1
|
Hespeels F, Lucas S, Tabarrant T, Scifoni E, Kraemer M, Chêne G, Strivay D, Tran HN, Heuskin AC. Experimental measurements validate the use of the binary encounter approximation model to accurately compute proton induced dose and radiolysis enhancement from gold nanoparticles. Phys Med Biol 2019; 64:065014. [PMID: 30731439 DOI: 10.1088/1361-6560/ab0516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In protontherapy, it has been suggested that nanoparticles of high-Z material like gold (GNP) could be used as radiosensitizers. The origin of this enhancement phenomenon for proton radiation is not yet well understood and additional mechanistic insights are required. Previous works have highlighted the good capabilities of TRAX to reproduce secondary electron emission from gold material. Therefore, TRAX cross sections obtained with the binary encounter approximation (BEA) model for proton ionization were implemented within Geant4 for gold material. Based on the TRAX cross sections, improved Geant4 simulations have been developed to investigate the energy deposition and radical species production around a spherical gold nanoparticle (5 and 10 nm in diameter) placed in a water volume during proton irradiation. Simulations were performed for incident 2 MeV proton. The dose enhancement factor and the radiolysis enhancement factor were quantified. Results obtained with the BEA model were compared with results obtained with condensed-history models. Experimental irradiation of 200 nm gold films were performed to validate the secondary electron emission reproduction capabilities of physical models used in Monte Carlo (MC) simulations. TRAX simulations reproduced the experimental backscattered electron energy spectrum from gold film with better agreement than Geant4. Results on gold film obtained with the BEA model enabled to estimate the electron emission from GNPs. Results obtained in our study tend to support that the use of the BEA discrete model leads to a significant increase of the dose in the near vicinity of GNPs (<20 nm), while condensed history models used in Geant4 seem to overestimate the dose and the number of chemical species for increasing distances from the GNP. Based on discrete BEA model results, no enhancement effect due to secondary electron emitted from the GNP is expected if the GNP is not in close proximity to key cellular functional elements (DNA, mitochondria…).
Collapse
Affiliation(s)
- F Hespeels
- University of Namur, PMR, 61 rue de Bruxelles, 5000 Namur, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Impaired non-homologous end joining in human primary alveolar type II cells in emphysema. Sci Rep 2019; 9:920. [PMID: 30696938 PMCID: PMC6351635 DOI: 10.1038/s41598-018-37000-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022] Open
Abstract
Emphysema is characterized by alveolar wall destruction induced mainly by cigarette smoke. Oxidative damage of DNA may contribute to the pathophysiology of this disease. We studied the impairment of the non-homologous end joining (NHEJ) repair pathway and DNA damage in alveolar type II (ATII) cells and emphysema development. We isolated primary ATII cells from control smokers, nonsmokers, and patients with emphysema to determine DNA damage and repair. We found higher reactive oxygen species generation and DNA damage in ATII cells obtained from individuals with this disease in comparison with controls. We also observed low phosphorylation of H2AX, which activates DSBs repair signaling, in emphysema. Our results indicate the impairement of NHEJ, as detected by low XLF expression. We also analyzed the role of DJ-1, which has a cytoprotective activity. We detected DJ-1 and XLF interaction in ATII cells in emphysema, which suggests the impairment of their function. Moreover, we found that DJ-1 KO mice are more susceptible to DNA damage induced by cigarette smoke. Our results suggest that oxidative DNA damage and ineffective the DSBs repair via the impaired NHEJ may contribute to ATII cell death in emphysema.
Collapse
|
3
|
Abdul Rashid R, Zainal Abidin S, Khairil Anuar MA, Tominaga T, Akasaka H, Sasaki R, Kie K, Abdul Razak K, Pham BT, Hawkett BS, Carmichael MA, Geso M, Rahman WN. Radiosensitization effects and ROS generation by high Z metallic nanoparticles on human colon carcinoma cell (HCT116) irradiated under 150 MeV proton beam. OPENNANO 2019. [DOI: 10.1016/j.onano.2018.100027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
4
|
Panek A, Miszczyk J, Swakoń J. Biological effects and inter-individual variability in peripheral blood lymphocytes of healthy donors exposed to 60 MeV proton radiotherapeutic beam. Int J Radiat Biol 2018; 94:1085-1094. [PMID: 30273081 DOI: 10.1080/09553002.2019.1524941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Purpose: The aim of our study was to investigate the amount of initial DNA damage and cellular repair capacity of human peripheral blood lymphocytes exposed to the therapeutic proton beam and compare it to X-rays. Materials and methods: Lymphocytes from 10 healthy donors were irradiated in the Spread Out Bragg Peak of the 60 MeV proton beam or, as a reference, exposed to 250 kV X-rays. DNA damage level was assessed using the alkaline version of the comet assay method. For both sources of radiation, dose-DNA damage response (0-4 Gy) and DNA repair kinetics (0-120 min) were estimated. The observed DNA damage was then used to calculate the relative biological effectiveness (RBE) of the proton beam in comparison to that of X-rays. Results: Dose-response relationships for the DNA damage level showed linear dependence for both proton beam and X-rays (R2 = 0.995 for protons and R2 = 0.993 for X-rays). Within the dose range of 1-4 Gy, protons were significantly more effective in inducing DNA damage than were X-rays (p < .05). The average RBE, calculated from the proton and X-ray doses required for the iso-effective, internally standardized tail DNA parameter (sT-DNA) was 1.28 ± 0.57. Similar half-life time of residual damage and repair efficiency of induced DNA damage for both radiation types were observed. In the X-irradiated group, significant inter-individual differences were observed. Conclusions: Proton therapy was more effective at high radiation doses. However, DNA damage repair mechanism after proton irradiation seems to differ from that following X-rays.
