1
|
Jang A, Cheon D, Hwang E, Kim Y. Structural stability of Cutibacterium acnes acyl carrier protein studied using CD and NMR spectroscopy. J Anal Sci Technol 2022. [DOI: 10.1186/s40543-021-00310-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractTo survive in diverse environments, bacteria adapt by changing the composition of their cell membrane fatty acids. Compared with aerobic bacteria, Cutibacterium acnes has much greater contents of branched-chain fatty acids (BCFAs) in the cell membrane, which helps it survive in anaerobic environments. To synthesize BCFAs, C. acnes acyl carrier protein (CaACP) has to transfer growing branched acyl intermediates from its hydrophobic cavity to fatty acid synthases. CaACP contains an unconserved, distinctive Cys50 in its hydrophobic pocket, which corresponds to Leu in other bacterial acyl carrier proteins (ACPs). Herein, we investigated the substrate specificity of CaACP and the importance of Cys50 in its structural stability. We mutated Cys50 to Leu (C50L mutant) and measured the melting temperatures (Tms) of both CaACP and the C50L mutant by performing circular dichroism experiments. The Tm of CaACP was very low (49.6 °C), whereas that of C50L mutant was 55.5 °C. Hydrogen/deuterium exchange experiments revealed that wild-type CaACP showed extremely fast exchange rates within 50 min, whereas amide peaks of the C50L mutant in the heteronuclear single quantum coherence spectrum remained up to 200 min, thereby implying that Cys50 is the key residue contributing to the structural stability of CaACP. We also monitored chemical shift perturbations upon apo to holo, apo to butyryl, and apo to isobutyryl conversion, confirming that CaACP can accommodate isobutyryl BCFAs. These results provide a preliminary understanding into the substrate specificity of CaACPs for the production of BCFAs necessary to maintain cell membrane fluidity under anaerobic environments.
Collapse
|
2
|
Deciphering the Binding Interactions between Acinetobacter baumannii ACP and β-ketoacyl ACP Synthase III to Improve Antibiotic Targeting Using NMR Spectroscopy. Int J Mol Sci 2021; 22:ijms22073317. [PMID: 33805050 PMCID: PMC8036411 DOI: 10.3390/ijms22073317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/20/2021] [Accepted: 03/21/2021] [Indexed: 11/17/2022] Open
Abstract
Fatty acid synthesis is essential for bacterial viability. Thus, fatty acid synthases (FASs) represent effective targets for antibiotics. Nevertheless, multidrug-resistant bacteria, including the human opportunistic bacteria, Acinetobacter baumannii, are emerging threats. Meanwhile, the FAS pathway of A. baumannii is relatively unexplored. Considering that acyl carrier protein (ACP) has an important role in the delivery of fatty acyl intermediates to other FAS enzymes, we elucidated the solution structure of A. baumannii ACP (AbACP) and, using NMR spectroscopy, investigated its interactions with β-ketoacyl ACP synthase III (AbKAS III), which initiates fatty acid elongation. The results show that AbACP comprises four helices, while Ca2+ reduces the electrostatic repulsion between acid residues, and the unconserved F47 plays a key role in thermal stability. Moreover, AbACP exhibits flexibility near the hydrophobic cavity entrance from D59 to T65, as well as in the α1α2 loop region. Further, F29 and A69 participate in slow exchanges, which may be related to shuttling of the growing acyl chain. Additionally, electrostatic interactions occur between the α2 and α3-helix of ACP and AbKAS III, while the hydrophobic interactions through the ACP α2-helix are seemingly important. Our study provides insights for development of potent antibiotics capable of inhibiting A. baumannii FAS protein–protein interactions.
