1
|
Huang LK, Huang YC, Chen PC, Lee CH, Lin SM, Hsu YHH, Pan RL. Exploration of the Catalytic Cycle Dynamics of Vigna Radiata H +-Translocating Pyrophosphatases Through Hydrogen-Deuterium Exchange Mass Spectrometry. J Membr Biol 2023; 256:443-458. [PMID: 37955797 DOI: 10.1007/s00232-023-00295-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023]
Abstract
Vigna radiata H+-translocating pyrophosphatases (VrH+-PPases, EC 3.6.1.1) are present in various endomembranes of plants, bacteria, archaea, and certain protozoa. They transport H+ into the lumen by hydrolyzing pyrophosphate, which is a by-product of many essential anabolic reactions. Although the crystal structure of H+-PPases has been elucidated, the H+ translocation mechanism of H+-PPases in the solution state remains unclear. In this study, we used hydrogen-deuterium exchange (HDX) coupled with mass spectrometry (MS) to investigate the dynamics of H+-PPases between the previously proposed R state (resting state, Apo form), I state (intermediate state, bound to a substrate analog), and T state (transient state, bound to inorganic phosphate). When hydrogen was replaced by proteins in deuterium oxide solution, the backbone hydrogen atoms, which were exchanged with deuterium, were identified through MS. Accordingly, we used deuterium uptake to examine the structural dynamics and conformational changes of H+-PPases in solution. In the highly conserved substrate binding and proton exit regions, HDX-MS revealed the existence of a compact conformation with deuterium exchange when H+-PPases were bound with a substrate analog and product. Thus, a novel working model was developed to elucidate the in situ catalytic mechanism of pyrophosphate hydrolysis and proton transport. In this model, a proton is released in the I state, and the TM5 inner wall serves as a proton piston.
Collapse
Affiliation(s)
- Li-Kun Huang
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, No.101, Sec. 2, Kuangfu Rd., Hsinchu City, 30013, Taiwan, Republic of China
| | - Yi-Cyuan Huang
- Department of Chemistry, Tunghai University, No.1727, Sec. 4, Taiwan Boulevard, Taichung, 40704, Taiwan, Republic of China
| | - Pin-Chuan Chen
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, No.101, Sec. 2, Kuangfu Rd., Hsinchu City, 30013, Taiwan, Republic of China
| | - Ching-Hung Lee
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, No.101, Sec. 2, Kuangfu Rd., Hsinchu City, 30013, Taiwan, Republic of China
| | - Shih-Ming Lin
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 70101, Taiwan, Republic of China
| | - Yuan-Hao Howard Hsu
- Department of Chemistry, Tunghai University, No.1727, Sec. 4, Taiwan Boulevard, Taichung, 40704, Taiwan, Republic of China.
| | - Rong-Long Pan
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, No.101, Sec. 2, Kuangfu Rd., Hsinchu City, 30013, Taiwan, Republic of China.
| |
Collapse
|
2
|
Role of the potassium/lysine cationic center in catalysis and functional asymmetry in membrane-bound pyrophosphatases. Biochem J 2018. [PMID: 29519958 DOI: 10.1042/bcj20180071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Membrane-bound pyrophosphatases (mPPases), which couple pyrophosphate hydrolysis to transmembrane transport of H+ and/or Na+ ions, are divided into K+,Na+-independent, Na+-regulated, and K+-dependent families. The first two families include H+-transporting mPPases (H+-PPases), whereas the last family comprises one Na+-transporting, two Na+- and H+-transporting subfamilies (Na+-PPases and Na+,H+-PPases, respectively), and three H+-transporting subfamilies. Earlier studies of the few available model mPPases suggested that K+ binds to a site located adjacent to the pyrophosphate-binding site, but is substituted by the ε-amino group of an evolutionarily acquired lysine residue in the K+-independent mPPases. Here, we performed a systematic analysis of the K+/Lys cationic center across all mPPase subfamilies. An Ala → Lys replacement in K+-dependent mPPases abolished the K+ dependence of hydrolysis and transport activities and decreased these activities close to the level (4-7%) observed for wild-type enzymes in the absence of monovalent cations. In contrast, a Lys → Ala replacement in K+,Na+-independent mPPases conferred partial K+ dependence on the enzyme by unmasking an otherwise conserved K+-binding site. Na+ could partially replace K+ as an activator of K+-dependent mPPases and the Lys → Ala variants of K+,Na+-independent mPPases. Finally, we found that all mPPases were inhibited by excess substrate, suggesting strong negative co-operativity of active site functioning in these homodimeric enzymes; moreover, the K+/Lys center was identified as part of the mechanism underlying this effect. These findings suggest that the mPPase homodimer possesses an asymmetry of active site performance that may be an ancient prototype of the rotational binding-change mechanism of F-type ATPases.
