DOI: 10.3389/fphar.2023.1119431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/26/2023] [Indexed: 02/09/2023] Open
Abstract
Inhibitory oligodeoxynucleotides (ODNs) are short single-stranded DNA, which capable of folding into complex structures, enabling them to bind to a large variety of targets. With appropriate modifications, the inhibitory oligodeoxynucleotides exhibited many features of long half-life time, simple production, low toxicity and immunogenicity. In recent years, inhibitory oligodeoxynucleotides have received considerable attention for their potential therapeutic applications in immune-mediated inflammatory diseases (IMIDs). Inhibitory oligodeoxynucleotides could be divided into three categories according to its mechanisms and targets, including antisense ODNs (AS-ODNs), DNA aptamers and immunosuppressive ODNs (iSup ODNs). As a synthetic tool with immunomodulatory activity, it can target RNAs or proteins in a specific way, resulting in the reduction, increase or recovery of protein expression, and then regulate the state of immune activation. More importantly, inhibitory oligodeoxynucleotides have been used to treat immune-mediated inflammatory diseases, including inflammatory disorders and autoimmune diseases. Several inhibitory oligodeoxynucleotide drugs have been developed and approved on the market already. These drugs vary in their chemical structures, action mechanisms and cellular targets, but all of them could be capable of inhibiting excessive inflammatory responses. This review summarized their chemical modifications, action mechanisms and applications of the three kinds of inhibitory oligodeoxynucleotidesin the precise treatment of immune-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Hongrui Wang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Yingying Su
- Department of Anatomy, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Duoduo Chen
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Qi Li
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Shuyou Shi
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Xin Huang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Mingli Fang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China,*Correspondence: Mingli Fang, ; Ming Yang,
| | - Ming Yang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China,*Correspondence: Mingli Fang, ; Ming Yang,
| |
Collapse
|
3
|
Bayik D, Gursel I, Klinman DM. Structure, mechanism and therapeutic utility of immunosuppressive oligonucleotides. Pharmacol Res 2016; 105:216-25. [PMID: 26779666 DOI: 10.1016/j.phrs.2015.11.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 11/13/2015] [Indexed: 12/27/2022]
Abstract
Synthetic oligodeoxynucleotides that can down-regulate cellular elements of the immune system have been developed and are being widely studied in preclinical models. These agents vary in sequence, mechanism of action, and cellular target(s) but share the ability to suppress a plethora of inflammatory responses. This work reviews the types of immunosuppressive oligodeoxynucleotide (Sup ODN) and compares their therapeutic activity against diseases characterized by pathologic levels of immune stimulation ranging from autoimmunity to septic shock to cancer (see graphical abstract). The mechanism(s) underlying the efficacy of Sup ODN and the influence size, sequence and nucleotide backbone on function are considered.
Collapse
Affiliation(s)
- Defne Bayik
- Cancer and Inflammation Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Bilkent University, Molecular Biology and Genetic Department, Therapeutic ODN Research Laboratory, Ankara, Turkey
| | - Ihsan Gursel
- Bilkent University, Molecular Biology and Genetic Department, Therapeutic ODN Research Laboratory, Ankara, Turkey.
| | - Dennis M Klinman
- Cancer and Inflammation Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| |
Collapse
|
4
|
Wang Z, Deng Z, Dahmane N, Tsai K, Wang P, Williams DR, Kossenkov AV, Showe LC, Zhang R, Huang Q, Conejo-Garcia JR, Lieberman PM. Telomeric repeat-containing RNA (TERRA) constitutes a nucleoprotein component of extracellular inflammatory exosomes. Proc Natl Acad Sci U S A 2015; 112:E6293-300. [PMID: 26578789 PMCID: PMC4655533 DOI: 10.1073/pnas.1505962112] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Telomeric repeat-containing RNA (TERRA) has been identified as a telomere-associated regulator of chromosome end protection. Here, we report that TERRA can also be found in extracellular fractions that stimulate innate immune signaling. We identified extracellular forms of TERRA in mouse tumor and embryonic brain tissue, as well as in human tissue culture cell lines using RNA in situ hybridization. RNA-seq analyses revealed TERRA to be among the most highly represented transcripts in extracellular fractions derived from both normal and cancer patient blood plasma. Cell-free TERRA (cfTERRA) could be isolated from the exosome fractions derived from human lymphoblastoid cell line (LCL) culture media. cfTERRA is a shorter form (∼200 nt) of cellular TERRA and copurifies with CD63- and CD83-positive exosome vesicles that could be visualized by cyro-electron microscopy. These fractions were also enriched for histone proteins that physically associate with TERRA in extracellular ChIP assays. Incubation of cfTERRA-containing exosomes with peripheral blood mononuclear cells stimulated transcription of several inflammatory cytokine genes, including TNFα, IL6, and C-X-C chemokine 10 (CXCL10) Exosomes engineered with elevated TERRA or liposomes with synthetic TERRA further stimulated inflammatory cytokines, suggesting that exosome-associated TERRA augments innate immune signaling. These findings imply a previously unidentified extrinsic function for TERRA and a mechanism of communication between telomeres and innate immune signals in tissue and tumor microenvironments.