Collapse
Affiliation(s)
- Agnieszka Panek
- a Institute of Nuclear Physics Polish Academy of Sciences , Krakow , Poland
| | - Justyna Miszczyk
- a Institute of Nuclear Physics Polish Academy of Sciences , Krakow , Poland
| | - Jan Swakoń
- a Institute of Nuclear Physics Polish Academy of Sciences , Krakow , Poland
| |
Collapse
|
5
|
Yan H, Guo W, Li K, Tang M, Zhao X, Lei Y, Nie CL, Yuan Z. Combination of DESI2 and endostatin gene therapy significantly improves antitumor efficacy by accumulating DNA lesions, inducing apoptosis and inhibiting angiogenesis. Exp Cell Res 2018; 371:50-62. [DOI: 10.1016/j.yexcr.2018.07.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/11/2018] [Accepted: 07/24/2018] [Indexed: 10/28/2022]
|
6
|
Yang J, Zhang G, Dong D, Shang P. Effects of Iron Overload and Oxidative Damage on the Musculoskeletal System in the Space Environment: Data from Spaceflights and Ground-Based Simulation Models. Int J Mol Sci 2018; 19:E2608. [PMID: 30177626 PMCID: PMC6163331 DOI: 10.3390/ijms19092608] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 08/29/2018] [Accepted: 09/01/2018] [Indexed: 12/15/2022] Open
Abstract
The space environment chiefly includes microgravity and radiation, which seriously threatens the health of astronauts. Bone loss and muscle atrophy are the two most significant changes in mammals after long-term residency in space. In this review, we summarized current understanding of the effects of microgravity and radiation on the musculoskeletal system and discussed the corresponding mechanisms that are related to iron overload and oxidative damage. Furthermore, we enumerated some countermeasures that have a therapeutic potential for bone loss and muscle atrophy through using iron chelators and antioxidants. Future studies for better understanding the mechanism of iron and redox homeostasis imbalance induced by the space environment and developing the countermeasures against iron overload and oxidative damage consequently may facilitate human to travel more safely in space.
Collapse
Affiliation(s)
- Jiancheng Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Gejing Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Dandan Dong
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Peng Shang
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an 710072, China.
- Research & Development Institute in Shenzhen, Northwestern Polytechnical University, Shenzhen 518057, China.
| |
Collapse
|
7
|
Purgason A, Zhang Y, Hamilton SR, Gridley DS, Sodipe A, Jejelowo O, Ramesh GT, Moreno-Villanueva M, Wu H. Apoptosis and expression of apoptosis-related genes in mouse intestinal tissue after whole-body proton exposure. Mol Cell Biochem 2017; 442:155-168. [DOI: 10.1007/s11010-017-3200-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/06/2017] [Indexed: 12/11/2022]
|
8
|
Lin C, Yan H, Yang J, Li L, Tang M, Zhao X, Nie C, Luo N, Wei Y, Yuan Z. Combination of DESI2 and IP10 gene therapy significantly improves therapeutic efficacy against murine carcinoma. Oncotarget 2017; 8:56281-56295. [PMID: 28915590 PMCID: PMC5593561 DOI: 10.18632/oncotarget.17623] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/20/2017] [Indexed: 02/05/2023] Open
Abstract
DESI2 (also known as PNAS-4) is a novel pro-apoptotic gene activated during the early response to DNA damage. We previously reported that overexpression of DESI2 induces S phase arrest and apoptosis by activating checkpoint kinases. The present study was designed to test whether combination of DESI2 and IP10 could improve the therapy efficacy in vitro and in vivo. The recombinant plasmid co-expressing DESI2 and IP10 was encapsulated with DOTAP/Cholesterol nanoparticle. Immunocompetent mice bearing CT26 colon carcinoma and LL2 lung cancer were treated with the complex. We found that, in vitro, the combination of DESI2 and IP10 more efficiently inhibited proliferation of CT26, LL2, SKOV3 and A549 cancer cells via apoptosis. In vivo, the combined gene therapy more significantly inhibited tumor growth and efficiently prolonged the survival of tumor bearing mice. Mechanistically, the augmented antitumor activity in vivo was associated with induction of apoptosis and inhibition of angiogenesis. The anti-angiogenesis was further mimicked by inhibiting proliferation of immortalized HUVEC cells in vitro. Meanwhile, the infiltration of lymphocytes also contributed to the enhanced antitumor effects. Depletion of CD8+ T lymphocytes significantly abrogated the antitumor activity, whereas depletion of CD4+ T cells or NK cells showed partial abrogation. Our data suggest that the combined gene therapy of DESI2 and IP10 can significantly enhance the antitumor activity as apoptosis inducer, angiogenesis inhibitor and immune response initiator. The present study may provide a novel and effective method for treating cancer.
