1
|
Dogan DY, Urzica EI, Hornung I, Kastl P, Oguama D, Fette FM, Nguyen LH, Rosenbauer F, Zacharowski K, Klingmüller U, Gradhand E, von Knethen A, Popp R, Fleming I, Schrader L, Steinbicker AU. Hemojuvelin-mediated hepcidin induction requires both bone morphogenetic protein type I receptors ALK2 and ALK3. Blood Adv 2024; 8:2870-2879. [PMID: 38588481 PMCID: PMC11169963 DOI: 10.1182/bloodadvances.2023012322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/05/2024] [Accepted: 03/22/2024] [Indexed: 04/10/2024] Open
Abstract
ABSTRACT Hemojuvelin (HJV) is a glycosylphosphatidylinositol-anchored protein of the repulsive guidance molecule family acting as a bone morphogenetic protein (BMP) coreceptor to induce the hepatic iron regulatory protein hepcidin. Hepcidin causes ubiquitination and degradation of the sole known iron exporter ferroportin, thereby limiting iron availability. The detailed signaling mechanism of HJV in vivo has yet to be investigated. In the current manuscript, we used an established model of adeno-associated virus (AAV)-mediated liver-specific overexpression of HJV in murine models of hepatocyte-specific deficiency of the BMP type I receptors Alk2 or Alk3. In control mice, HJV overexpression increased hepatic Hamp messenger RNA (mRNA) levels, soluble HJV (sHJV), splenic iron content (SIC), as well as phosphorylated small mothers against decapentaplegic protein (pSMAD1/5/8) levels. In contrast, in Alk2fl/fl;Alb-Cre and Alk3fl/fl;Alb-Cre mice, which present with moderate and severe iron overload, respectively, the administration of AAV-HJV induced HJV and sHJV. However, it did not rescue the iron overload phenotypes of those mice. Serum iron levels were induced in Alk2fl/fl;Alb-Cre mice after HJV overexpression. In phosphate-buffered saline-injected Alk3fl/fl;Alb-Cre mice, serum iron levels and the expression of duodenal ferroportin remained high, whereas Hamp mRNA levels were decreased to 1% to 5% of the levels detected in controls. This was reduced even further by AAV-HJV overexpression. SIC remained low in mice with hepatocyte-specific Alk2 or Alk3 deficiency, reflecting disturbed iron homeostasis with high serum iron levels and transferrin saturation and an inability to induce hepcidin by HJV overexpression. The data indicate that ALK2 and ALK3 are both required in vivo for the HJV-mediated induction of hepcidin.
Collapse
Affiliation(s)
- Deniz Y. Dogan
- Department of Anesthesiology, Goethe University Frankfurt, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt, Germany
- Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Eugen I. Urzica
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, University of Muenster, Muenster, Germany
| | - Isabelle Hornung
- Department of Anesthesiology, Goethe University Frankfurt, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Philipp Kastl
- Division Systems Biology of Signal Transduction, German Cancer Research Center, Heidelberg, Germany
| | - David Oguama
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, University of Muenster, Muenster, Germany
| | - Franca M. Fette
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, University of Muenster, Muenster, Germany
| | - Lien H. Nguyen
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, University of Muenster, Muenster, Germany
| | - Frank Rosenbauer
- Institute of Molecular Tumor Biology, University Hospital Muenster, University of Muenster, Muenster, Germany
| | - Kai Zacharowski
- Department of Anesthesiology, Goethe University Frankfurt, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Ursula Klingmüller
- Division Systems Biology of Signal Transduction, German Cancer Research Center, Heidelberg, Germany
| | - Elise Gradhand
- Senckenberg Institute for Pathology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Andreas von Knethen
- Department of Anesthesiology, Goethe University Frankfurt, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Rüdiger Popp
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt, Germany
- German Centre for Cardiovascular Research Partner Site Rhein Main, Frankfurt, Germany
| | - Lisa Schrader
- Department of Anesthesiology, Goethe University Frankfurt, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt, Germany
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, University of Muenster, Muenster, Germany
| | - Andrea U. Steinbicker
- Department of Anesthesiology, Goethe University Frankfurt, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt, Germany
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, University of Muenster, Muenster, Germany
| |
Collapse
|
2
|
Tao Z, Tao M, Zhou M, Wu XJ. Niacin treatment prevents bone loss in iron overload osteoporotic rats via activation of SIRT1 signaling pathway. Chem Biol Interact 2024; 388:110827. [PMID: 38081572 DOI: 10.1016/j.cbi.2023.110827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 10/31/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Recently, more and more studies have revealed that iron overload can lead to osteoporosis by inducing oxidative stress. Niacin (NAN), also known as nicotinate or vitamin B3, has been confirmed to possess potent antioxidative effects. In addition, very little is currently known about the protective effects of NAN on iron overload in osteoporotic bone tissue. Therefore, we aimed to evaluate the protective effect of niacin on iron overload-induced bone injury and to investigate the effect and underlying mechanisms of the niacin and iron overload on intracellular antioxidant properties. When MC3T3-E1 and RAW264.7 cells were cultured in the presence of ammonium ferric citrate(FAC), NAN therapy could increase the matrix mineralization and promote expression of osteogenic markers in MC3T3-E1, inhibit osteoclastic differentiation of RAW264.7 cells, while increasing intracellular reactive oxygen species (ROS) levels and strengthening mitochondrial membrane potential (MMP). In the ovariectomized (OVX) rat model, NAN had an obvious protective effect against iron-overloaded injury. Meanwhile, superoxide dismutase 2 (SOD2), intracellular antioxidant enzymes and silent information regulator type 1 (SIRT1), were up-regulated in response to NAN exposures in MC3T3-E1. Furthermore, SIRT1 inhibitor EX527 attenuated the protective effects of NAN. Results revealed that NAN could stimulate osteogenic differentiation, inhibit osteoclastic differentiation and markedly increased antioxidant properties in cells through the induction of SIRT1. Studies suggest that niacin is a promising agent for preventing bone loss in iron overload conditions.
