1
|
Patel MJ, Biswas SB, Biswas-Fiss EE. Functional significance of the conserved C-Terminal VFVNFA motif in the retina-specific ABC transporter, ABCA4, and its role in inherited visual disease. Biochem Biophys Res Commun 2019; 519:46-52. [PMID: 31481235 DOI: 10.1016/j.bbrc.2019.08.121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 08/23/2019] [Indexed: 01/24/2023]
Abstract
The human retina-specific ATP binding cassette transporter, ABCA4, plays a significant role in the visual cycle. Mutations in the ABCA4 gene result in a broad spectrum of severe, blinding, retinal degenerative diseases, including Stargardt macular dystrophy, fundus flavimaculatus, autosomal recessive (ar)-retinitis pigmentosa, and ar-cone-rod dystrophy. Genetic testing frequently yields novel variants of unknown significance, making accurate prognosis and therapeutic approaches difficult. Recently, we have reported a novel variant of ABCA4 corresponding to a four-nucleotide deletion which led to a premature stop codon and loss of the last 161 amino acids, including the highly-conserved VFVNFA motif. Despite the presence of this motif among other ABCA proteins, knowledge of the functional significance of this sequence remains limited. In this study, we have conducted structural and functional analyses of recombinant ABCA4 polypeptides with altered VFVNFA motifs to evaluate the importance of this sequence. Further investigation of ABCA4 subdomain interactions, using Fluorescence Resonance Energy Transfer, demonstrated a loss of interaction between nucleotide binding domains in the absence of the VFVNFA motif.
Collapse
Affiliation(s)
- Meera J Patel
- Department of Medical and Molecular Sciences, University of Delaware, College of Health Sciences, Newark, DE 19716, USA.
| | - Subhasis B Biswas
- Department of Medical and Molecular Sciences, University of Delaware, College of Health Sciences, Newark, DE 19716, USA. %26
| | - Esther E Biswas-Fiss
- Department of Medical and Molecular Sciences, University of Delaware, College of Health Sciences, Newark, DE 19716, USA.
| |
Collapse
|
2
|
Peterson E, Kaur P. Antibiotic Resistance Mechanisms in Bacteria: Relationships Between Resistance Determinants of Antibiotic Producers, Environmental Bacteria, and Clinical Pathogens. Front Microbiol 2018; 9:2928. [PMID: 30555448 PMCID: PMC6283892 DOI: 10.3389/fmicb.2018.02928] [Citation(s) in RCA: 493] [Impact Index Per Article: 70.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/14/2018] [Indexed: 11/13/2022] Open
Abstract
Emergence of antibiotic resistant pathogenic bacteria poses a serious public health challenge worldwide. However, antibiotic resistance genes are not confined to the clinic; instead they are widely prevalent in different bacterial populations in the environment. Therefore, to understand development of antibiotic resistance in pathogens, we need to consider important reservoirs of resistance genes, which may include determinants that confer self-resistance in antibiotic producing soil bacteria and genes encoding intrinsic resistance mechanisms present in all or most non-producer environmental bacteria. While the presence of resistance determinants in soil and environmental bacteria does not pose a threat to human health, their mobilization to new hosts and their expression under different contexts, for example their transfer to plasmids and integrons in pathogenic bacteria, can translate into a problem of huge proportions, as discussed in this review. Selective pressure brought about by human activities further results in enrichment of such determinants in bacterial populations. Thus, there is an urgent need to understand distribution of resistance determinants in bacterial populations, elucidate resistance mechanisms, and determine environmental factors that promote their dissemination. This comprehensive review describes the major known self-resistance mechanisms found in producer soil bacteria of the genus Streptomyces and explores the relationships between resistance determinants found in producer soil bacteria, non-producer environmental bacteria, and clinical isolates. Specific examples highlighting potential pathways by which pathogenic clinical isolates might acquire these resistance determinants from soil and environmental bacteria are also discussed. Overall, this article provides a conceptual framework for understanding the complexity of the problem of emergence of antibiotic resistance in the clinic. Availability of such knowledge will allow researchers to build models for dissemination of resistance genes and for developing interventions to prevent recruitment of additional or novel genes into pathogens.