Collapse
|
3
|
Structural Characterization of an ACP from Thermotoga maritima: Insights into Hyperthermal Adaptation. Int J Mol Sci 2020; 21:ijms21072600. [PMID: 32283632 PMCID: PMC7178038 DOI: 10.3390/ijms21072600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/30/2022] Open
Abstract
Thermotoga maritima, a deep-branching hyperthermophilic bacterium, expresses an extraordinarily stable Thermotoga maritima acyl carrier protein (Tm-ACP) that functions as a carrier in the fatty acid synthesis system at near-boiling aqueous environments. Here, to understand the hyperthermal adaptation of Tm-ACP, we investigated the structure and dynamics of Tm-ACP by nuclear magnetic resonance (NMR) spectroscopy. The melting temperature of Tm-ACP (101.4 °C) far exceeds that of other ACPs, owing to extensive ionic interactions and tight hydrophobic packing. The D59 residue, which replaces Pro/Ser of other ACPs, mediates ionic clustering between helices III and IV. This creates a wide pocket entrance to facilitate the accommodation of long acyl chains required for hyperthermal adaptation of the T. maritima cell membrane. Tm-ACP is revealed to be the first ACP that harbor an amide proton hyperprotected against hydrogen/deuterium exchange for I15. The hydrophobic interactions mediated by I15 appear to be the key driving forces of the global folding process of Tm-ACP. Our findings provide insights into the structural basis of the hyperthermal adaptation of ACP, which might have allowed T. maritima to survive in hot ancient oceans.
Collapse
|
4
|
Herrera MG, Noguera ME, Sewell KE, Agudelo Suárez WA, Capece L, Klinke S, Santos J. Structure of the Human ACP-ISD11 Heterodimer. Biochemistry 2019; 58:4596-4609. [PMID: 31664822 DOI: 10.1021/acs.biochem.9b00539] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, the mammalian mitochondrial protein complex for iron-sulfur cluster assembly has been the focus of important studies. This is partly because of its high degree of relevance in cell metabolism and because mutations of the involved proteins are the cause of several human diseases. Cysteine desulfurase NFS1 is the key enzyme of the complex. At present, it is well-known that the active form of NFS1 is stabilized by the small protein ISD11. In this work, the structure of the human mitochondrial ACP-ISD11 heterodimer was determined at 2.0 Å resolution. ACP-ISD11 forms a cooperative unit stabilized by several ionic interactions, hydrogen bonds, and apolar interactions. The 4'-phosphopantetheine-acyl chain, which is covalently bound to ACP, interacts with several residues of ISD11, modulating together with ACP the foldability of ISD11. Recombinant human ACP-ISD11 was able to interact with the NFS1 desulfurase, thus yielding an active enzyme, and the NFS1/ACP-ISD11 core complex was activated by frataxin and ISCU proteins. Internal motions of ACP-ISD11 were studied by molecular dynamics simulations, showing the persistence of the interactions between both protein chains. The conformation of the dimer is similar to that found in the context of the (NFS1/ACP-ISD11)2 supercomplex core, which contains the Escherichia coli ACP instead of the human variant. This fact suggests a sequential mechanism for supercomplex consolidation, in which the ACP-ISD11 complex may fold independently and, after that, the NFS1 dimer would be stabilized.
Collapse
Affiliation(s)
- María Georgina Herrera
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires, Instituto de Biociencias, Biotecnología y Biomedicina (iB3), Intendente Güiraldes 2160-Ciudad Universitaria , C1428EGA Buenos Aires , Argentina
| | - Martín Ezequiel Noguera
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires, Instituto de Biociencias, Biotecnología y Biomedicina (iB3), Intendente Güiraldes 2160-Ciudad Universitaria , C1428EGA Buenos Aires , Argentina.,Instituto de Química y Fisicoquímica Biológicas , Dr. Alejandro Paladini, Universidad de Buenos Aires, CONICET , Junín 956 , C1113AAD Buenos Aires , Argentina
| | - Karl Ellioth Sewell
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires, Instituto de Biociencias, Biotecnología y Biomedicina (iB3), Intendente Güiraldes 2160-Ciudad Universitaria , C1428EGA Buenos Aires , Argentina
| | - William Armando Agudelo Suárez