Collapse
|
3
|
Chen YW, Lee CH, Huang YT, Pan YJ, Lin SM, Lo YY, Lee CH, Huang LK, Huang YF, Hsu YD, Pan RL. Functional and fluorescence analyses of tryptophan residues in H+-pyrophosphatase of Clostridium tetani. J Bioenerg Biomembr 2015; 46:127-34. [PMID: 24121937 DOI: 10.1007/s10863-013-9532-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 10/01/2013] [Indexed: 10/26/2022]
Abstract
Homodimeric proton-translocating pyrophosphatase (H+-PPase; EC 3.6.1.1) maintains the cytoplasmic pH homeostasis of many bacteria and higher plants by coupling pyrophosphate (PPi) hydrolysis and proton translocation. H+-PPase accommodates several essential motifs involved in the catalytic mechanism, including the PPi binding motif and Acidic I and II motifs. In this study, 3 intrinsic tryptophan residues, Trp-75, Trp-365, and Trp-602, in H+-PPase from Clostridium tetani were used as internal probes to monitor the local conformational state of the periplasm domain, transmembrane region, and cytoplasmic domain, respectively. Upon binding of the substrate analog Mg-imidodiphosphate (Mg-IDP), local structural changes prevented the modification of tryptophan residues by N-bromosuccinimide (NBS), especially at Trp-602. Following Mg-Pi binding, Trp-75 and Trp-365, but not Trp-602, were slightly protected from structural modifications by NBS. These results reveal the conformation of H+-PPase is distinct in the presence of different ligands. Moreover, analyses of the Stern-Volmer relationship and steady-state fluorescence anisotropy also indicate that the local structure around Trp-602 is more exposed to solvent and varied under different environments. In addition, Trp-602 was identified to be a crucial residue in the H+-PPase that may potentially be involved in stabilizing the structure of the catalytic region by site-directed mutagenesis analysis.
Collapse
|
4
|
Hsu SH, Lo YY, Liu TH, Pan YJ, Huang YT, Sun YJ, Hung CC, Tseng FG, Yang CW, Pan RL. Substrate-induced changes in domain interaction of vacuolar H⁺-pyrophosphatase. J Biol Chem 2015; 290:1197-209. [PMID: 25451931 DOI: 10.1074/jbc.m114.568139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Single molecule atomic force microscopy (smAFM) was employed to unfold transmembrane domain interactions of a unique vacuolar H(+)-pyrophosphatase (EC 3.6.1.1) from Vigna radiata. H(+)-Pyrophosphatase is a membrane-embedded homodimeric protein containing a single type of polypeptide and links PPi hydrolysis to proton translocation. Each subunit consists of 16 transmembrane domains with both ends facing the lumen side. In this investigation, H(+)-pyrophosphatase was reconstituted into the lipid bilayer in the same orientation for efficient fishing out of the membrane by smAFM. The reconstituted H(+)-pyrophosphatase in the lipid bilayer showed an authentically dimeric structure, and the size of each monomer was ∼4 nm in length, ∼2 nm in width, and ∼1 nm in protrusion height. Upon extracting the H(+)-pyrophosphatase out of the membrane, force-distance curves containing 10 peaks were obtained and assigned to distinct domains. In the presence of pyrophosphate, phosphate, and imidodiphosphate, the numbers of interaction curves were altered to 7, 8, and 10, respectively, concomitantly with significant modification in force strength. The substrate-binding residues were further replaced to verify these domain changes upon substrate binding. A working model is accordingly proposed to show the interactions between transmembrane domains of H(+)-pyrophosphatase in the presence and absence of substrate and its analog.