Collapse
Affiliation(s)
- Elizabeth Peterson
- Department of Biology, Georgia State University, Atlanta, GA, United States
| | - Parjit Kaur
- Department of Biology, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
3
|
Rahman SJ, Kaur P. Conformational changes in a multidrug resistance ABC transporter DrrAB: Fluorescence-based approaches to study substrate binding. Arch Biochem Biophys 2018; 658:31-45. [PMID: 30243711 DOI: 10.1016/j.abb.2018.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/30/2018] [Accepted: 09/19/2018] [Indexed: 01/12/2023]
Abstract
Bacterial multidrug transporter DrrAB exhibits overlapping substrate specificity with mammalian P-glycoprotein. DrrA hydrolyzes ATP, and the energy is transduced to carrier DrrB resulting in export of drugs. Previous studies suggested that DrrB contains a large and flexible drug-binding pocket made of aromatic residues contributed by several transmembrane helices with different drugs binding to both specific and shared residues in this pocket. However, direct binding of drugs to DrrAB or the mechanism of substrate-induced conformational changes between DrrA and DrrB has so far not been investigated. We used two fluorescence-based approaches to determine substrate binding to purified DrrAB. Our analysis shows that DrrB binds drugs with variable affinities and contains multiple drug binding sites. This work also provides evidence for two asymmetric nucleotide binding sites in DrrA with strikingly different binding affinities. Using targeted fluorescence labeling, we provide clear evidence of long-range conformational changes occurring between DrrA and DrrB. It is proposed that the transduction pathway from the nucleotide-binding DrrA subunit to the substrate binding DrrB subunit includes Q-loop and CREEM motifs in DrrA and EAA-like motif in DrrB. This study lays a solid groundwork for examining roles of various conserved regions of DrrA and DrrB in transduction of conformational changes.
Collapse
Affiliation(s)
- Sadia J Rahman
- Department of Biology, Georgia State University, Atlanta, GA, 30303, United States
| | - Parjit Kaur
- Department of Biology, Georgia State University, Atlanta, GA, 30303, United States.
| |
Collapse
|
4
|
Akil N, Fischer AJ. Surfactant deficiency syndrome in an infant with a C-terminal frame shift in ABCA3: A case report. Pediatr Pulmonol 2018; 53:E12-E14. [PMID: 29566461 PMCID: PMC5947115 DOI: 10.1002/ppul.23994] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/03/2018] [Indexed: 11/24/2022]
Abstract
Deficiency in ATP binding cassette A3 (ABCA3) causes neonatal respiratory distress, hypoxemic respiratory failure, and interstitial lung disease. ABCA3 transports phospholipids into the lamellar bodies of type II alveolar cells, a critical step in alveolar surfactant production. We report a term infant with ABCA3 surfactant deficiency syndrome with the E292V (c.875A>T; p.Glu292Val) mutation in trans with a novel C-terminal frame shift mutation (c.4938delC; p.Met1647fs). This mutation removes the final 58 amino acids and substitutes 33 incorrect amino acids. The frame shift spares membrane spanning and nucleotide binding domains, but disrupts a highly conserved C-terminal domain, which includes sequence motifs necessary for the function of human paralogs ABCA1, ABCA4, and the bacterial homolog DrrA. This observation suggests the C-terminal domain is also required for normal function of ABCA3.
Collapse
Affiliation(s)
- Nour Akil
- Pediatric Pulmonology, University of Iowa Stead Family Department of Pediatrics, Iowa City, IA.,Pediatric Pulmonology, University of North Carolina, Chapel Hill, NC
| | - Anthony J Fischer
- Pediatric Pulmonology, University of Iowa Stead Family Department of Pediatrics, Iowa City, IA
| |
Collapse
|
5
|
Peterson E, Kaur P. Antibiotic Resistance Mechanisms in Bacteria: Relationships Between Resistance Determinants of Antibiotic Producers, Environmental Bacteria, and Clinical Pathogens. Front Microbiol 2018; 9:2928. [PMID: 30555448 DOI: 10.3389/fmicb.2018.02928/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/14/2018] [Indexed: 05/20/2023] Open
Abstract
Emergence of antibiotic resistant pathogenic bacteria poses a serious public health challenge worldwide. However, antibiotic resistance genes are not confined to the clinic; instead they are widely prevalent in different bacterial populations in the environment. Therefore, to understand development of antibiotic resistance in pathogens, we need to consider important reservoirs of resistance genes, which may include determinants that confer self-resistance in antibiotic producing soil bacteria and genes encoding intrinsic resistance mechanisms present in all or most non-producer environmental bacteria. While the presence of resistance determinants in soil and environmental bacteria does not pose a threat to human health, their mobilization to new hosts and their expression under different contexts, for example their transfer to plasmids and integrons in pathogenic bacteria, can translate into a problem of huge proportions, as discussed in this review. Selective pressure brought about by human activities further results in enrichment of such determinants in bacterial populations. Thus, there is an urgent need to understand distribution of resistance determinants in bacterial populations, elucidate resistance mechanisms, and determine environmental factors that promote their dissemination. This comprehensive review describes the major known self-resistance mechanisms found in producer soil bacteria of the genus Streptomyces and explores the relationships between resistance determinants found in producer soil bacteria, non-producer environmental bacteria, and clinical isolates. Specific examples highlighting potential pathways by which pathogenic clinical isolates might acquire these resistance determinants from soil and environmental bacteria are also discussed. Overall, this article provides a conceptual framework for understanding the complexity of the problem of emergence of antibiotic resistance in the clinic. Availability of such knowledge will allow researchers to build models for dissemination of resistance genes and for developing interventions to prevent recruitment of additional or novel genes into pathogens.