- Fundación Instituto de Inmunología de Colombia (FIDIC) , Av. 50 No. 26-20 , Bogotá D.C. , Colombia.,Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE CONICET) , C1428EGA Buenos Aires , Argentina
| | - Luciana Capece
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE CONICET) , C1428EGA Buenos Aires , Argentina
| | - Sebastián Klinke
- Fundación Instituto Leloir , IIBBA-CONICET, and Plataforma Argentina de Biología Estructural y Metabolómica PLABEM , Av. Patricias Argentinas 435 , C1405BWE Buenos Aires , Argentina
| | - Javier Santos
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires, Instituto de Biociencias, Biotecnología y Biomedicina (iB3), Intendente Güiraldes 2160-Ciudad Universitaria , C1428EGA Buenos Aires , Argentina
| |
Collapse
|
5
|
Park J, Lee Y, Cheon D, Kim Y. Structure and dynamics of human and bacterial acyl carrier proteins and their interactions with fatty acid synthesis proteins. Biochem Biophys Res Commun 2019; 516:1183-1189. [PMID: 31296387 DOI: 10.1016/j.bbrc.2019.07.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 07/05/2019] [Indexed: 11/17/2022]
Abstract
Acyl carrier protein (ACP) is highly conserved across taxa and plays key roles in the fatty acid synthesis system by mediating acyl group delivery and shuttling. Here, we compared the structural and dynamic features of human type Ι ACP (hACP) and Escherichia coli type II ACP (EcACP). Analysis of chemical shift perturbations upon octanoyl group attachment showed perturbations in hACP only near acyl-group attachment sites, whereas EcACP showed the perturbation at residues in the hydrophobic cavity. This difference confirmed that hACP does not sequester the acyl chain in the hydrophobic cavity, which is blocked by hydrophobic triad residues (L34, L39, and V64). Moreover, hACP showed more flexible backbone dynamics than EcACP, especially in the front of α1α2 loop. We further investigated the interactions of hACP with Streptomyces coelicolor ACP synthase (ScAcpS), which is used to convert apo mammalian ACP to the holo form. Similar to protein-protein interface (PPI) found in hACP-hAcpS crystal structure, docking simulation and binding affinity measurements showed that the hydrophobic residues in universal recognition helix II of hACP contribute mainly to ScAcpS binding with binding affinity of 9.2 ± 9.1 × 104 M. In contrast, interaction found in EcACP-EcAcpS crystal structure is dominated by electrostatic interactions. These results suggest that ScAcpS has relatively relaxed substrate specificity and a similar charge distribution to hAcpS. These fundamental differences of the charge distribution in hAcpS, ScAcpS and EcAcpS largely affect the interaction with hACP. These findings can provide a useful resource for development of novel antibiotics inhibiting PPI in bacterial FAS proteins with specificity.
Collapse
Affiliation(s)
- Jungwoo Park
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, South Korea
| | - Yeongjoon Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, South Korea
| | - Dasom Cheon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, South Korea
| | - Yangmee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, South Korea.
| |
Collapse
|
6
|
Biswas R, Singh BK, Dutta D, Das PK, Maiti MK, Basak A, Das AK. Decrypting the oscillating nature of the 4'-phosphopantetheine arm in acyl carrier protein AcpM of Mycobacterium tuberculosis. FEBS Lett 2019; 593:622-633. [PMID: 30847903 DOI: 10.1002/1873-3468.13339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/04/2019] [Accepted: 02/11/2019] [Indexed: 12/28/2022]
Abstract
In Mycobacterium tuberculosis, acyl carrier protein (AcpM)-mediated fatty acid synthase type II is integral for the synthesis of mycolic acids. AcpM, designated as an atypical ACP, comprises of a putative 33 amino acid long C-terminal extension which is distinctive in nature. Here, we aimed at devising an 'easy-to-go' method for the generation of crypto-AcpM loaded with a solvatochromic probe 7-Nitrobenz-2-oxa-1,3-diazol-4-yl, which is linked to the 4'-phosphopantetheine (Ppant) prosthetic group of AcpM. The crypto-AcpM, coupled with fluorescence spectroscopy and molecular dynamics simulation studies, was employed to explore the elusive dynamics of Ppant arm in AcpM. This investigation establishes the role of the flexible C-terminal extension of AcpM in regulating the prosthetic group sequestration ability by modulating the 'Asp-Ser-Leu' motif.