Collapse
Affiliation(s)
- Zhoushan Tao
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, PR China; Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, PR China.
| | - Ma Tao
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, PR China
| | - Maosheng Zhou
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, PR China
| | - Xing-Jing Wu
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, PR China
| |
Collapse
|
3
|
Guerra A, Parhiz H, Rivella S. Novel potential therapeutics to modify iron metabolism and red cell synthesis in diseases associated with defective erythropoiesis. Haematologica 2023; 108:2582-2593. [PMID: 37345473 PMCID: PMC10542825 DOI: 10.3324/haematol.2023.283057] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023] Open
Abstract
Under normal conditions, iron metabolism is carefully regulated to sustain normal cellular functions and the production of hemoglobin in erythroid cells. Perturbation to the erythropoiesis-iron metabolism axis can result in iron imbalances and cause anemia or organ toxicity. Various congenital and acquired diseases associated with abnormal red cell production are characterized by aberrant iron absorption. Several recent studies have shown that improvements in red blood cell production also ameliorate iron metabolism and vice versa. Many therapeutics are now under development with the potential to improve a variety of hematologic diseases, from β-thalassemia and iron-refractory iron deficiency anemia to anemia of inflammation and polycythemia vera. This review summarizes selected mechanisms related to red cell production and iron metabolism and describes potential therapeutics and their current uses. We also consider the potential application of the discussed therapeutics on various diseases, alone or in combination. The vast repertoire of drugs under development offers new opportunities to improve the clinical care of patients suffering from congenital or acquired red blood cell disorders with limited or no treatment options.
Collapse
Affiliation(s)
- Amaliris Guerra
- Department of Pediatrics, Division of Hematology, The Children's Hospital of Philadelphia (CHOP), Philadelphia, PA
| | - Hamideh Parhiz
- Department of Pediatrics, Division of Hematology, The Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, USA; RNA Institute, University of Pennsylvania, Philadelphia, PA
| | - Stefano Rivella
- Department of Pediatrics, Division of Hematology, The Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, USA; Department of Pediatrics, Division of Hematology, The Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, USA; RNA Institute, University of Pennsylvania, Philadelphia, PA, USA; Cell and Molecular Biology affinity group (CAMB), University of Pennsylvania, Philadelphia, PA, USA; Raymond G. Perelman Center for Cellular and Molecular Therapeutics-CHOP; Penn Center for Musculoskeletal Disorders, CHOP, Philadelphia, PA, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA.
| |
Collapse
|
4
|
Saad HKM, Abd Rahman AA, Ab Ghani AS, Taib WRW, Ismail I, Johan MF, Al-Wajeeh AS, Al-Jamal HAN. Activation of STAT and SMAD Signaling Induces Hepcidin Re-Expression as a Therapeutic Target for β-Thalassemia Patients. Biomedicines 2022; 10:biomedicines10010189. [PMID: 35052868 PMCID: PMC8773737 DOI: 10.3390/biomedicines10010189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 01/27/2023] Open
Abstract
Iron homeostasis is regulated by hepcidin, a hepatic hormone that controls dietary iron absorption and plasma iron concentration. Hepcidin binds to the only known iron export protein, ferroportin (FPN), which regulates its expression. The major factors that implicate hepcidin regulation include iron stores, hypoxia, inflammation, and erythropoiesis. When erythropoietic activity is suppressed, hepcidin expression is hampered, leading to deficiency, thus causing an iron overload in iron-loading anemia, such as β-thalassemia. Iron overload is the principal cause of mortality and morbidity in β-thalassemia patients with or without blood transfusion dependence. In the case of thalassemia major, the primary cause of iron overload is blood transfusion. In contrast, iron overload is attributed to hepcidin deficiency and hyperabsorption of dietary iron in non-transfusion thalassemia. Beta-thalassemia patients showed marked hepcidin suppression, anemia, iron overload, and ineffective erythropoiesis (IE). Recent molecular research has prompted the discovery of new diagnostic markers and therapeutic targets for several diseases, including β-thalassemia. In this review, signal transducers and activators of transcription (STAT) and SMAD (structurally similar to the small mothers against decapentaplegic in Drosophila) pathways and their effects on hepcidin expression have been discussed as a therapeutic target for β-thalassemia patients. Therefore, re-expression of hepcidin could be a therapeutic target in the management of thalassemia patients. Data from 65 relevant published experimental articles on hepcidin and β-thalassemia between January 2016 and May 2021 were retrieved by using PubMed and Google Scholar search engines. Published articles in any language other than English, review articles, books, or book chapters were excluded.
Collapse
Affiliation(s)
- Hanan Kamel M. Saad
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus 21300, Terengganu, Malaysia; (H.K.M.S.); (W.R.W.T.); (I.I.)
| | - Alawiyah Awang Abd Rahman
- Pathology Department, Hospital Sultanah Nur Zahirah, Kuala Terengganu 20400, Terengganu, Malaysia; (A.A.A.R.); (A.S.A.G.)
| | - Azly Sumanty Ab Ghani
- Pathology Department, Hospital Sultanah Nur Zahirah, Kuala Terengganu 20400, Terengganu, Malaysia; (A.A.A.R.); (A.S.A.G.)
| | - Wan Rohani Wan Taib
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus 21300, Terengganu, Malaysia; (H.K.M.S.); (W.R.W.T.); (I.I.)
| | - Imilia Ismail
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus 21300, Terengganu, Malaysia; (H.K.M.S.); (W.R.W.T.); (I.I.)
| | - Muhammad Farid Johan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelatan, Malaysia;
| | | | - Hamid Ali Nagi Al-Jamal
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus 21300, Terengganu, Malaysia; (H.K.M.S.); (W.R.W.T.); (I.I.)
- Correspondence: ; Tel.: +60-1747-29012
| |
Collapse
|
5
|
Pawlak JB, Blobe GC. TGF-β superfamily co-receptors in cancer. Dev Dyn 2022; 251:137-163. [PMID: 33797167 PMCID: PMC8484463 DOI: 10.1002/dvdy.338] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 01/03/2023] Open
Abstract
Transforming growth factor-β (TGF-β) superfamily signaling via their cognate receptors is frequently modified by TGF-β superfamily co-receptors. Signaling through SMAD-mediated pathways may be enhanced or depressed depending on the specific co-receptor and cell context. This dynamic effect on signaling is further modified by the release of many of the co-receptors from the membrane to generate soluble forms that are often antagonistic to the membrane-bound receptors. The co-receptors discussed here include TβRIII (betaglycan), endoglin, BAMBI, CD109, SCUBE proteins, neuropilins, Cripto-1, MuSK, and RGMs. Dysregulation of these co-receptors can lead to altered TGF-β superfamily signaling that contributes to the pathophysiology of many cancers through regulation of growth, metastatic potential, and the tumor microenvironment. Here we describe the role of several TGF-β superfamily co-receptors on TGF-β superfamily signaling and the impact on cellular and physiological functions with a particular focus on cancer, including a discussion on recent pharmacological advances and potential clinical applications targeting these co-receptors.