Collapse
Affiliation(s)
- Chao Lin
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan University, Chengdu, 610041, China
| | - HuaYing Yan
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan University, Chengdu, 610041, China
- Department of Functional Imaging, Sichuan Provincial Women's and Children's Hospital, Chengdu, 610031, China
| | - Jun Yang
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan University, Chengdu, 610041, China
| | - Lei Li
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan University, Chengdu, 610041, China
| | - Mei Tang
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan University, Chengdu, 610041, China
| | - Xinyu Zhao
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan University, Chengdu, 610041, China
| | - Chunlai Nie
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan University, Chengdu, 610041, China
| | - Na Luo
- Nankai University School of Medicine, Collaborative Innovation Center of Biotherapy, Tianjin, 300071, China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan University, Chengdu, 610041, China
| | - Zhu Yuan
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
9
|
Seo SJ, Jeon JK, Han SM, Kim JK. Reactive oxygen species-based measurement of the dependence of the Coulomb nanoradiator effect on proton energy and atomic Z value. Int J Radiat Biol 2017; 93:1239-1247. [PMID: 28752783 DOI: 10.1080/09553002.2017.1361556] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE The Coulomb nanoradiator (CNR) effect produces the dose enhancement effects from high-Z nanoparticles under irradiation with a high-energy ion beam. To gain insight into the radiation dose and biological significance of the CNR effect, the enhancement of reactive oxygen species (ROS) production from iron oxide or gold NPs (IONs or AuNPs, respectively) in water was investigated using traversing proton beams. METHODS AND MATERIALS The dependence of nanoradiator-enhanced ROS production on the atomic Z value and proton energy was investigated. Two biologically important ROS species were measured using fluorescent probes specific to •OH or [Formula: see text] in a series of water phantoms containing either AuNPs or IONs under irradiation with a 45- or 100-MeV proton beam. RESULTS The enhanced generation of hydroxyl radicals (•OH) and superoxide anions ([Formula: see text]) was determined to be caused by the dependence on the NP concentration and proton energy. The proton-induced Au or iron oxide nanoradiators exhibited different ROS enhancement rates depending on the proton energy, suggesting that the CNR radiation varied. The curve of the superoxide anion production from the Au-nanoradiator showed strong non-linearity, unlike the linear behavior observed for hydroxyl radical production and the X-ray photoelectric nanoradiator. In addition, the 45-MeV proton-induced Au nanoradiator exhibited an ROS enhancement ratio of 8.54/1.50 ([Formula: see text] / •OH), similar to that of the 100-KeV X-ray photoelectric Au nanoradiator (7.68/1.46). CONCLUSIONS The ROS-based detection of the CNR effect revealed its dependence on the proton beam energy, dose and atomic Z value and provided insight into the low-linear energy transfer (LET) CNR radiation, suggesting that these factors may influence the therapeutic efficacy via chemical reactivities, transport behaviors, and intracellular oxidative stress.
Collapse
Affiliation(s)
- Seung-Jun Seo
- a Department of Biomedical Engineering and Radiology, School of Medicine , Catholic University of Daegu , Daegu City , South Korea
| | - Jae-Kun Jeon
- a Department of Biomedical Engineering and Radiology, School of Medicine , Catholic University of Daegu , Daegu City , South Korea
| | - Sung-Mi Han
- b Department of Anatomy, School of Medicine , Catholic University of Daegu , Daegu City , South Korea
| | - Jong-Ki Kim
- a Department of Biomedical Engineering and Radiology, School of Medicine , Catholic University of Daegu , Daegu City , South Korea
| |
Collapse
|
10
|
Lumniczky K, Szatmári T, Sáfrány G. Ionizing Radiation-Induced Immune and Inflammatory Reactions in the Brain. Front Immunol 2017; 8:517. [PMID: 28529513 PMCID: PMC5418235 DOI: 10.3389/fimmu.2017.00517] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/18/2017] [Indexed: 01/17/2023] Open
Abstract
Radiation-induced late brain injury consisting of vascular abnormalities, demyelination, white matter necrosis, and cognitive impairment has been described in patients subjected to cranial radiotherapy for brain tumors. Accumulating evidence suggests that various degrees of cognitive deficit can develop after much lower doses of ionizing radiation, as well. The pathophysiological mechanisms underlying these alterations are not elucidated so far. A permanent deficit in neurogenesis, chronic microvascular alterations, and blood–brain barrier dysfunctionality are considered among the main causative factors. Chronic neuroinflammation and altered immune reactions in the brain, which are inherent complications of brain irradiation, have also been directly implicated in the development of cognitive decline after radiation. This review aims to give a comprehensive overview on radiation-induced immune alterations and inflammatory reactions in the brain and summarizes how these processes can influence cognitive performance. The available data on the risk of low-dose radiation exposure in the development of cognitive impairment and the underlying mechanisms are also discussed.