Collapse
Affiliation(s)
- Rupam Biswas
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, India
| | - Bina Kumari Singh
- School of Biosciences, Indian Institute of Technology, Kharagpur, India
| | - Debajyoti Dutta
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, India
| | - Prabir Kumar Das
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, India
| | - Mrinal Kumar Maiti
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, India
| | - Amit Basak
- School of Biosciences, Indian Institute of Technology, Kharagpur, India.,Department of Chemistry, Indian Institute of Technology, Kharagpur, India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, India.,School of Biosciences, Indian Institute of Technology, Kharagpur, India
| |
Collapse
|
7
|
Moretto L, Heylen R, Holroyd N, Vance S, Broadhurst RW. Modular type I polyketide synthase acyl carrier protein domains share a common N-terminally extended fold. Sci Rep 2019; 9:2325. [PMID: 30787330 PMCID: PMC6382882 DOI: 10.1038/s41598-019-38747-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/15/2018] [Indexed: 11/09/2022] Open
Abstract
Acyl carrier protein (ACP) domains act as interaction hubs within modular polyketide synthase (PKS) systems, employing specific protein-protein interactions to present acyl substrates to a series of enzyme active sites. Many domains from the multimodular PKS that generates the toxin mycolactone display an unusually high degree of sequence similarity, implying that the few sites which vary may do so for functional reasons. When domain boundaries based on prior studies were used to prepare two isolated ACP segments from this system for studies of their interaction properties, one fragment adopted the expected tertiary structure, but the other failed to fold, despite sharing a sequence identity of 49%. Secondary structure prediction uncovered a previously undetected helical region (H0) that precedes the canonical helix-bundle ACP topology in both cases. This article reports the NMR solution structures of two N-terminally extended mycolactone mACP constructs, mH0ACPa and mH0ACPb, both of which possess an additional α-helix that behaves like a rigid component of the domain. The interactions of these species with a phosphopantetheinyl transferase and a ketoreductase domain are unaffected by the presence of H0, but a shorter construct that lacks the H0 region is shown to be substantially less thermostable than mH0ACPb. Bioinformatics analysis suggests that the extended H0-ACP motif is present in 98% of type I cis-acyltransferase PKS chain-extension modules. The polypeptide linker that connects an H0-ACP motif to the preceding domain must therefore be ~12 residues shorter than previously thought, imposing strict limits on ACP-mediated substrate delivery within and between PKS modules.
Collapse
Affiliation(s)
- Luisa Moretto
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Smålandsgatan-24, 392 34, Kalmar, Sweden
| | - Rachel Heylen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Natalie Holroyd
- Department of Medical Physics and Bioengineering, University College London, London, WC1E 6BT, UK
| | - Steven Vance
- Crescendo Biologics Ltd, Meditrina Building 260, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - R William Broadhurst
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK.
| |
Collapse
|
8
|
Rivas MA, Courouble VC, Baker MC, Cookmeyer DL, Fiore KE, Frost AJ, Godbe KN, Jordan MR, Krasnow EN, Mollo A, Ridings ST, Sawada K, Shroff KD, Studnitzer B, Thiele GAR, Sisto AC, Nawal S, Huff AR, Fairman R, Johnson KA, Beld J, Kokona B, Charkoudian LK. The Effect of Divalent Cations on the Thermostability of Type II Polyketide Synthase Acyl Carrier Proteins. AIChE J 2018; 64:4308-4318. [PMID: 31527922 DOI: 10.1002/aic.16402] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The successful engineering of biosynthetic pathways hinges on understanding the factors that influence acyl carrier protein (ACP) stability and function. The stability and structure of ACPs can be influenced by the presence of divalent cations, but how this relates to primary sequence remains poorly understood. As part of a course-based undergraduate research experience, we investigated the thermostability of type II polyketide synthase (PKS) ACPs. We observed an approximate 40 °C range in the thermostability amongst the 14 ACPs studied, as well as an increase in stability (5 - 26 °C) of the ACPs in the presence of divalent cations. Distribution of charges in the helix II-loop-helix III region was found to impact the enthalpy of denaturation. Taken together, our results reveal clues as to how the sequence of type II PKS ACPs relates to their structural stability, information that can be used to study how ACP sequence relates to function.