Collapse
Affiliation(s)
| | - Gerard C. Blobe
- Department of Medicine, Duke University Medical Center,Department of Pharmacology and Cancer Biology, Duke University Medical Center,Corresponding author: Gerard Blobe, B354 LSRC, Box 91004 DUMC, Durham, NC 27708, , 919-668-1352
| |
Collapse
|
6
|
Matriptase-2 and Hemojuvelin in Hepcidin Regulation: In Vivo Immunoblot Studies in Mask Mice. Int J Mol Sci 2021; 22:ijms22052650. [PMID: 33800732 PMCID: PMC7961762 DOI: 10.3390/ijms22052650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/20/2021] [Accepted: 03/01/2021] [Indexed: 11/17/2022] Open
Abstract
Matriptase-2, a serine protease expressed in hepatocytes, is a negative regulator of hepcidin expression. The purpose of the study was to investigate the interaction of matriptase-2 with hemojuvelin protein in vivo. Mice lacking the matriptase-2 proteolytic activity (mask mice) display decreased content of hemojuvelin protein. Vice versa, the absence of hemojuvelin results in decreased liver content of matriptase-2, indicating that the two proteins interact. To further characterize the role of matriptase-2, we investigated iron metabolism in mask mice fed experimental diets. Administration of iron-enriched diet increased liver iron stores as well as hepcidin expression. Treatment of iron-overloaded mask mice with erythropoietin increased hemoglobin and hematocrit, indicating that the response to erythropoietin is intact in mask mice. Feeding of an iron-deficient diet to mask mice significantly increased spleen weight as well as the splenic content of erythroferrone and transferrin receptor proteins, indicating stress erythropoiesis. Liver hepcidin expression was decreased; expression of Id1 was not changed. Overall, the results suggest a complex interaction between matriptase-2 and hemojuvelin, and demonstrate that hepcidin can to some extent be regulated even in the absence of matriptase-2 proteolytic activity.
Collapse
|
7
|
Malyszko J, Malyszko JS, Matuszkiewicz-Rowinska J. Hepcidin as a therapeutic target for anemia and inflammation associated with chronic kidney disease. Expert Opin Ther Targets 2019; 23:407-421. [PMID: 30907175 DOI: 10.1080/14728222.2019.1599358] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Anemia is a common manifestation of chronic kidney disease (CKD). The pathogenesis of CKD-associated anemia is multifactorial. Our understanding of the molecular control of iron metabolism has improved dramatically because of the discovery of hepcidin and attempts to introduce new drugs to stimulate erythropoiesis or affect the hepcidin-ferroportin pathway have recently emerged. Areas covered: We examine the possible role of hepcidin in iron metabolism and regulation and the potential therapeutic options involving hepcidin and hepcidin-ferroportin axis in renal anemia treatment. We focus on therapeutic targeting of hepcidin, the hepcidin-ferroportin axis and key molecules such as anti-hepcidin antibodies, spigelmers, and anticalins. We also discuss compounds affecting the bone morphogenetic protein receptor [BMP/BMPR] complex and molecules that influence hepcidin, such as hypoxia-inducible factor 1 stabilizers. Expert opinion: Hepcidin is a key regulator of iron availability and is a potential future therapeutic target for managing anemia that is associated with CKD. There are potential risks and benefits associated with novel sophisticated therapies and there are several novel options on the horizon; however, clinical data are currently limited and need development. Inhibition of hepcidin via various pathways might be a viable adjunctive therapeutic option in other clinical situations.
Collapse
Affiliation(s)
- Jolanta Malyszko
- a Department of Nephrology, Dialysis and Internal Medicine , Warsaw Medical University , Warsaw , Poland
| | - Jacek S Malyszko
- b Department of Nephrology and Transplantology with Dialysis Unit , Medical University , Bialystok , Poland
| | | |
Collapse
|
8
|
Abstract
Iron, an essential nutrient, is required for many biological processes but is also toxic in excess. The lack of a mechanism to excrete excess iron makes it crucial for the body to regulate the amount of iron absorbed from the diet. This regulation is mediated by the hepatic hormone hepcidin. Hepcidin also controls iron release from macrophages that recycle iron and from hepatocytes that store iron. Hepcidin binds to the only known iron export protein, ferroportin, inducing its internalization and degradation and thus limiting the amount of iron released into the plasma. Important regulators of hepcidin, and therefore of systemic iron homeostasis, include plasma iron concentrations, body iron stores, infection and inflammation, hypoxia and erythropoiesis, and, to a lesser extent, testosterone. Dysregulation of hepcidin production contributes to the pathogenesis of many iron disorders: hepcidin deficiency causes iron overload in hereditary hemochromatosis and non-transfused β-thalassemia, whereas overproduction of hepcidin is associated with iron-restricted anemias seen in patients with chronic inflammatory diseases and inherited iron-refractory iron-deficiency anemia. The present review summarizes our current understanding of the molecular mechanisms and signaling pathways contributing to hepcidin regulation by these factors and highlights the issues that still need clarification.
Collapse
Affiliation(s)
- Marie-Paule Roth
- Institut de Recherche en Santé Digestive (IRSD), Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France.
| | - Delphine Meynard
- Institut de Recherche en Santé Digestive (IRSD), Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Hélène Coppin
- Institut de Recherche en Santé Digestive (IRSD), Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| |
Collapse
|
9
|
Pfeifhofer-Obermair C, Tymoszuk P, Petzer V, Weiss G, Nairz M. Iron in the Tumor Microenvironment-Connecting the Dots. Front Oncol 2018; 8:549. [PMID: 30534534 PMCID: PMC6275298 DOI: 10.3389/fonc.2018.00549] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/06/2018] [Indexed: 12/18/2022] Open
Abstract
Iron metabolism and tumor biology are intimately linked. Iron facilitates the production of oxygen radicals, which may either result in iron-induced cell death, ferroptosis, or contribute to mutagenicity and malignant transformation. Once transformed, malignant cells require high amounts of iron for proliferation. In addition, iron has multiple regulatory effects on the immune system, thus affecting tumor surveillance by immune cells. For these reasons, inconsiderate iron supplementation in cancer patients has the potential of worsening disease course and outcome. On the other hand, chronic immune activation in the setting of malignancy alters systemic iron homeostasis and directs iron fluxes into myeloid cells. While this response aims at withdrawing iron from tumor cells, it may impair the effector functions of tumor-associated macrophages and will result in iron-restricted erythropoiesis and the development of anemia, subsequently. This review summarizes our current knowledge of the interconnections of iron homeostasis with cancer biology, discusses current clinical controversies in the treatment of anemia of cancer and focuses on the potential roles of iron in the solid tumor microenvironment, also speculating on yet unknown molecular mechanisms.