Collapse
Affiliation(s)
- Elizabeth Peterson
- Department of Biology, Georgia State University, Atlanta, GA, United States
| | - Parjit Kaur
- Department of Biology, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
6
|
Prija F, Prasad R. DrrC protein of Streptomyces peucetius removes daunorubicin from intercalated dnrI promoter. Microbiol Res 2017. [PMID: 28647120 DOI: 10.1016/j.micres.2017.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
DrrC is a DNA-binding protein of Streptomyces peucetius that provides self-resistance against daunorubicin, the antibiotic produced by the organism. DrrC was expressed in E.coli and purified by using N-terminal MBP-tag which retained DNA-binding property in spite of the tag. Mobility shift assay confirmed the interaction of 313bp DNA that has the dnrI promoter, daunorubicin and MBP-DrrC in the presence of ATP. Biotinylated and immobilized 313bp DNA was intercalated with daunorubicin to observe the release of the drug when MBP-DrrC is allowed to act on the DNA. The release of daunorubicin was recorded by absorption and fluorescence spectroscopy. The experiments proved that daunorubicin was released from DNA in the presence of MBP-DrrC. Fluorescence emission of daunorubicin had a maximum peak at 591nm. However, emission spectrum of released daunorubicin showed hypochromism with a maximum peak at 584nm that is possibly because it is in complex with MBP-DrrC. We propose that DrrC naturally binds at intercalated sites to eject daunorubicin; in the process both drug and protein are dislodged from DNA. Like UvrA, DrrC possibly scans the DNA for intercalated daunorubicin. When it encounters daunorubicin, DrrC dislodges it, thereby allowing DNA replication and transcription to go on unhindered. Thus a novel self resistance mechanism by DNA repair is mediated by DrrC.
Collapse
Affiliation(s)
- Francis Prija
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India.
| | - Ranjan Prasad
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India.
| |
Collapse
|
7
|
Brown K, Li W, Kaur P. Role of Aromatic and Negatively Charged Residues of DrrB in Multisubstrate Specificity Conferred by the DrrAB System of Streptomyces peucetius. Biochemistry 2017; 56:1921-1931. [PMID: 28272881 DOI: 10.1021/acs.biochem.6b01155] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Resistance to the anticancer antibiotics, doxorubicin and daunorubicin, in the producer organism Streptomyces peucetius is conferred by an ABC transporter made of two proteins, DrrA and DrrB, which together form a dedicated exporter for these two antibiotics. Surprisingly, however, the DrrAB system exhibits broad substrate specificity overlapping with well-studied multidrug resistance transporters, including P-glycoprotein. Therefore, it provides an excellent model for studying the molecular basis of multispecificity in a prototype efflux system with the potential to unravel the origin and evolution of multidrug resistance. It has been suggested that multispecificity in multidrug exporters may be generally determined by the number and location of aromatic residues. Strategically placed negatively charged residues may also be critical for binding of cationic lipophilic drugs. We selected 13 aromatic and four negatively charged residues on the basis of their location in and/or near the predicted drug-binding pocket of DrrB for analysis. Indeed, mutations of most tested residues drastically inhibited doxorubicin efflux. Interestingly, several mutants lost resistance to doxorubicin and verapamil simultaneously but retained resistance to Hoechst 33342 and/or ethidium bromide, suggesting the presence of overlapping as well as independent drug-binding sites in a common drug-binding pocket of DrrB. This study provides the first comprehensive analysis of residues involved in drug binding in a bacterial multidrug resistance protein of the ABC superfamily, and it shows strong similarity in the molecular mechanism of polyspecific drug recognition between DrrAB and Pgp. Altogether, we conclude that aromatic residue-based multidrug specificity is conserved across domains and over long evolutionary periods. The significance of these findings is discussed.