Collapse
Affiliation(s)
| | - Valentine C. Courouble
- Dept. of Chemistry Haverford College Haverford PA 19041
- Biochemistry 390 (“Biochemistry Superlab”) Haverford College Haverford PA
| | - Miranda C. Baker
- Dept. of Chemistry Haverford College Haverford PA 19041
- Biochemistry 390 (“Biochemistry Superlab”) Haverford College Haverford PA
| | | | - Kristen E. Fiore
- Dept. of Chemistry Haverford College Haverford PA 19041
- Biochemistry 390 (“Biochemistry Superlab”) Haverford College Haverford PA
| | - Alexander J. Frost
- Dept. of Biology Haverford College Haverford PA 19041
- Biochemistry 390 (“Biochemistry Superlab”) Haverford College Haverford PA
| | | | - Michael R. Jordan
- Dept. of Physics Haverford College Haverford PA 19041
- Biochemistry 390 (“Biochemistry Superlab”) Haverford College Haverford PA
| | - Emily N. Krasnow
- Dept. of Biology Haverford College Haverford PA 19041
- Biochemistry 390 (“Biochemistry Superlab”) Haverford College Haverford PA
| | - Aurelio Mollo
- Dept. of Chemistry Haverford College Haverford PA 19041
- Biochemistry 390 (“Biochemistry Superlab”) Haverford College Haverford PA
| | - Stephen T. Ridings
- Dept. of Chemistry Haverford College Haverford PA 19041
- Biochemistry 390 (“Biochemistry Superlab”) Haverford College Haverford PA
| | - Keisuke Sawada
- Dept. of Chemistry Haverford College Haverford PA 19041
- Biochemistry 390 (“Biochemistry Superlab”) Haverford College Haverford PA
| | - Kavita D. Shroff
- Dept. of Biology Haverford College Haverford PA 19041
- Biochemistry 390 (“Biochemistry Superlab”) Haverford College Haverford PA
| | - Bradley Studnitzer
- Dept. of Chemistry Haverford College Haverford PA 19041
- Biochemistry 390 (“Biochemistry Superlab”) Haverford College Haverford PA
| | - Grace A. R. Thiele
- Dept. of Chemistry Haverford College Haverford PA 19041
- Biochemistry 390 (“Biochemistry Superlab”) Haverford College Haverford PA
| | | | - Saadia Nawal
- Dept. of Chemistry Haverford College Haverford PA 19041
| | - Adam R. Huff
- Dept. of Chemistry Haverford College Haverford PA 19041
| | | | | | - Joris Beld
- Dept. of Microbiology and Immunology Drexel University College of Medicine Philadelphia PA 19102
| | | | | |
Collapse
|
9
|
Paul S, Ishida H, Nguyen LT, Liu Z, Vogel HJ. Structural and dynamic characterization of a freestanding acyl carrier protein involved in the biosynthesis of cyclic lipopeptide antibiotics. Protein Sci 2017; 26:946-959. [PMID: 28187530 PMCID: PMC5405426 DOI: 10.1002/pro.3138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/31/2017] [Accepted: 02/03/2017] [Indexed: 11/08/2022]
Abstract
Friulimicin is a cyclic lipodecapeptide antibiotic that is produced by Actinoplanes friuliensis. Similar to the related lipopeptide drug daptomycin, the peptide skeleton of friulimicin is synthesized by a large multienzyme nonribosomal peptide synthetase (NRPS) system. The LipD protein plays a major role in the acylation reaction of friulimicin. The attachment of the fatty acid group promotes its antibiotic activity. Phylogenetic analysis reveals that LipD is most closely related to other freestanding acyl carrier proteins (ACPs), for which the genes are located near to NRPS gene clusters. Here, we report that the solution NMR structure of apo-LipD is very similar to other four-helix bundle forming ACPs from fatty acid synthase (FAS), polyketide synthase, and NRPS systems. By recording NMR dynamics data, we found that the backbone motions in holo-LipD are more restricted than in apo-LipD due to the attachment of phosphopantetheine moiety. This enhanced stability of holo-LipD was also observed in differential scanning calorimetry experiments. Furthermore, we demonstrate that, unlike several other ACPs, the folding of LipD does not depend on the presence of divalent cations, although the presence of Mg2+ or Ca2+ can increase the protein stability. We propose that small structural rearrangements in the tertiary structure of holo-LipD which lead to the enhanced stability are important for the cognate enzyme recognition for the acylation reaction. Our results also highlight the different surface charges of LipD and FAS-ACP from A. friuliensis that would allow the acyl-CoA ligase to interact preferentially with the LipD instead of binding to the FAS-ACP.