Collapse
Affiliation(s)
- Christa Pfeifhofer-Obermair
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria
| | - Piotr Tymoszuk
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria
| | - Verena Petzer
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria.,Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck, Austria
| | - Manfred Nairz
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
10
|
Nickel J, Ten Dijke P, Mueller TD. TGF-β family co-receptor function and signaling. Acta Biochim Biophys Sin (Shanghai) 2018; 50:12-36. [PMID: 29293886 DOI: 10.1093/abbs/gmx126] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/08/2017] [Indexed: 01/04/2023] Open
Abstract
Transforming growth factor-β (TGF-β) family members, which include TGF-βs, activins and bone morphogenetic proteins, are pleiotropic cytokines that elicit cell type-specific effects in a highly context-dependent manner in many different tissues. These secreted protein ligands signal via single-transmembrane Type I and Type II serine/threonine kinase receptors and intracellular SMAD transcription factors. Deregulation in signaling has been implicated in a broad array of diseases, and implicate the need for intricate fine tuning in cellular signaling responses. One important emerging mechanism by which TGF-β family receptor signaling intensity, duration, specificity and diversity are regulated and/or mediated is through cell surface co-receptors. Here, we provide an overview of the co-receptors that have been identified for TGF-β family members. While some appear to be specific to TGF-β family members, others are shared with other pathways and provide possible ways for signal integration. This review focuses on novel functions of TGF-β family co-receptors, which continue to be discovered.
Collapse
Affiliation(s)
- Joachim Nickel
- Universitätsklinikum Würzburg, Lehrstuhl für Tissue Engineering und Regenerative Medizin und Fraunhofer Institut für Silicatforschung (ISC), Translationszentrum "Regenerative Therapien", Röntgenring 11, D-97070 Würzburg, Germany
| | - Peter Ten Dijke
- Department of Molecular and Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands
| | - Thomas D Mueller
- Lehrstuhl für molekulare Pflanzenphysiologie und Biophysik, Julius-von-Sachs Institut für Biowissenschaften, Universität Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| |
Collapse
|
11
|
Abstract
Stress erythropoiesis (SE) is characterized by an imbalance in erythroid proliferation and differentiation under increased demands of erythrocyte generation and tissue oxygenation. β-thalassemia represents a chronic state of SE, called ineffective erythropoiesis (IE), exhibiting an expansion of erythroid-progenitor pool and deposition of alpha chains on erythrocyte membranes, causing cell death and anemia. Concurrently, there is a decrease in hepcidin expression and a subsequent state of iron overload. There are substantial investigative efforts to target increased iron absorption under IE. There are also avenues for targeting cell contact and signaling within erythroblastic islands under SE, for therapeutic benefits.
Collapse
|
12
|
Frýdlová J, Rychtarčíková Z, Gurieva I, Vokurka M, Truksa J, Krijt J. Effect of erythropoietin administration on proteins participating in iron homeostasis in Tmprss6-mutated mask mice. PLoS One 2017; 12:e0186844. [PMID: 29073189 PMCID: PMC5658091 DOI: 10.1371/journal.pone.0186844] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/09/2017] [Indexed: 11/30/2022] Open
Abstract
Tmprss6-mutated mask mice display iron deficiency anemia and high expression of hepcidin. The aim of the study was to determine the effect of erythropoietin administration on proteins participating in the control of iron homeostasis in the liver and spleen in C57BL/6 and mask mice. Administration of erythropoietin for four days at 50 IU/mouse/day increased hemoglobin and hematocrit in C57BL/6 mice, no such increase was seen in mask mice. Erythropoietin administration decreased hepcidin expression in C57BL/6 mice, but not in mask mice. Erythropoietin treatment significantly increased the spleen size in both C57BL/6 and mask mice. Furthermore, erythropoietin administration increased splenic Fam132b, Fam132a and Tfr2 mRNA content. At the protein level, erythropoietin increased the amount of splenic erythroferrone and transferrin receptor 2 both in C57BL/6 and mask mice. Splenic ferroportin content was decreased in erythropoietin-treated mask mice in comparison with erythropoietin-treated C57BL/6 mice. In mask mice, the amount of liver hemojuvelin was decreased in comparison with C57BL/6 mice. The pattern of hemojuvelin cleavage was different between C57BL/6 and mask mice: In both groups, a main hemojuvelin band was detected at approximately 52 kDa; in C57BL/6 mice, a minor cleaved band was seen at 47 kDa. In mask mice, the 47 kDa band was absent, but additional minor bands were detected at approximately 45 kDa and 48 kDa. The results provide support for the interaction between TMPRSS6 and hemojuvelin in vivo; they also suggest that hemojuvelin could be cleaved by another as yet unknown protease in the absence of functional TMPRSS6. The lack of effect of erythropoietin on hepcidin expression in mask mice can not be explained by changes in erythroferrone synthesis, as splenic erythroferrone content increased after erythropoietin administration in both C57BL/6 and mask mice.
Collapse
Affiliation(s)
- Jana Frýdlová
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Zuzana Rychtarčíková
- Laboratory of Tumour Resistance, Institute of Biotechnology, BIOCEV Research Center, Czech Academy of Sciences, Vestec, Czech Republic
- Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Iuliia Gurieva
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martin Vokurka
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jaroslav Truksa
- Laboratory of Tumour Resistance, Institute of Biotechnology, BIOCEV Research Center, Czech Academy of Sciences, Vestec, Czech Republic
- * E-mail: (JT); (JK)
| | - Jan Krijt
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- * E-mail: (JT); (JK)
| |
Collapse
|
13
|
Rishi G, Subramaniam VN. The liver in regulation of iron homeostasis. Am J Physiol Gastrointest Liver Physiol 2017; 313:G157-G165. [PMID: 28596277 DOI: 10.1152/ajpgi.00004.2017] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 05/31/2017] [Accepted: 05/31/2017] [Indexed: 01/31/2023]
Abstract
The liver is one of the largest and most functionally diverse organs in the human body. In addition to roles in detoxification of xenobiotics, digestion, synthesis of important plasma proteins, gluconeogenesis, lipid metabolism, and storage, the liver also plays a significant role in iron homeostasis. Apart from being the storage site for excess body iron, it also plays a vital role in regulating the amount of iron released into the blood by enterocytes and macrophages. Since iron is essential for many important physiological and molecular processes, it increases the importance of liver in the proper functioning of the body's metabolism. This hepatic iron-regulatory function can be attributed to the expression of many liver-specific or liver-enriched proteins, all of which play an important role in the regulation of iron homeostasis. This review focuses on these proteins and their known roles in the regulation of body iron metabolism.