Collapse
Affiliation(s)
- Katalin Lumniczky
- Division of Radiation Medicine, National Public Health Centre, National Research Directorate for Radiobiology and Radiohygiene, Budapest, Hungary
| | - Tünde Szatmári
- Division of Radiation Medicine, National Public Health Centre, National Research Directorate for Radiobiology and Radiohygiene, Budapest, Hungary
| | - Géza Sáfrány
- Division of Radiation Medicine, National Public Health Centre, National Research Directorate for Radiobiology and Radiohygiene, Budapest, Hungary
| |
Collapse
|
11
|
Yang J, Zhao X, Tang M, Li L, Lei Y, Cheng P, Guo W, Zheng Y, Wang W, Luo N, Peng Y, Tong A, Wei Y, Nie C, Yuan Z. The role of ROS and subsequent DNA-damage response in PUMA-induced apoptosis of ovarian cancer cells. Oncotarget 2017; 8:23492-23506. [PMID: 28423586 PMCID: PMC5410321 DOI: 10.18632/oncotarget.15626] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/14/2017] [Indexed: 02/05/2023] Open
Abstract
PUMA is a member of the "BH3-only" branch of the BCL-2 family. Our previous study suggests a therapeutic potential of PUMA in treating ovarian cancer, however, the action mechanism of PUMA remains elusive. In this work, we found that in PUMA adenovirus-infected A2780s ovarian cancer cells, exogenous PUMA was partially accumulated in the cytosol and mainly located to the mitochondria. We further showed that PUMA induces mitochondrial dysfunction-mediated apoptosis and ROS generation through functional BAX in a ROS generating enzyme- and caspase-independent manner irrespective of their p53 status, and results in activation of Nrf2/HO-1 pathway. Furthermore, PUMA induces DNA breaks in γ-H2AX staining, and causes activation of DNA damage-related kinases including ATM, ATR, DNA-PKcs, Chk1 and Chk2, which are correlated with the apoptosis. PUMA also results in ROS-triggered JNK activation. Intriguingly, JNK plays a dual role in both DNA damage response and apoptosis, and has an additional contribution to apoptosis. Taken together, we have provided new insight into the action mechanism by which elevated PUMA first induces ROS generation then results in DNA damage response and JNK activation, ultimately contributing to apoptosis in ovarian cancer cells.
Collapse
Affiliation(s)
- Jun Yang
- 1 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinyu Zhao
- 1 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mei Tang
- 1 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Li
- 1 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Lei
- 1 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ping Cheng
- 1 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenhao Guo
- 2 Department of Abdominal Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yu Zheng
- 1 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Wang
- 1 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Na Luo
- 3 Nankai University, School of Medicine/Collaborative Innovation Center of Biotherapy, Tianjin 300071, China
| | - Yong Peng
- 1 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Aiping Tong
- 1 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuquan Wei
- 1 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chunlai Nie
- 1 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhu Yuan
- 1 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
12
|
Lin JC, Tsao MF, Lin YJ. Differential Impacts of Alternative Splicing Networks on Apoptosis. Int J Mol Sci 2016; 17:ijms17122097. [PMID: 27983653 PMCID: PMC5187897 DOI: 10.3390/ijms17122097] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/26/2016] [Accepted: 12/02/2016] [Indexed: 12/16/2022] Open
Abstract
Apoptosis functions as a common mechanism to eliminate unnecessary or damaged cells during cell renewal and tissue development in multicellular organisms. More than 200 proteins constitute complex networks involved in apoptotic regulation. Imbalanced expressions of apoptosis-related factors frequently lead to malignant diseases. The biological functions of several apoptotic factors are manipulated through alternative splicing mechanisms which expand gene diversity by generating discrete variants from one messenger RNA precursor. It is widely observed that alternatively-spliced variants encoded from apoptosis-related genes exhibit differential effects on apoptotic regulation. Alternative splicing events are meticulously regulated by the interplay between trans-splicing factors and cis-responsive elements surrounding the regulated exons. The major focus of this review is to highlight recent studies that illustrate the influences of alternative splicing networks on apoptotic regulation which participates in diverse cellular processes and diseases.
Collapse
Affiliation(s)
- Jung-Chun Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| | - Mei-Fen Tsao
- Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan.