Collapse
Affiliation(s)
- Subrata Paul
- Biochemistry Research GroupDepartment of Biological Sciences, University of CalgaryCalgaryAlbertaCanada
| | - Hiroaki Ishida
- Biochemistry Research GroupDepartment of Biological Sciences, University of CalgaryCalgaryAlbertaCanada
| | - Leonard T. Nguyen
- Biochemistry Research GroupDepartment of Biological Sciences, University of CalgaryCalgaryAlbertaCanada
| | - Zhihong Liu
- Biochemistry Research GroupDepartment of Biological Sciences, University of CalgaryCalgaryAlbertaCanada
| | - Hans J. Vogel
- Biochemistry Research GroupDepartment of Biological Sciences, University of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
10
|
Park YG, Jung MC, Song H, Jeong KW, Bang E, Hwang GS, Kim Y. Novel Structural Components Contribute to the High Thermal Stability of Acyl Carrier Protein from Enterococcus faecalis. J Biol Chem 2015; 291:1692-1702. [PMID: 26631734 DOI: 10.1074/jbc.m115.674408] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Indexed: 11/06/2022] Open
Abstract
Enterococcus faecalis is a Gram-positive, commensal bacterium that lives in the gastrointestinal tracts of humans and other mammals. It causes severe infections because of high antibiotic resistance. E. faecalis can endure extremes of temperature and pH. Acyl carrier protein (ACP) is a key element in the biosynthesis of fatty acids responsible for acyl group shuttling and delivery. In this study, to understand the origin of high thermal stabilities of E. faecalis ACP (Ef-ACP), its solution structure was investigated for the first time. CD experiments showed that the melting temperature of Ef-ACP is 78.8 °C, which is much higher than that of Escherichia coli ACP (67.2 °C). The overall structure of Ef-ACP shows the common ACP folding pattern consisting of four α-helices (helix I (residues 3-17), helix II (residues 39-53), helix III (residues 60-64), and helix IV (residues 68-78)) connected by three loops. Unique Ef-ACP structural features include a hydrophobic interaction between Phe(45) in helix II and Phe(18) in the α1α2 loop and a hydrogen bonding between Ser(15) in helix I and Ile(20) in the α1α2 loop, resulting in its high thermal stability. Phe(45)-mediated hydrophobic packing may block acyl chain binding subpocket II entry. Furthermore, Ser(58) in the α2α3 loop in Ef-ACP, which usually constitutes a proline in other ACPs, exhibited slow conformational exchanges, resulting in the movement of the helix III outside the structure to accommodate a longer acyl chain in the acyl binding cavity. These results might provide insights into the development of antibiotics against pathogenic drug-resistant E. faecalis strains.
Collapse
Affiliation(s)
- Young-Guen Park
- From the Department of Bioscience and Biotechnology and the Bio/Molecular Informatics Center Konkuk University, Seoul 143-701, Korea and
| | - Min-Cheol Jung
- From the Department of Bioscience and Biotechnology and the Bio/Molecular Informatics Center Konkuk University, Seoul 143-701, Korea and
| | - Heesang Song
- From the Department of Bioscience and Biotechnology and the Bio/Molecular Informatics Center Konkuk University, Seoul 143-701, Korea and
| | - Ki-Woong Jeong
- From the Department of Bioscience and Biotechnology and the Bio/Molecular Informatics Center Konkuk University, Seoul 143-701, Korea and
| | - Eunjung Bang
- the Western Seoul Center, Korea Basic Science Institute, Seoul 120-140, Korea
| | - Geum-Sook Hwang
- the Western Seoul Center, Korea Basic Science Institute, Seoul 120-140, Korea
| | - Yangmee Kim
- From the Department of Bioscience and Biotechnology and the Bio/Molecular Informatics Center Konkuk University, Seoul 143-701, Korea and.
| |
Collapse
|
11
|
Goodrich AC, Harden BJ, Frueh DP. Solution Structure of a Nonribosomal Peptide Synthetase Carrier Protein Loaded with Its Substrate Reveals Transient, Well-Defined Contacts. J Am Chem Soc 2015; 137:12100-9. [PMID: 26334259 DOI: 10.1021/jacs.5b07772] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nonribosomal peptide synthetases (NRPSs) are microbial enzymes that produce a wealth of important natural products by condensing substrates in an assembly line manner. The proper sequence of substrates is obtained by tethering them to phosphopantetheinyl arms of holo carrier proteins (CPs) via a thioester bond. CPs in holo and substrate-loaded forms visit NRPS catalytic domains in a series of transient interactions. A lack of structural information on substrate-loaded carrier proteins has hindered our understanding of NRPS synthesis. Here, we present the first structure of an NRPS aryl carrier protein loaded with its substrate via a native thioester bond, together with the structure of its holo form. We also present the first quantification of NRPS CP backbone dynamics. Our results indicate that prosthetic moieties in both holo and loaded forms are in contact with the protein core, but they also sample states in which they are disordered and extend in solution. We observe that substrate loading induces a large conformational change in the phosphopantetheinyl arm, thereby modulating surfaces accessible for binding to other domains. Our results are discussed in the context of NRPS domain interactions.