Collapse
Affiliation(s)
- Gautam Rishi
- Liver Disease and Iron Disorders Research Group, Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - V Nathan Subramaniam
- Liver Disease and Iron Disorders Research Group, Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
14
|
Wang C, Fang Z, Zhu Z, Liu J, Chen H. Reciprocal regulation between hepcidin and erythropoiesis and its therapeutic application in erythroid disorders. Exp Hematol 2017; 52:24-31. [DOI: 10.1016/j.exphem.2017.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 12/16/2022]
|
15
|
Abstract
Bone morphogenetic proteins (BMPs), originally identified as osteoinductive components in extracts derived from bone, are now known to play important roles in a wide array of processes during formation and maintenance of various organs including bone, cartilage, muscle, kidney, and blood vessels. BMPs and the related "growth and differentiation factors" (GDFs) are members of the transforming growth factor β (TGF-β) family, and transduce their signals through type I and type II serine-threonine kinase receptors and their intracellular downstream effectors, including Smad proteins. Furthermore, BMP signals are finely tuned by various agonists and antagonists. Because deregulation of the BMP activity at multiple steps in signal transduction is linked to a wide variety of human diseases, therapeutic use of activators and inhibitors of BMP signaling will provide potential avenues for the treatment of the human disorders that are caused by hypo- and hyperactivation of BMP signals, respectively.
Collapse
Affiliation(s)
- Takenobu Katagiri
- Division of Pathophysiology, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama 350-1241, Japan
| | - Tetsuro Watabe
- Section of Biochemistry, Department of Bio-Matrix, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8549, Japan
| |
Collapse
|
16
|
Abstract
Iron is required for most forms of organisms, and it is the most essential element for the functions of many iron-containing proteins involved in oxygen transport, cellular respiration, DNA replication, and so on. Disorders of iron metabolism are associated with diverse diseases, including anemias (e.g., iron-deficiency anemia and anemia of chronic diseases) and iron overload diseases, such as hereditary hemochromatosis and β-thalassemia. Hepcidin (encoded by Hamp gene) is a peptide hormone synthesized by hepatocytes, and it plays an important role in regulating the systematic iron homeostasis. As the systemic iron regulator, hepcidin, not only controls dietary iron absorption and iron egress out of iron storage cells, but also induces iron redistribution in various organs. Deregulated hepcidin is often seen in a variety of iron-related diseases including anemias and iron overload disorders. In the case of iron overload disorders (e.g., hereditary hemochromatosis and β-thalassemia), hepatic hepcidin concentration is significantly reduced.Since hepcidin deregulation is responsible for iron disorder-associated diseases, the purpose of this review is to summarize the recent findings on therapeutics targeting hepcidin.Continuous efforts have been made to search for hepcidin mimics and chemical compounds that could be used to increase hepcidin level. Here, a literature search was conducted in PubMed, and research papers relevant to hepcidin regulation or hepcidin-centered therapeutic work were reviewed. On the basis of literature search, we recapitulated recent findings on therapeutic studies targeting hepcidin, including agonists and antagonists to modulate hepcidin expression or its downstream signaling. We also discussed the molecular mechanisms by which hepcidin level and iron metabolism are modulated.Elevating hepcidin concentration is an optimal strategy to ameliorate iron overload diseases, and also to relieve β-thalassemia phenotypes by improving ineffective erythropoiesis. Relative to the current conventional therapies, such as phlebotomy and blood transfusion, therapeutics targeting hepcidin would open a new avenue for treatment of iron-related diseases.
Collapse
Affiliation(s)
- Jing Liu
- From the State Key Laboratory of Environmental Chemistry and Ecotoxicology (JL, SL), Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; Department of Medicine (BS), University of California, Los Angeles, CA; Department of Cardiovascular Disease (HY), Beijing Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing; and Gansu University of Traditional Chinese Medicine (HY), Lanzhou, China
| | | | | | | |
Collapse
|
17
|
Kovac S, Böser P, Cui Y, Ferring-Appel D, Casarrubea D, Huang L, Fung E, Popp A, Mueller BK, Hentze MW. Anti-hemojuvelin antibody corrects anemia caused by inappropriately high hepcidin levels. Haematologica 2016; 101:e173-6. [PMID: 26944476 DOI: 10.3324/haematol.2015.140772] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Suzana Kovac
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | | | - Yifang Cui
- Abbvie Deutschland GmbH & Co KG, Ludwigshafen, Germany
| | | | | | - Lili Huang
- Abbvie Bioresearch Center, Worcester, USA
| | - Emma Fung
- Abbvie Bioresearch Center, Worcester, USA
| | - Andreas Popp
- Abbvie Deutschland GmbH & Co KG, Ludwigshafen, Germany
| | | | | |
Collapse
|
18
|
Frýdlová J, Přikryl P, Truksa J, Falke LL, Du X, Gurieva I, Vokurka M, Krijt J. Effect of Erythropoietin, Iron Deficiency and Iron Overload on Liver Matriptase-2 (TMPRSS6) Protein Content in Mice and Rats. PLoS One 2016; 11:e0148540. [PMID: 26845567 PMCID: PMC4742081 DOI: 10.1371/journal.pone.0148540] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 01/19/2016] [Indexed: 12/26/2022] Open
Abstract
Matriptase-2 (TMPRSS6) is an important negative regulator of hepcidin expression; however, the effects of iron overload or accelerated erythropoiesis on liver TMPRSS6 protein content in vivo are largely unknown. We determined TMPRSS6 protein content in plasma membrane-enriched fractions of liver homogenates by immunoblotting, using a commercial antibody raised against the catalytic domain of TMPRSS6. Plasma membrane-enriched fractions were obtained by centrifugation at 3000 g and washing. TMPRSS6 was detected in the 3000 g fraction as a 120 kDa full-length protein in both mice and rats. Feeding of iron-deficient diet as well as erythropoietin treatment increased TMPRSS6 protein content in rats and mice by a posttranscriptional mechanism; the increase in TMPRSS6 protein by erythropoietin was also observed in Bmp6-mutant mice. Administration of high doses of iron to mice (200, 350 and 700 mg/kg) decreased TMPRSS6 protein content. Hemojuvelin was detected in the plasma membrane-enriched fractions of control animals as a full length protein of approximately 52 kDa; in iron deficient animals, the full length protein was partially cleaved at the N-terminus, resulting in an additional weak band of approximately 47 kDa. In livers from hemojuvelin-mutant mice, TMPRSS6 protein content was strongly decreased, suggesting that intact hemojuvelin is necessary for stable TMPRSS6 expression in the membrane. Overall, the results demonstrate posttranscriptional regulation of liver TMPRSS6 protein by iron status and erythropoietin administration, and provide support for the interaction of TMPRSS6 and hemojuvelin proteins in vivo.