| | - Ying-Ju Lin
- School of Chinese Medicine, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
13
|
Seo SJ, Han SM, Cho JH, Hyodo K, Zaboronok A, You H, Peach K, Hill MA, Kim JK. Enhanced production of reactive oxygen species by gadolinium oxide nanoparticles under core-inner-shell excitation by proton or monochromatic X-ray irradiation: implication of the contribution from the interatomic de-excitation-mediated nanoradiator effect to dose enhancement. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2015; 54:423-431. [PMID: 26242374 DOI: 10.1007/s00411-015-0612-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 07/26/2015] [Indexed: 06/04/2023]
Abstract
Core-inner-valence ionization of high-Z nanoparticle atomic clusters can de-excite electrons through various interatomic de-excitation processes, thereby leading to the ionization of both directly exposed atoms and adjacent neutral atoms within the nanoparticles, and to an enhancement in photon-electron emission, which is termed the nanoradiator effect. To investigate the nanoradiator-mediated dose enhancement in the radio-sensitizing of high-Z nanoparticles, the production of reactive oxygen species (ROS) was measured in a gadolinium oxide nanoparticle (Gd-oxide NP) solution under core-inner-valence excitation of Gd with either 50 keV monochromatic synchrotron X-rays or 45 MeV protons. This measurement was compared with either a radiation-only control or a gadolinium-chelate magnetic resonance imaging contrast agent solution containing equal amounts of gadolinium as the separate atomic species in which Gd-Gd interatomic de-excitations are absent. Ionization excitations followed by ROS measurements were performed on nanoparticle-loaded cells or aqueous solutions. Both photoexcitation and proton impact produced a dose-dependent enhancement in the production of ROS by a range of factors from 1.6 to 1.94 compared with the radiation-only control. Enhanced production of ROS, by a factor of 1.83, was observed from Gd-oxide NP atomic clusters compared with the Gd-chelate molecule, with a Gd concentration of 48 μg/mL in the core-level photon excitation, or by a factor of 1.82 under a Gd concentration of 12 μg/mL for the proton impact at 10 Gy (p < 0.02). The enhanced production of ROS in the irradiated nanoparticles suggests the potential for additional therapeutic dose enhancements in radiation treatment via the potent Gd-Gd interatomic de-excitation-driven nanoradiator effect.
Collapse
Affiliation(s)
- Seung-Jun Seo
- Biomedical Engineering and Radiology, School of Medicine, Catholic University of Daegu, Daegu, Korea
| | - Sung-Mi Han
- Anatomy, School of Medicine, Catholic University of Daegu, Daegu, Korea
| | - Jae-Hoon Cho
- Neurosurgery, School of Medicine, Catholic University of Daegu, Daegu, Korea
| | - Kazuyuki Hyodo
- High Energy Accelerator Research Organization (KEK), Photon Factory, Tsukuba, Japan
| | | | - He You
- Shanghai Synchrotron Radiation Facility, Shanghai, China
| | - Ken Peach
- Particle Therapy Cancer Research Institute, University of Oxford, Oxford, UK
| | - Mark A Hill
- Gray Institute for Radiation Oncology and Biology, University of Oxford, Oxford, UK
| | - Jong-Ki Kim
- Biomedical Engineering and Radiology, School of Medicine, Catholic University of Daegu, Daegu, Korea.
| |
Collapse
|
14
|
Narang H, Kumar A, Bhat N, Pandey BN, Ghosh A. Effect of proton and gamma irradiation on human lung carcinoma cells: Gene expression, cell cycle, cell death, epithelial-mesenchymal transition and cancer-stem cell trait as biological end points. Mutat Res 2015; 780:35-46. [PMID: 26278043 DOI: 10.1016/j.mrfmmm.2015.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 06/12/2015] [Accepted: 07/13/2015] [Indexed: 12/25/2022]
Abstract
Proton beam therapy is a cutting edge modality over conventional gamma radiotherapy because of its physical dose deposition advantage. However, not much is known about its biological effects vis-a-vis gamma irradiation. Here we investigated the effect of proton- and gamma- irradiation on cell cycle, death, epithelial-mesenchymal transition (EMT) and "stemness" in human non-small cell lung carcinoma cells (A549). Proton beam (3MeV) was two times more cytotoxic than gamma radiation and induced higher and longer cell cycle arrest. At equivalent doses, numbers of genes responsive to proton irradiation were ten times higher than those responsive to gamma irradiation. At equitoxic doses, the proton-irradiated cells had reduced cell adhesion and migration ability as compared to the gamma-irradiated cells. It was also more effective in reducing population of Cancer Stem Cell (CSC) like cells as revealed by aldehyde dehydrogenase activity and surface phenotyping by CD44(+), a CSC marker. These results can have significant implications for proton therapy in the context of suppression of molecular and cellular processes that are fundamental to tumor expansion.