Collapse
Affiliation(s)
- Shen-Hsing Hsu
- From the Department of Nephrology, Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33333
| | - Yueh-Yu Lo
- From the Department of Nephrology, Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33333
| | - Tseng-Huang Liu
- the Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, and
| | - Yih-Jiuan Pan
- the Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, and
| | - Yun-Tzu Huang
- the Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, and
| | - Yuh-Ju Sun
- the Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, and
| | - Cheng-Chieh Hung
- From the Department of Nephrology, Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33333
| | - Fan-Gang Tseng
- Department of Engineering and System Science, College of Nuclear Science, National Tsing Hua University, Hsin Chu 30013, Taiwan
| | - Chih-Wei Yang
- From the Department of Nephrology, Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33333,
| | - Rong-Long Pan
- the Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, and
| |
Collapse
|
5
|
Asaoka M, Segami S, Maeshima M. Identification of the critical residues for the function of vacuolar H+-pyrophosphatase by mutational analysis based on the 3D structure. ACTA ACUST UNITED AC 2014; 156:333-44. [DOI: 10.1093/jb/mvu046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
6
|
Lee CH, Chen YW, Huang YT, Pan YJ, Lee CH, Lin SM, Huang LK, Lo YY, Huang YF, Hsu YD, Yen SC, Hwang JK, Pan RL. Functional Investigation of Transmembrane Helix 3 in H+-Translocating Pyrophosphatase. J Membr Biol 2013; 246:959-66. [DOI: 10.1007/s00232-013-9599-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 09/24/2013] [Indexed: 10/26/2022]
|
7
|
Huang YT, Liu TH, Lin SM, Chen YW, Pan YJ, Lee CH, Sun YJ, Tseng FG, Pan RL. Squeezing at entrance of proton transport pathway in proton-translocating pyrophosphatase upon substrate binding. J Biol Chem 2013; 288:19312-20. [PMID: 23720778 DOI: 10.1074/jbc.m113.469353] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Homodimeric proton-translocating pyrophosphatase (H(+)-PPase; EC 3.6.1.1) is indispensable for many organisms in maintaining organellar pH homeostasis. This unique proton pump couples the hydrolysis of PPi to proton translocation across the membrane. H(+)-PPase consists of 14-16 relatively hydrophobic transmembrane domains presumably for proton translocation and hydrophilic loops primarily embedding a catalytic site. Several highly conserved polar residues located at or near the entrance of the transport pathway in H(+)-PPase are essential for proton pumping activity. In this investigation single molecule FRET was employed to dissect the action at the pathway entrance in homodimeric Clostridium tetani H(+)-PPase upon ligand binding. The presence of the substrate analog, imidodiphosphate mediated two sites at the pathway entrance moving toward each other. Moreover, single molecule FRET analyses after the mutation at the first proton-carrying residue (Arg-169) demonstrated that conformational changes at the entrance are conceivably essential for the initial step of H(+)-PPase proton translocation. A working model is accordingly proposed to illustrate the squeeze at the entrance of the transport pathway in H(+)-PPase upon substrate binding.
Collapse
Affiliation(s)
- Yun-Tzu Huang
- Department of Life Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsin Chu 30013, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kajander T, Kellosalo J, Goldman A. Inorganic pyrophosphatases: one substrate, three mechanisms. FEBS Lett 2013; 587:1863-9. [PMID: 23684653 DOI: 10.1016/j.febslet.2013.05.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 10/26/2022]
Abstract
Soluble inorganic pyrophosphatases (PPases) catalyse an essential reaction, the hydrolysis of pyrophosphate to inorganic phosphate. In addition, an evolutionarily ancient family of membrane-integral pyrophosphatases couple this hydrolysis to Na(+) and/or H(+) pumping, and so recycle some of the free energy from the pyrophosphate. The structures of the H(+)-pumping mung bean PPase and the Na(+)-pumping Thermotoga maritima PPase solved last year revealed an entirely novel membrane protein containing 16 transmembrane helices. The hydrolytic centre, well above the membrane, is linked by a charged "coupling funnel" to the ionic gate about 20Å away. By comparing the active sites, fluoride inhibition data and the various models for ion transport, we conclude that membrane-integral PPases probably use binding of pyrophosphate to drive pumping.
Collapse
Affiliation(s)
- Tommi Kajander
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| | | | | |
Collapse
|
9
|
Crystal structure of a membrane-embedded H+-translocating pyrophosphatase. Nature 2012; 484:399-403. [PMID: 22456709 DOI: 10.1038/nature10963] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Accepted: 02/17/2012] [Indexed: 11/08/2022]
Abstract
H(+)-translocating pyrophosphatases (H(+)-PPases) are active proton transporters that establish a proton gradient across the endomembrane by means of pyrophosphate (PP(i)) hydrolysis. H(+)-PPases are found primarily as homodimers in the vacuolar membrane of plants and the plasma membrane of several protozoa and prokaryotes. The three-dimensional structure and detailed mechanisms underlying the enzymatic and proton translocation reactions of H(+)-PPases are unclear. Here we report the crystal structure of a Vigna radiata H(+)-PPase (VrH(+)-PPase) in complex with a non-hydrolysable substrate analogue, imidodiphosphate (IDP), at 2.35 Å resolution. Each VrH(+)-PPase subunit consists of an integral membrane domain formed by 16 transmembrane helices. IDP is bound in the cytosolic region of each subunit and trapped by numerous charged residues and five Mg(2+) ions. A previously undescribed proton translocation pathway is formed by six core transmembrane helices. Proton pumping can be initialized by PP(i) hydrolysis, and H(+) is then transported into the vacuolar lumen through a pathway consisting of Arg 242, Asp 294, Lys 742 and Glu 301. We propose a working model of the mechanism for the coupling between proton pumping and PP(i) hydrolysis by H(+)-PPases.