Collapse
Affiliation(s)
- Jana Frýdlová
- Institute of Pathophysiology, Charles University in Prague, First Faculty of Medicine, Prague, Czech Republic
| | - Petr Přikryl
- Institute of Pathophysiology, Charles University in Prague, First Faculty of Medicine, Prague, Czech Republic
| | - Jaroslav Truksa
- Institute of Biotechnology, Laboratory of Tumour Resistance, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Lucas L. Falke
- Department of Pathology, Kidney Group, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Xin Du
- Division of Medical Genetics, Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Iuliia Gurieva
- Institute of Pathophysiology, Charles University in Prague, First Faculty of Medicine, Prague, Czech Republic
| | - Martin Vokurka
- Institute of Pathophysiology, Charles University in Prague, First Faculty of Medicine, Prague, Czech Republic
| | - Jan Krijt
- Institute of Pathophysiology, Charles University in Prague, First Faculty of Medicine, Prague, Czech Republic
| |
Collapse
|
19
|
Wu Q, Wang H, An P, Tao Y, Deng J, Zhang Z, Shen Y, Chen C, Min J, Wang F. HJV and HFE Play Distinct Roles in Regulating Hepcidin. Antioxid Redox Signal 2015; 22:1325-36. [PMID: 25608116 PMCID: PMC4410569 DOI: 10.1089/ars.2013.5819] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIMS Hereditary hemochromatosis (HH) is an iron overload disease that is caused by mutations in HFE, HJV, and several other genes. However, whether HFE-HH and HJV-HH share a common pathway via hepcidin regulation is currently unclear. Recently, some HH patients have been reported to carry concurrent mutations in both the HFE and HJV genes. To dissect the roles and molecular mechanisms of HFE and/or HJV in the pathogenesis of HH, we studied Hfe(-/-), Hjv(-/-), and Hfe(-/-)Hjv(-/-) double-knockout mouse models. RESULTS Hfe(-/-)Hjv(-/-) mice developed iron overload in multiple organs at levels comparable to Hjv(-/-) mice. After an acute delivery of iron, the expression of hepcidin (i.e., Hamp1 mRNA) was increased in the livers of wild-type and Hfe(-/-) mice, but not in either Hjv(-/-) or Hfe(-/-)Hjv(-/-) mice. Furthermore, iron-induced phosphorylation of Smad1/5/8 was not detected in the livers of Hjv(-/-) or Hfe(-/-)Hjv(-/-) mice. INNOVATION We generated and phenotypically characterized Hfe(-/-)Hjv(-/-) double-knockout mice. In addition, because they faithfully phenocopy clinical HH patients, these mouse models are an invaluable tool for mechanistically dissecting how HFE and HJV regulate hepcidin expression. CONCLUSIONS Based on our results, we conclude that HFE may depend on HJV for transferrin-dependent hepcidin regulation. The presence of residual hepcidin in the absence of HFE suggests either the presence of an unknown regulator (e.g., TFR2) that is synergistic with HJV or that HJV is sufficient to maintain basal levels of hepcidin.
Collapse
Affiliation(s)
- Qian Wu
- 1 Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences , Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Rausa M, Ghitti M, Pagani A, Nai A, Campanella A, Musco G, Camaschella C, Silvestri L. Identification of TMPRSS6 cleavage sites of hemojuvelin. J Cell Mol Med 2015; 19:879-88. [PMID: 25704252 PMCID: PMC4395201 DOI: 10.1111/jcmm.12462] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 09/19/2014] [Indexed: 12/11/2022] Open
Abstract
Hemojuvelin (HJV), the coreceptor of the BMP-SMAD pathway that up-regulates hepcidin transcription, is a repulsive guidance molecule (RGMc) which undergoes a complex intracellular processing. Following autoproteolysis, it is exported to the cell surface both as a full-length and a heterodimeric protein. In vitro membrane HJV (m-HJV) is cleaved by the transmembrane serine protease TMPRSS6 to attenuate signalling and to inhibit hepcidin expression. In this study, we investigated the number and position of HJV cleavage sites by mutagenizing arginine residues (R), potential TMPRSS6 targets, to alanine (A). We analysed translation and membrane expression of HJV R mutants and the pattern of fragments they release in the culture media in the presence of TMPRSS6. Abnormal fragments were observed for mutants at arginine 121, 176, 218, 288 and 326. Considering that all variants, except HJVR121A, lack autoproteolytic activity and some (HJVR176A and HJVR288A) are expressed at reduced levels on cell surface, we identified the fragments originating from either full-length or heterodimeric proteins and defined the residues 121 and 326 as the TMPRSS6 cleavage sites in both isoforms. Using the N-terminal FLAG-tagged HJV, we showed that residue 121 is critical also in the rearrangement of the N-terminal heterodimeric HJV. Exploiting the recently reported RGMb crystallographic structure, we generated a model of HJV that was used as input structure for all-atoms molecular dynamics simulation in explicit solvent. As assessed by in silico studies, we concluded that some arginines in the von Willebrand domain appear TMPRSS6 insensitive, likely because of partial protein structure destabilization.
Collapse
Affiliation(s)
- Marco Rausa
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy; Vita Salute University, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Hepcidin, the liver-produced peptide hormone, is a principal regulator of iron homeostasis. Abnormal hepcidin production has emerged as a causative factor in several common iron disorders. Hepcidin insufficiency results in iron overload in hereditary hemochromatosis and iron-loading anemias, whereas hepcidin excess causes or contributes to the development of iron-restricted anemias in inflammatory diseases, infections, some cancers and chronic kidney disease. Not surprisingly, hepcidin and related pathways have become the target for the development of novel therapeutics for iron disorders. In this review, we will summarize the strategies and development programs that have been devised for agonizing or antagonizing hepcidin and its receptor ferroportin.