Collapse
Affiliation(s)
- Zhuo Wang
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA 19104; Cancer Biology Program, University of the Sciences in Philadelphia, Philadelphia, PA 19104
| | - Zhong Deng
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA 19104
| | - Nadia Dahmane
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
| | - Kevin Tsai
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA 19104
| | - Pu Wang
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA 19104
| | - Dewight R Williams
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104
| | - Andrew V Kossenkov
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA 19104
| | - Louise C Showe
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA 19104
| | - Rugang Zhang
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA 19104
| | - Qihong Huang
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA 19104
| | - José R Conejo-Garcia
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA 19104
| | - Paul M Lieberman
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA 19104;
| |
Collapse
|
5
|
Bode C, Wang J, Klinman DM. Suppressive oligodeoxynucleotides promote the generation of regulatory T cells by inhibiting STAT1 phosphorylation. Int Immunopharmacol 2014; 23:516-22. [PMID: 25311665 DOI: 10.1016/j.intimp.2014.09.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 10/24/2022]
Abstract
Suppressive oligodeoxynucleotides (Sup ODN) express repetitive TTAGGG motifs that have proven useful in the treatment/prevention of numerous inflammatory and autoimmune diseases. The mechanism underlying the immunosuppressive activity of Sup ODN is incompletely understood. Regulatory T cells (Treg) play a key role in controlling a variety of pathologic autoimmune responses. Treg are generated from activated CD4(+) T cells in a process that involves the phosphorylation of STAT family members. Current studies demonstrate that Sup ODN promote the differentiation of CD4(+)CD25(-) T cells into functionally active iTreg in vitro. When administered in vivo, Sup ODN promote the generation of iTreg in response to peptide challenge. Central to this effect is the ability of Sup ODN to block the phosphorylation of STAT1. These findings clarify the mechanism underlying the therapeutic activity of Sup ODN and support their use in Treg-based immunotherapy.
Collapse
Affiliation(s)
- Christian Bode
- Cancer and Inflammation Program, Center for Cancer Research, NCI, Frederick, MD 21702, United States; Department for Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Jing Wang
- Cancer and Inflammation Program, Center for Cancer Research, NCI, Frederick, MD 21702, United States
| | - Dennis M Klinman
- Cancer and Inflammation Program, Center for Cancer Research, NCI, Frederick, MD 21702, United States.
| |
Collapse
|
6
|
Girol AP, Mimura KKO, Drewes CC, Bolonheis SM, Solito E, Farsky SHP, Gil CD, Oliani SM. Anti-inflammatory mechanisms of the annexin A1 protein and its mimetic peptide Ac2-26 in models of ocular inflammation in vivo and in vitro. THE JOURNAL OF IMMUNOLOGY 2013; 190:5689-701. [PMID: 23645879 DOI: 10.4049/jimmunol.1202030] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Annexin A1 (AnxA1) is a protein that displays potent anti-inflammatory properties, but its expression in eye tissue and its role in ocular inflammatory diseases have not been well studied. We investigated the mechanism of action and potential uses of AnxA1 and its mimetic peptide (Ac2-26) in the endotoxin-induced uveitis (EIU) rodent model and in human ARPE-19 cells activated by LPS. In rats, analysis of untreated EIU after 24 and 48 h or EIU treated with topical applications or with a single s.c. injection of Ac2-26 revealed the anti-inflammatory actions of Ac2-26 on leukocyte infiltration and on the release of inflammatory mediators; the systemic administration of Boc2, a formylated peptide receptor (fpr) antagonist, abrogated the peptide's protective effects. Moreover, AnxA1(-/-) mice exhibited exacerbated EIU compared with wild-type animals. Immunohistochemical studies of ocular tissue showed a specific AnxA1 posttranslational modification in EIU and indicated that the fpr2 receptor mediated the anti-inflammatory actions of AnxA1. In vitro studies confirmed the roles of AnxA1 and fpr2 and the protective effects of Ac2-26 on the release of chemical mediators in ARPE-19 cells. Molecular analysis of NF-κB translocation and IL-6, IL-8, and cyclooxygenase-2 gene expression indicated that the protective effects of AnxA1 occur independently of the NF-κB signaling pathway and possibly in a posttranscriptional manner. Together, our data highlight the role of AnxA1 in ocular inflammation, especially uveitis, and suggest the use of AnxA1 or its mimetic peptide Ac2-26 as a therapeutic approach.
Collapse
Affiliation(s)
- Ana P Girol
- Department of Biology, Instituto de Biociências, Letras e Ciências Exatas, São Paulo State University, São José do Rio Preto 15054-000, Brazil
| | | | | | | | | | | | | | | |
Collapse
|