Collapse
Affiliation(s)
- Kenneth Brown
- Department of Biology, Georgia State University , Atlanta, Georgia 30303, United States
| | - Wen Li
- Department of Biology, Georgia State University , Atlanta, Georgia 30303, United States
| | - Parjit Kaur
- Department of Biology, Georgia State University , Atlanta, Georgia 30303, United States
| |
Collapse
|
8
|
Zhang H, Rahman S, Li W, Fu G, Kaur P. Characterization of a novel domain 'GATE' in the ABC protein DrrA and its role in drug efflux by the DrrAB complex. Biochem Biophys Res Commun 2015; 459:148-53. [PMID: 25721665 DOI: 10.1016/j.bbrc.2015.02.086] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 02/13/2015] [Indexed: 12/27/2022]
Abstract
A novel domain, GATE (Glycine-loop And Transducer Element), is identified in the ABC protein DrrA. This domain shows sequence and structural conservation among close homologs of DrrA as well as distantly-related ABC proteins. Among the highly conserved residues in this domain are three glycines, G215, G221 and G231, of which G215 was found to be critical for stable expression of the DrrAB complex. Other conserved residues, including E201, G221, K227 and G231, were found to be critical for the catalytic and transport functions of the DrrAB transporter. Structural analysis of both the previously published crystal structure of the DrrA homolog MalK and the modeled structure of DrrA showed that G215 makes close contacts with residues in and around the Walker A motif, suggesting that these interactions may be critical for maintaining the integrity of the ATP binding pocket as well as the complex. It is also shown that G215A or K227R mutation diminishes some of the atomic interactions essential for ATP catalysis and overall transport function. Therefore, based on both the biochemical and structural analyses, it is proposed that the GATE domain, located outside of the previously identified ATP binding and hydrolysis motifs, is an additional element involved in ATP catalysis.
Collapse
Affiliation(s)
- Han Zhang
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Sadia Rahman
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Wen Li
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Guoxing Fu
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Parjit Kaur
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
9
|
Chuang CY, Chen LY, Fu RH, Chen SM, Ho MH, Huang JM, Hsu CC, Wang CC, Chen MS, Tsai RT. Involvement of the carboxyl-terminal region of the yeast peroxisomal half ABC transporter Pxa2p in its interaction with Pxa1p and in transporter function. PLoS One 2014; 9:e104892. [PMID: 25118695 PMCID: PMC4132065 DOI: 10.1371/journal.pone.0104892] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 07/17/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The peroxisome is a single membrane-bound organelle in eukaryotic cells involved in lipid metabolism, including β-oxidation of fatty acids. The human genetic disorder X-linked adrenoleukodystrophy (X-ALD) is caused by mutations in the ABCD1 gene (encoding ALDP, a peroxisomal half ATP-binding cassette [ABC] transporter). This disease is characterized by defective peroxisomal β-oxidation and a large accumulation of very long-chain fatty acids in brain white matter, adrenal cortex, and testis. ALDP forms a homodimer proposed to be the functional transporter, whereas the peroxisomal transporter in yeast is a heterodimer comprising two half ABC transporters, Pxa1p and Pxa2p, both orthologs of human ALDP. While the carboxyl-terminal domain of ALDP is engaged in dimerization, it remains unknown whether the same region is involved in the interaction between Pxa1p and Pxa2p. METHODS/PRINCIPAL FINDINGS Using a yeast two-hybrid assay, we found that the carboxyl-terminal region (CT) of Pxa2p, but not of Pxa1p, is required for their interaction. Further analysis indicated that the central part of the CT (designated CT2) of Pxa2p was indispensable for its interaction with the carboxyl terminally truncated Pxa1_NBD. An interaction between the CT of Pxa2p and Pxa1_NBD was not detected, but could be identified in the presence of Pxa2_NBD-CT1. A single mutation of two conserved residues (aligned with X-ALD-associated mutations at the same positions in ALDP) in the CT2 of the Pxa2_NBD-CT protein impaired its interaction with Pxa1_NBD or Pxa1_NBD-CT, resulting in a mutant protein that exhibited a proteinase K digestion profile different from that of the wild-type protein. Functional analysis of these mutant proteins on oleate plates indicated that they were defective in transporter function. CONCLUSIONS/SIGNIFICANCE The CT of Pxa2p is involved in its interaction with Pxa1p and in transporter function. This concept may be applied to human ALDP studies, helping to establish the pathological mechanism for CT-related X-ALD disease.