Collapse
Affiliation(s)
- Himanshi Narang
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | - Amit Kumar
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | | | - Badri N Pandey
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Anu Ghosh
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| |
Collapse
|
15
|
Yuan Z, Guo W, Yang J, Li L, Wang M, Lei Y, Wan Y, Zhao X, Luo N, Cheng P, Liu X, Nie C, Peng Y, Tong A, Wei Y. PNAS-4, an Early DNA Damage Response Gene, Induces S Phase Arrest and Apoptosis by Activating Checkpoint Kinases in Lung Cancer Cells. J Biol Chem 2015; 290:14927-44. [PMID: 25918161 DOI: 10.1074/jbc.m115.658419] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Indexed: 02/05/2023] Open
Abstract
PNAS-4, a novel pro-apoptotic gene, was activated during the early response to DNA damage. Our previous study has shown that PNAS-4 induces S phase arrest and apoptosis when overexpressed in A549 lung cancer cells. However, the underlying action mechanism remains far from clear. In this work, we found that PNAS-4 expression in lung tumor tissues is significantly lower than that in adjacent lung tissues; its expression is significantly increased in A549 cells after exposure to cisplatin, methyl methane sulfonate, and mitomycin; and its overexpression induces S phase arrest and apoptosis in A549 (p53 WT), NCI-H460 (p53 WT), H526 (p53 mutation), and Calu-1 (p53(-/-)) lung cancer cells, leading to proliferation inhibition irrespective of their p53 status. The S phase arrest is associated with up-regulation of p21(Waf1/Cip1) and inhibition of the Cdc25A-CDK2-cyclin E/A pathway. Up-regulation of p21(Waf1/Cip1) is p53-independent and correlates with activation of ERK. We further showed that the intra-S phase checkpoint, which occurs via DNA-dependent protein kinase-mediated activation of Chk1 and Chk2, is involved in the S phase arrest and apoptosis. Gene silencing of Chk1/2 rescues, whereas that of ATM or ATR does not affect, S phase arrest and apoptosis. Furthermore, human PNAS-4 induces DNA breaks in comet assays and γ-H2AX staining. Intriguingly, caspase-dependent cleavage of Chk1 has an additional role in enhancing apoptosis. Taken together, our findings suggest a novel mechanism by which elevated PNAS-4 first causes DNA-dependent protein kinase-mediated Chk1/2 activation and then results in inhibition of the Cdc25A-CDK2-cyclin E/A pathway, ultimately causing S phase arrest and apoptosis in lung cancer cells.
Collapse
Affiliation(s)
- Zhu Yuan
- From the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, 17 People's South Road, Chengdu 610041, China,
| | - Wenhao Guo
- the Department of Abdominal Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, No. 37, Guoxue Road, Chengdu 610041, Sichuan Province, China, and
| | - Jun Yang
- From the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, 17 People's South Road, Chengdu 610041, China
| | - Lei Li
- From the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, 17 People's South Road, Chengdu 610041, China
| | - Meiliang Wang
- From the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, 17 People's South Road, Chengdu 610041, China
| | - Yi Lei
- From the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, 17 People's South Road, Chengdu 610041, China
| | - Yang Wan
- From the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, 17 People's South Road, Chengdu 610041, China
| | - Xinyu Zhao
- From the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, 17 People's South Road, Chengdu 610041, China
| | - Na Luo
- the Nankai University School of Medicine/Collaborative Innovation Center of Biotherapy, Tianjin 300071, China
| | - Ping Cheng
- From the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, 17 People's South Road, Chengdu 610041, China
| | - Xinyu Liu
- From the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, 17 People's South Road, Chengdu 610041, China
| | - Chunlai Nie
- From the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, 17 People's South Road, Chengdu 610041, China
| | - Yong Peng
- From the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, 17 People's South Road, Chengdu 610041, China
| | - Aiping Tong
- From the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, 17 People's South Road, Chengdu 610041, China,
| | - Yuquan Wei
- From the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, 17 People's South Road, Chengdu 610041, China
| |
Collapse
|
16
|
Abstract
In addition to the physical advantages (Bragg peak), the use of charged particles in cancer therapy can be associated with distinct biological effects compared to X-rays. While heavy ions (densely ionizing radiation) are known to have an energy- and charge-dependent increased Relative Biological Effectiveness (RBE), protons should not be very different from sparsely ionizing photons. A slightly increased biological effectiveness is taken into account in proton treatment planning by assuming a fixed RBE of 1.1 for the whole radiation field. However, data emerging from recent studies suggest that, for several end points of clinical relevance, the biological response is differentially modulated by protons compared to photons. In parallel, research in the field of medical physics highlighted how variations in RBE that are currently neglected might actually result in deposition of significant doses in healthy organs. This seems to be relevant in particular for normal tissues in the entrance region and for organs at risk close behind the tumor. All these aspects will be considered and discussed in this review, highlighting how a re-discussion of the role of a variable RBE in proton therapy might be well-timed.