Collapse
|
10
|
Luoto HH, Belogurov GA, Baykov AA, Lahti R, Malinen AM. Na+-translocating membrane pyrophosphatases are widespread in the microbial world and evolutionarily precede H+-translocating pyrophosphatases. J Biol Chem 2011; 286:21633-42. [PMID: 21527638 DOI: 10.1074/jbc.m111.244483] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Membrane pyrophosphatases (PPases), divided into K(+)-dependent and K(+)-independent subfamilies, were believed to pump H(+) across cell membranes until a recent demonstration that some K(+)-dependent PPases function as Na(+) pumps. Here, we have expressed seven evolutionarily important putative PPases in Escherichia coli and estimated their hydrolytic, Na(+) transport, and H(+) transport activities as well as their K(+) and Na(+) requirements in inner membrane vesicles. Four of these enzymes (from Anaerostipes caccae, Chlorobium limicola, Clostridium tetani, and Desulfuromonas acetoxidans) were identified as K(+)-dependent Na(+) transporters. Phylogenetic analysis led to the identification of a monophyletic clade comprising characterized and predicted Na(+)-transporting PPases (Na(+)-PPases) within the K(+)-dependent subfamily. H(+)-transporting PPases (H(+)-PPases) are more heterogeneous and form at least three independent clades in both subfamilies. These results suggest that rather than being a curious rarity, Na(+)-PPases predominantly constitute the K(+)-dependent subfamily. Furthermore, Na(+)-PPases possibly preceded H(+)-PPases in evolution, and transition from Na(+) to H(+) transport may have occurred in several independent enzyme lineages. Site-directed mutagenesis studies facilitated the identification of a specific Glu residue that appears to be central in the transport mechanism. This residue is located in the cytoplasm-membrane interface of transmembrane helix 6 in Na(+)-PPases but shifted to within the membrane or helix 5 in H(+)-PPases. These results contribute to the prediction of the transport specificity and K(+) dependence for a particular membrane PPase sequence based on its position in the phylogenetic tree, identity of residues in the K(+) dependence signature, and position of the membrane-located Glu residue.
Collapse
Affiliation(s)
- Heidi H Luoto
- Department of Biochemistry and Food Chemistry, University of Turku, FIN-20014 Turku, Finland
| | | | | | | | | |
Collapse
|
11
|
Lee CH, Pan YJ, Huang YT, Liu TH, Hsu SH, Lee CH, Chen YW, Lin SM, Huang LK, Pan RL. Identification of essential lysines involved in substrate binding of vacuolar H+-pyrophosphatase. J Biol Chem 2011; 286:11970-6. [PMID: 21292767 DOI: 10.1074/jbc.m110.190215] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
H+-translocating pyrophosphatase (H+-PPase; EC 3.6.1.1) drives proton transport against an electrochemical potential gradient by hydrolyzing pyrophosphate (PPi) and is found in various endomembranes of higher plants, bacteria, and some protists. H+-PPase contains seven highly conserved lysines. We examined the functional roles of these lysines, which are, for the most part, found in the cytosolic regions of mung bean H+-PPase by site-directed mutagenesis. Construction of mutants that each had a cytosolic and highly conserved lysine substituted with an alanine resulted in dramatic drops in the PPi hydrolytic activity. The effects caused by ions on the activities of WT and mutant H+-PPases suggest that Lys-730 may be in close proximity to the Mg2+-binding site, and the great resistance of the K694A and K695A mutants to fluoride inhibition suggests that these lysines are present in the active site. The modifier fluorescein 5'-isothiocyanate (FITC) labeled a lysine at the H+-PPase active site but did not inhibit the hydrolytic activities of K250A, K250N, K250T, and K250S, which suggested that Lys-250 is essential for substrate binding and may be involved in proton translocation. Analysis of tryptic digests indicated that Lys-711 and Lys-717 help maintain the conformation of the active site. Proteolytic evidence also demonstrated that Lys-250 is the primary target of trypsin and confirmed its crucial role in H+-PPase hydrolysis.
Collapse
Affiliation(s)
- Chien-Hsien Lee
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsin Chu 30043, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|