Collapse
Affiliation(s)
- Cheng-Yi Chuang
- Institute of Biochemistry and Biotechnology, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ling-Yun Chen
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ru-Huei Fu
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| | - Shih-Ming Chen
- Institute of Biochemistry and Biotechnology, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Hua Ho
- Institute of Biochemistry and Biotechnology, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Jie-Mau Huang
- Institute of Biochemistry and Biotechnology, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Chi Hsu
- Institute of Biochemistry and Biotechnology, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chien-Cheng Wang
- Institute of Biochemistry and Biotechnology, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Meng-Shian Chen
- Institute of Biochemistry and Biotechnology, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Rong-Tzong Tsai
- Institute of Biochemistry and Biotechnology, College of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
10
|
Li W, Sharma M, Kaur P. The DrrAB efflux system of Streptomyces peucetius is a multidrug transporter of broad substrate specificity. J Biol Chem 2014; 289:12633-46. [PMID: 24634217 DOI: 10.1074/jbc.m113.536136] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The soil bacterium Streptomyces peucetius produces two widely used anticancer antibiotics, doxorubicin and daunorubicin. Present within the biosynthesis gene cluster in S. peucetius is the drrAB operon, which codes for a dedicated ABC (ATP binding cassette)-type transporter for the export of these two closely related antibiotics. Because of its dedicated nature, the DrrAB system is believed to belong to the category of single-drug transporters. However, whether it also contains specificity for other known substrates of multidrug transporters has never been tested. In this study we demonstrate under both in vivo and in vitro conditions that the DrrAB system can transport not only doxorubicin but is also able to export two most commonly studied MDR substrates, Hoechst 33342 and ethidium bromide. Moreover, we demonstrate that many other substrates (including verapamil, vinblastine, and rifampicin) of the well studied multidrug transporters inhibit DrrAB-mediated Dox transport with high efficiency, indicating that they are also substrates of the DrrAB pump. Kinetic studies show that inhibition of doxorubicin transport by Hoechst 33342 and rifampicin occurs by a competitive mechanism, whereas verapamil inhibits transport by a non-competitive mechanism, thus suggesting the possibility of more than one drug binding site in the DrrAB system. This is the first in-depth study of a drug resistance system from a producer organism, and it shows that a dedicated efflux system like DrrAB contains specificity for multiple drugs. The significance of these findings in evolution of poly-specificity in drug resistance systems is discussed.
Collapse
Affiliation(s)
- Wen Li
- From the Department of Biology, Georgia State University, Atlanta, Georgia 30303
| | | | | |
Collapse
|
11
|
Müller WEG, Wang X, Proksch P, Perry CC, Osinga R, Gardères J, Schröder HC. Principles of biofouling protection in marine sponges: a model for the design of novel biomimetic and bio-inspired coatings in the marine environment? MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2013; 15:375-398. [PMID: 23525893 DOI: 10.1007/s10126-013-9497-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 03/09/2013] [Indexed: 06/02/2023]
Abstract
The process of biofouling of marine structures and substrates, such as platforms or ship hulls, proceeds in multiple steps. Soon after the formation of an initial conditioning film, formed via the adsorption of organic particles to natural or man-made substrates, a population of different bacterial taxa associates under the formation of a biofilm. These microorganisms communicate through a complex quorum sensing network. Macro-foulers, e.g., barnacles, then settle and form a fouling layer on the marine surfaces, a process that globally has severe impacts both on the economy and on the environment. Since the ban of tributyltin, an efficient replacement of this antifouling compound by next-generation antifouling coatings that are environmentally more acceptable and also showing longer half-lives has not yet been developed. The sponges, as sessile filter-feeder animals, have evolved antifouling strategies to protect themselves against micro- and subsequent macro-biofouling processes. Experimental data are summarized and suggest that coating of the sponge surface with bio-silica contributes to the inhibition of the formation of a conditioning film. A direct adsorption of the surfaces by microorganisms can be impaired through poisoning the organisms with direct-acting secondary metabolites or toxic peptides. In addition, first, compounds from sponges have been identified that interfere with the anti-quorum sensing network. Sponge secondary metabolites acting selectively on diatom colonization have not yet been identified. Finally, it is outlined that direct-acting secondary metabolites inhibiting the growth of macro-fouling animals and those that poison the multidrug resistance pump are available. It is concluded that rational screening programs for inhibitors of the complex and dynamic problem of biofilm production, based on multidisciplinary studies and using sponges as a model, are required in the future.