Collapse
|
22
|
Abstract
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-beta (TGF-β) superfamily of signaling molecules. In addition to protean roles in embryonic development, germ-line specification, and cellular differentiation, a central role in iron homeostasis has recently been demonstrated for certain BMPs. Specifically, BMP6 serves to relate hepatic iron stores to the hepatocellular expression of the iron-regulatory hormone hepcidin. This regulation occurs via cellular SMAD-signaling molecules and is strongly modulated by the BMP coreceptor hemojuvelin (HJV). Mutations in certain genes influencing signaling to hepcidin via the BMP/SMAD pathway are associated with human disorders of iron metabolism, such as hereditary hemochromatosis and iron-refractory iron-deficiency anemia. Evidence suggests that signals in addition to iron stores influence hepcidin expression via the BMP/SMAD pathway. This review summarizes the details of BMP/SMAD signaling, with a particular focus on its role in iron homeostasis and iron-related diseases.
Collapse
Affiliation(s)
- Nermi L Parrow
- Division of Molecular and Clinical Nutrition, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
23
|
Ruchala P, Nemeth E. The pathophysiology and pharmacology of hepcidin. Trends Pharmacol Sci 2014; 35:155-61. [PMID: 24552640 DOI: 10.1016/j.tips.2014.01.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/08/2014] [Accepted: 01/15/2014] [Indexed: 12/21/2022]
Abstract
Inappropriate production of the iron-regulatory hormone hepcidin contributes to the pathogenesis of common iron disorders. Absolute or relative deficiency of hepcidin causes iron overload in hereditary hemochromatosis and iron-loading anemias. Elevated hepcidin causes iron restriction in inflammatory conditions including autoimmune disease, critical illness, some cancers, and chronic kidney disease. Multiple agents targeting hepcidin and its regulators are under development as novel therapeutics for iron disorders. This review summarizes hepcidin biology and discusses the current landscape for hepcidin-targeting therapeutic strategies.
Collapse
Affiliation(s)
- Piotr Ruchala
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Elizabeta Nemeth
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
24
|
Tian C, Liu J. Repulsive guidance molecules (RGMs) and neogenin in bone morphogenetic protein (BMP) signaling. Mol Reprod Dev 2013; 80:700-17. [PMID: 23740870 DOI: 10.1002/mrd.22199] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 05/28/2013] [Indexed: 02/06/2023]
Abstract
Bone morphogenetic proteins (BMPs) belong to the transforming growth factor-beta (TGFβ) superfamily. BMPs mediate a highly conserved signal transduction cascade through the type-I and type-II serine/threonine kinase receptors and intracellular Smad proteins, which regulate multiple developmental and homeostatic processes. Mutations in this pathway can cause various diseases in humans, such as skeletal disorders, cardiovascular diseases, and various cancers. Multiple levels of regulation, including extracellular regulation, help to ensure proper spatiotemporal control of BMP signaling in the right cellular context. The family of repulsive guidance molecules (RGMs) and the type-I transmembrane protein neogenin, a paralog of DCC (Deleted in Colorectal Cancer), have been implicated in modulating the BMP pathway. In this review, we discuss the properties and functions of RGM proteins and neogenin, focusing on their roles in the modulation of BMP signal transduction.
Collapse
Affiliation(s)
- Chenxi Tian
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | | |
Collapse
|
25
|
Abstract
Hepcidin is a key hormone that is involved in the control of iron homeostasis in the body. Physiologically, hepcidin is controlled by iron stores, inflammation, hypoxia, and erythropoiesis. The regulation of hepcidin expression by iron is a complex process that requires the coordination of multiple proteins, including hemojuvelin, bone morphogenetic protein 6 (BMP6), hereditary hemochromatosis protein, transferrin receptor 2, matriptase-2, neogenin, BMP receptors, and transferrin. Misregulation of hepcidin is found in many disease states, such as the anemia of chronic disease, iron refractory iron deficiency anemia, cancer, hereditary hemochromatosis, and ineffective erythropoiesis, such as β-thalassemia. Thus, the regulation of hepcidin is the subject of interest for the amelioration of the detrimental effects of either iron deficiency or overload.
Collapse
Affiliation(s)
- Ningning Zhao
- Department of Cell and Developmental Biology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | |
Collapse
|
26
|
Nili M, David L, Elferich J, Shinde U, Rotwein P. Proteomic analysis and molecular modelling characterize the iron-regulatory protein haemojuvelin/repulsive guidance molecule c. Biochem J 2013; 452:87-95. [PMID: 23464809 PMCID: PMC3890427 DOI: 10.1042/bj20121845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
HJV (haemojuvelin) plays a key role in iron metabolism in mammals by regulating expression of the liver-derived hormone hepcidin, which controls systemic iron uptake and release. Mutations in HJV cause juvenile haemochromatosis, a rapidly progressing iron overload disorder in humans. HJV, also known as RGMc (repulsive guidance molecule c), is a member of the three-protein RGM family. RGMs are GPI (glycosylphosphatidylinositol)-linked glycoproteins that share ~50% amino acid identity and several structural motifs, including the presence of 14 cysteine residues in analogous locations. Unlike RGMa and RGMb, HJV/RGMc is composed of both single-chain and two-chain isoforms. To date there is no structural information for any member of the RGM family. In the present study we have mapped the disulfide bonds in mouse HJV/RGMc using a proteomics strategy combining sequential MS steps composed of ETD (electron transfer dissociation) and CID (collision-induced dissociation), in which ETD induces cleavage of disulfide linkages, and CID establishes disulfide bond assignments between liberated peptides. The results of the present study identified an HJV/RGMc molecular species containing four disulfide linkages. We predict using ab initio modelling that this molecule is a single-chain HJV/RGMc isoform. Our observations outline a general approach using tandem MS and ab initio molecular modelling to define unknown structural features in proteins.