Collapse
Affiliation(s)
- Andrew C Goodrich
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine , Hunterian 701, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Bradley J Harden
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine , Hunterian 701, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Dominique P Frueh
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine , Hunterian 701, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| |
Collapse
|
12
|
Kumar A, Arya R, Makwana PK, Dangi RS, Yadav U, Surolia A, Kundu S, Sundd M. The Structure of the Holo-Acyl Carrier Protein of Leishmania major Displays a Remarkably Different Phosphopantetheinyl Transferase Binding Interface. Biochemistry 2015; 54:5632-45. [DOI: 10.1021/acs.biochem.5b00394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ambrish Kumar
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Richa Arya
- Department
of Biochemistry, University of Delhi South Campus, Benito Juarez
Road, New Delhi 110 021, India
| | - Pinakin K. Makwana
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Rohit Singh Dangi
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Usha Yadav
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Avadhesha Surolia
- Molecular
Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Suman Kundu
- Department
of Biochemistry, University of Delhi South Campus, Benito Juarez
Road, New Delhi 110 021, India
| | - Monica Sundd
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| |
Collapse
|
13
|
Beld J, Lee DJ, Burkart MD. Fatty acid biosynthesis revisited: structure elucidation and metabolic engineering. MOLECULAR BIOSYSTEMS 2015; 11:38-59. [PMID: 25360565 PMCID: PMC4276719 DOI: 10.1039/c4mb00443d] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. During recent years, strained petroleum supplies have driven interest in engineering organisms to either produce more fatty acids or specific high value products. Such efforts require a fundamental understanding of the enzymatic activities and regulation of fatty acid synthases. Despite more than one hundred years of research, we continue to learn new lessons about fatty acid synthases' many intricate structural and regulatory elements. In this review, we summarize each enzymatic domain and discuss efforts to engineer fatty acid synthases, providing some clues to important challenges and opportunities in the field.
Collapse
Affiliation(s)
- Joris Beld
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA.
| | | | | |
Collapse
|
14
|
Lim J, Sun H, Fan JS, Hameed IF, Lescar J, Liang ZX, Yang D. Rigidifying acyl carrier protein domain in iterative type I PKS CalE8 does not affect its function. Biophys J 2013; 103:1037-44. [PMID: 23009853 DOI: 10.1016/j.bpj.2012.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 07/31/2012] [Accepted: 08/02/2012] [Indexed: 10/27/2022] Open
Abstract
Acyl carrier protein (ACP) domains shuttle acyl intermediates among the catalytic domains of multidomain type I fatty acid synthase and polyketide synthase (PKS) systems. It is believed that the unique function of ACPs is associated with their dynamic property, but it remains to be fully elucidated what type of protein dynamics is critical for the shuttling domain. Using NMR techniques, we found that the ACP domain of iterative type I PKS CalE8 from Micromonospora echinospora is highly dynamic on the millisecond-second timescale. Introduction of an interhelical disulfide linkage in the ACP domain suppresses the dynamics on the millisecond-second timescale and reduces the mobility on the picosecond-nanosecond timescale. We demonstrate that the full-length PKS is fully functional upon rigidification of the ACP domain, suggesting that although the flexibility of the disordered terminal linkers may be important for the function of the ACP domain, the internal dynamics of the helical regions is not critical for that function.
Collapse
Affiliation(s)
- Jackwee Lim
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
15
|
Crosby J, Crump MP. The structural role of the carrier protein--active controller or passive carrier. Nat Prod Rep 2012; 29:1111-37. [PMID: 22930263 DOI: 10.1039/c2np20062g] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Common to all FASs, PKSs and NRPSs is a remarkable component, the acyl or peptidyl carrier protein (A/PCP). These take the form of small individual proteins in type II systems or discrete folded domains in the multi-domain type I systems and are characterized by a fold consisting of three major α-helices and between 60-100 amino acids. This protein is central to these biosynthetic systems and it must bind and transport a wide variety of functionalized ligands as well as mediate numerous protein-protein interactions, all of which contribute to efficient enzyme turnover. This review covers the structural and biochemical characterization of carrier proteins, as well as assessing their interactions with different ligands, and other synthase components. Finally, their role as an emerging tool in biotechnology is discussed.
Collapse
Affiliation(s)
- John Crosby
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | | |
Collapse
|