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Investigator Grant Research Group at Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany.
| | | | | | | | | | | | | |
Collapse
|
12
|
Li W, Rao DK, Kaur P. Dual role of the metalloprotease FtsH in biogenesis of the DrrAB drug transporter. J Biol Chem 2013; 288:11854-64. [PMID: 23504316 DOI: 10.1074/jbc.m112.441915] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This study provides the first direct evidence for the dual role of the metalloprotease FtsH in membrane protein biogenesis. Using the physiological substrate DrrAB, it is shown that FtsH is not only responsible for proteolysis of unassembled DrrB protein but also plays a much broader role in biogenesis of the DrrAB complex. Previous studies showed that the stable expression of DrrB in the membrane depends on simultaneous expression of DrrA. Here we show that DrrB is proteolyzed by FtsH when it is expressed alone. Moreover, DrrA and DrrB proteins expressed together in a temperature-sensitive ftsH mutant strain of Escherichia coli were found to be nonfunctional due to their incorrect assembly. Simultaneous expression of wild-type FtsH in trans resulted in normal doxorubicin efflux. Strikingly, doxorubicin efflux could be restored in mutant cells irrespective of whether FtsH was expressed simultaneously with DrrAB or expressed after these proteins had already accumulated in an inactive conformation, thus providing crucial evidence for the ability of FtsH to refold the misassembled proteins. Complementation experiments also showed that the catalytic AAA domain of FtsH contains a chaperone-like activity, however, unlike wild-type FtsH, it was unable to restore function. Our results therefore show for the first time that FtsH contains the protease as well as refolding functions, and both the AAA and the proteolytic domains of FtsH are required for each of these activities.
Collapse
Affiliation(s)
- Wen Li
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | |
Collapse
|
13
|
Yu L, Yan X, Wang L, Chu J, Zhuang Y, Zhang S, Guo M. Molecular cloning and functional characterization of an ATP-binding cassette transporter OtrC from Streptomyces rimosus. BMC Biotechnol 2012; 12:52. [PMID: 22906146 PMCID: PMC3533511 DOI: 10.1186/1472-6750-12-52] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 08/11/2012] [Indexed: 11/16/2022] Open
Abstract
Background The otrC gene of Streptomyces rimosus was previously annotated as an oxytetracycline (OTC) resistance protein. However, the amino acid sequence analysis of OtrC shows that it is a putative ATP-binding cassette (ABC) transporter with multidrug resistance function. To our knowledge, none of the ABC transporters in S. rimosus have yet been characterized. In this study, we aimed to characterize the multidrug exporter function of OtrC and evaluate its relevancy to OTC production. Results In order to investigate OtrC’s function, otrC is cloned and expressed in E. coli The exporter function of OtrC was identified by ATPase activity determination and ethidium bromide efflux assays. Also, the susceptibilities of OtrC-overexpressing cells to several structurally unrelated drugs were compared with those of OtrC-non-expressing cells by minimal inhibitory concentration (MIC) assays, indicating that OtrC functions as a drug exporter with a broad range of drug specificities. The OTC production was enhanced by 1.6-fold in M4018 (P = 0.000877) and 1.4-fold in SR16 (P = 0.00973) duplication mutants, while it decreased to 80% in disruption mutants (P = 0.0182 and 0.0124 in M4018 and SR16, respectively). Conclusions The results suggest that OtrC is an ABC transporter with multidrug resistance function, and plays an important role in self-protection by drug efflux mechanisms. This is the first report of such a protein in S. rimosus, and otrC could be a valuable target for genetic manipulation to improve the production of industrial antibiotics.
Collapse
Affiliation(s)
- Lan Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | | | | | | | | | | | | |
Collapse
|