Collapse
Affiliation(s)
- Mahta Nili
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97239-3098, USA
| | | | | | | | | |
Collapse
|
27
|
Finkenstedt A, Widschwendter A, Brasse-Lagnel C, Theurl I, Hubalek M, Dieplinger H, Tselepis C, Ward D, Vogel W, Zoller H. Hepcidin is correlated to soluble hemojuvelin but not to increased GDF15 during pregnancy. Blood Cells Mol Dis 2012; 48:233-7. [DOI: 10.1016/j.bcmd.2012.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 10/20/2011] [Accepted: 01/30/2012] [Indexed: 10/28/2022]
|
28
|
Abstract
Haemochromatosis is a genetic disorder of iron overload resulting from loss-of-function mutations in genes coding for the iron-regulatory proteins HFE (human leucocyte antigen-like protein involved in iron homoeostasis), transferrin receptor 2, ferroportin, hepcidin and HJV (haemojuvelin). Recent studies have established the expression of all of the five genes in the retina, indicating their importance in retinal iron homoeostasis. Previously, we demonstrated that HJV is expressed in RPE (retinal pigment epithelium), the outer and inner nuclear layers and the ganglion cell layer. In the present paper, we report on the consequences of Hjv deletion on the retina in mice. Hjv-/- mice at ≥18 months of age had increased iron accumulation in the retina with marked morphological damage compared with age-matched controls; these changes were not found in younger mice. The retinal phenotype in Hjv-/- mice included hyperplasia of RPE. We isolated RPE cells from wild-type and Hjv-/- mice and examined their growth patterns. Hjv-/- RPE cells were less senescent and exhibited a hyperproliferative phenotype. Hjv-/- RPE cells also showed up-regulation of Slc7a11 (solute carrier family 7 member 11 gene), which encodes the 'transporter proper' subunit xCT in the heterodimeric amino acid transporter xCT/4F2hc (cystine/glutamate exchanger). BMP6 (bone morphogenetic protein 6) could not induce hepcidin expression in Hjv-/- RPE cells, confirming that retinal cells require HJV for induction of hepcidin via BMP6 signalling. HJV is a glycosylphosphatidylinositol-anchored protein, and the membrane-associated HJV is necessary for BMP6-mediated activation of hepcidin promoter in RPE cells. Taken together, these results confirm the biological importance of HJV in the regulation of iron homoeostasis in the retina and in RPE.
Collapse
|
29
|
Gkouvatsos K, Wagner J, Papanikolaou G, Sebastiani G, Pantopoulos K. Conditional disruption of mouse HFE2 gene: maintenance of systemic iron homeostasis requires hepatic but not skeletal muscle hemojuvelin. Hepatology 2011; 54:1800-7. [PMID: 21748766 DOI: 10.1002/hep.24547] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 06/29/2011] [Indexed: 01/25/2023]
Abstract
UNLABELLED Mutations of the HFE2 gene are linked to juvenile hemochromatosis, a severe hereditary iron overload disease caused by chronic hyperabsorption of dietary iron. HFE2 encodes hemojuvelin (Hjv), a membrane-associated bone morphogenetic protein (BMP) coreceptor that enhances expression of the liver-derived iron regulatory hormone hepcidin. Hjv is primarily expressed in skeletal muscles and at lower levels in the heart and the liver. Moreover, a soluble Hjv form circulates in plasma and is thought to act as a decoy receptor, attenuating BMP signaling to hepcidin. To better understand the regulatory function of Hjv, we generated mice with tissue-specific disruption of this protein in hepatocytes or in muscle cells. The hepatic ablation of Hjv resulted in iron overload, quantitatively comparable to that observed in ubiquitous Hjv-/- mice. Serum iron and ferritin levels, transferrin saturation, and liver iron content were significantly (P < 0.001) elevated in liver-specific Hjv-/- mice. Hepatic Hjv mRNA was undetectable, whereas hepcidin expression was markedly suppressed (12.6-fold; P < 0.001) and hepatic BMP6 mRNA up-regulated (2.4-fold; P < 0.01), as in ubiquitous Hjv-/- counterparts. By contrast, the muscle-specific disruption of Hjv was not associated with iron overload or altered hepcidin expression, suggesting that muscle Hjv mRNA is dispensable for iron metabolism. Our data do not support any significant iron-regulatory function of putative muscle-derived soluble Hjv in mice, at least under physiological conditions. CONCLUSION The hemochromatotic phenotype of liver-specific Hjv-/- mice suggests that hepatic Hjv is necessary and sufficient to regulate hepcidin expression and control systemic iron homeostasis.
Collapse
Affiliation(s)
- Konstantinos Gkouvatsos
- Lady Davis Institute for Medical Research, Jewish General Hospital, and Department of Medicine, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
30
|
Bartnikas TB, Fleming MD. A tincture of hepcidin cures all: the potential for hepcidin therapeutics. J Clin Invest 2010; 120:4187-90. [PMID: 21099105 DOI: 10.1172/jci45043] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Iron overload as a result of blood transfusions and excessive intestinal iron absorption can be a complication of chronic anemias such as β-thalassemia. Inappropriately low levels of hepcidin, a negative regulator of iron absorption and recycling, underlie the pathophysiology of the intestinal hyperabsorption. In this issue of the JCI, Gardenghi et al. demonstrate that increasing hepcidin expression to induce iron deficiency in murine β-thalassemia not only mitigates the iron overload, but also the severity of the anemia. These data illustrate the therapeutic potential of modulating hepcidin expression in diseases associated with altered iron metabolism.
Collapse
Affiliation(s)
- Thomas B Bartnikas
- Department of Pathology, Children's Hospital Boston, Boston, Massachusetts, USA
| | | |
Collapse
|
31
|
Abstract
Systemic iron homeostasis is maintained by the coordinate regulation of iron absorption in the duodenum, iron recycling of senescent erythrocytes in macrophages, and mobilization of storage iron in the liver. These processes are controlled by hepcidin, a key iron regulatory hormone. Hepcidin is a 25-amino acid peptide secreted predominantly from hepatocytes. It downregulates ferroportin, the only known iron exporter, and therefore inhibits iron efflux from duodenal enterocytes, macrophages, and hepatocytes into the circulation. Hepcidin expression is regulated positively by body iron load. Although the underlying mechanism of iron-regulated hepcidin expression has not been fully elucidated, several proteins have been identified that participate in this process. Among them, hemojuvelin (HJV) plays a particularly important role. HJV undergoes complicated post-translational processing in an iron-dependent manner, and it interacts with multiple proteins that are essential for iron homeostasis. In this review, I focus on the recent findings that elucidate the role of HJV and its interacting partners in the modulation of hepatic hepcidin expression.
Collapse
|