Collapse
|
17
|
Chang J, Feng W, Wang Y, Luo Y, Allen AR, Koturbash I, Turner J, Stewart B, Raber J, Hauer-Jensen M, Zhou D, Shao L. Whole-body proton irradiation causes long-term damage to hematopoietic stem cells in mice. Radiat Res 2015; 183:240-8. [PMID: 25635345 DOI: 10.1667/rr13887.1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Space flight poses certain health risks to astronauts, including exposure to space radiation, with protons accounting for more than 80% of deep-space radiation. Proton radiation is also now being used with increasing frequency in the clinical setting to treat cancer. For these reasons, there is an urgent need to better understand the biological effects of proton radiation on the body. Such improved understanding could also lead to more accurate assessment of the potential health risks of proton radiation, as well as the development of improved strategies to prevent and mitigate its adverse effects. Previous studies have shown that exposure to low doses of protons is detrimental to mature leukocyte populations in peripheral blood, however, the underlying mechanisms are not known. Some of these detriments may be attributable to damage to hematopoietic stem cells (HSCs) that have the ability to self-renew, proliferate and differentiate into different lineages of blood cells through hematopoietic progenitor cells (HPCs). The goal of this study was to investigate the long-term effects of low-dose proton irradiation on HSCs. We exposed C57BL/6J mice to 1.0 Gy whole-body proton irradiation (150 MeV) and then studied the effects of proton radiation on HSCs and HPCs in the bone marrow (BM) 22 weeks after the exposure. The results showed that mice exposed to 1.0 Gy whole-body proton irradiation had a significant and persistent reduction of BM HSCs compared to unirradiated controls. In contrast, no significant changes were observed in BM HPCs after proton irradiation. Furthermore, irradiated HSCs and their progeny exhibited a significant impairment in clonogenic function, as revealed by the cobblestone area-forming cell (CAFC) and colony-forming cell assays, respectively. These long-term effects of proton irradiation on HSCs may be attributable to the induction of chronic oxidative stress in HSCs, because HSCs from irradiated mice exhibited a significant increase in NADPH oxidase 4 (NOX4) mRNA expression and reactive oxygen species (ROS) production. In addition, the increased production of ROS in HSCs was associated with a significant reduction in HSC quiescence and an increase in DNA damage. These findings indicate that exposure to proton radiation can lead to long-term HSC injury, probably in part by radiation-induced oxidative stress.
Collapse
|
18
|
Paganetti H. Relative biological effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, dose, and linear energy transfer. Phys Med Biol 2014; 59:R419-72. [PMID: 25361443 DOI: 10.1088/0031-9155/59/22/r419] [Citation(s) in RCA: 657] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Proton therapy treatments are based on a proton RBE (relative biological effectiveness) relative to high-energy photons of 1.1. The use of this generic, spatially invariant RBE within tumors and normal tissues disregards the evidence that proton RBE varies with linear energy transfer (LET), physiological and biological factors, and clinical endpoint. Based on the available experimental data from published literature, this review analyzes relationships of RBE with dose, biological endpoint and physical properties of proton beams. The review distinguishes between endpoints relevant for tumor control probability and those potentially relevant for normal tissue complication. Numerous endpoints and experiments on sub-cellular damage and repair effects are discussed. Despite the large amount of data, considerable uncertainties in proton RBE values remain. As an average RBE for cell survival in the center of a typical spread-out Bragg peak (SOBP), the data support a value of ~1.15 at 2 Gy/fraction. The proton RBE increases with increasing LETd and thus with depth in an SOBP from ~1.1 in the entrance region, to ~1.15 in the center, ~1.35 at the distal edge and ~1.7 in the distal fall-off (when averaged over all cell lines, which may not be clinically representative). For small modulation widths the values could be increased. Furthermore, there is a trend of an increase in RBE as (α/β)x decreases. In most cases the RBE also increases with decreasing dose, specifically for systems with low (α/β)x. Data on RBE for endpoints other than clonogenic cell survival are too diverse to allow general statements other than that the RBE is, on average, in line with a value of ~1.1. This review can serve as a source for defining input parameters for applying or refining biophysical models and to identify endpoints where additional radiobiological data are needed in order to reduce the uncertainties to clinically acceptable levels.
Collapse
Affiliation(s)
- Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, 30 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
19
|
Kalaivani P, Saranya S, Poornima P, Prabhakaran R, Dallemer F, Vijaya Padma V, Natarajan K. Biological evaluation of new nickel(II) metallates: Synthesis, DNA/protein binding and mitochondrial mediated apoptosis in human lung cancer cells (A549) via ROS hypergeneration and depletion of cellular antioxidant pool. Eur J Med Chem 2014; 82:584-99. [DOI: 10.1016/j.ejmech.2014.05.075] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/27/2014] [Accepted: 05/31/2014] [Indexed: 10/25/2022]
|
20
|
Jeong MH, Yang KM, Jeong DH, Lee CG, Oh SJ, Jeong SK, Lee KW, Jo YR, Jo WS. Protective activity of a novel resveratrol analogue, HS-1793, against DNA damage in 137Cs-irradiated CHO-K1 cells. JOURNAL OF RADIATION RESEARCH 2014; 55:464-475. [PMID: 24403520 PMCID: PMC4014163 DOI: 10.1093/jrr/rrt140] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 09/25/2013] [Accepted: 11/11/2013] [Indexed: 06/03/2023]
Abstract
Resveratrol has received considerable attention as a polyphenol with anti-oxidant, anti-carcinogenic, and anti-inflammatory effects. Radiation is an important component of therapy for a wide range of malignant conditions. However, it causes damage to normal cells and, hence, can result in adverse side effects. This study was conducted to examine whether HS-1793, a novel resveratrol analogue free from the restriction of metabolic instability and the high dose requirement of resveratrol, induces a protective effect against radiation-induced DNA damage. HS-1793 effectively scavenged free radicals and inhibited radiation-induced plasmid DNA strand breaks in an in vitro assay. HS-1793 significantly decreased reactive oxygen species and cellular DNA damage in 2 Gy-irradiated Chinese hamster ovary (CHO)-K1 cells. In addition, HS-1793 dose-dependently reduced the levels of phosphorylated H2AX in irradiated CHO-K1 cells. These results indicate that HS-1793 has chemical radioprotective activity. Glutathione levels and superoxide dismutase activity in irradiated CHO-K1 cells increased significantly following HS-1793 treatment. The enhanced biological anti-oxidant activity and chemical radioprotective activity of HS-1793 maintained survival of irradiated CHO-K1 cells in a clonogenic assay. Therefore, HS-1793 may be of value as a radioprotector to protect healthy tissue surrounding tumor cells during radiotherapy to obtain better tumor control with a higher dose.
Collapse
Affiliation(s)
- Min Ho Jeong
- Department of Microbiology, Dong-A University College of Medicine, Daeshingongwon-gil 32, Seo-gu, Busan 619-953, Republic of Korea
| | - Kwang Mo Yang
- Department of Research Center, Dong Nam Institute of Radiological and Medical Sciences, Jwadong-gil 40, Jangan-eup,
Gijang-gun, Busan 619-953, Republic of Korea
| | - Dong Hyeok Jeong
- Department of Research Center, Dong Nam Institute of Radiological and Medical Sciences, Jwadong-gil 40, Jangan-eup,
Gijang-gun, Busan 619-953, Republic of Korea
| | - Chang Geun Lee
- Department of Research Center, Dong Nam Institute of Radiological and Medical Sciences, Jwadong-gil 40, Jangan-eup,
Gijang-gun, Busan 619-953, Republic of Korea
| | - Su Jung Oh
- Department of Research Center, Dong Nam Institute of Radiological and Medical Sciences, Jwadong-gil 40, Jangan-eup,
Gijang-gun, Busan 619-953, Republic of Korea
| | - Soo Kyung Jeong
- Department of Research Center, Dong Nam Institute of Radiological and Medical Sciences, Jwadong-gil 40, Jangan-eup,
Gijang-gun, Busan 619-953, Republic of Korea
| | - Ki Won Lee
- Department of Occupation and Environmental Medicine, Dong-A University College of Medicine, Daeshingongwon-gil 32, Seo-gu, Busan 619-953, Republic of Korea
| | - Young Rae Jo
- Department of Microbiology, Dong-A University College of Medicine, Daeshingongwon-gil 32, Seo-gu, Busan 619-953, Republic of Korea
| | - Wol Soon Jo
- Department of Research Center, Dong Nam Institute of Radiological and Medical Sciences, Jwadong-gil 40, Jangan-eup,
Gijang-gun, Busan 619-953, Republic of Korea
| |
Collapse
|
21
|
Girdhani S, Sachs R, Hlatky L. Biological Effects of Proton Radiation: What We Know and Don't Know. Radiat Res 2013; 179:257-72. [DOI: 10.1667/rr2839.1] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
hPNAS-4 inhibits proliferation through S phase arrest and apoptosis: underlying action mechanism in ovarian cancer cells. Apoptosis 2013; 18:467-79. [DOI: 10.1007/s10495-012-0797-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Kim JK, Seo SJ, Kim HT, Kim KH, Chung MH, Kim KR, Ye SJ. Enhanced proton treatment in mouse tumors through proton irradiated nanoradiator effects on metallic nanoparticles. Phys Med Biol 2012. [DOI: 10.1088/0031-9155/57/24/8309] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Ramesh V, Ravichandran P, Copeland CL, Gopikrishnan R, Biradar S, Goornavar V, Ramesh GT, Hall JC. Magnetite induces oxidative stress and apoptosis in lung epithelial cells. Mol Cell Biochem 2011; 363:225-34. [DOI: 10.1007/s11010-011-1174-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 11/24/2011] [Indexed: 11/29/2022]
|
25
|
Gopikrishnan R, Zhang K, Ravichandran P, Biradar S, Ramesh V, Goornavar V, Jeffers RB, Pradhan A, Hall JC, Baluchamy S, Ramesh GT. Epitaxial growth of the zinc oxide nanorods, their characterization and in vitro biocompatibility studies. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:2301-2309. [PMID: 21823031 DOI: 10.1007/s10856-011-4405-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 07/28/2011] [Indexed: 05/31/2023]
Abstract
Here, we have synthesized Zinc Oxide (ZnO) nanorods at room temperature using zinc acetate and hexamethylenetetramine as precursors followed by characterization using X-ray diffraction (XRD), fourier transform infra red spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy. The growth of the synthesized ZnO was found to be very close to its hexagonal nature, which is confirmed by XRD. The nanorods were grown perpendicular to the long-axis and grew along the [001] direction, which is the nature of ZnO growth. The morphology of the synthesized ZnO nanorods was also confirmed by SEM. The size of the nanorod was estimated to be around 20-25 nm in diameter and approximately 50-60 nm in length. Our biocompatibility studies using synthesized ZnO showed no significant dose- or time-dependent increase in the formation of free radicals, accumulation of peroxidative products, antioxidant depletion or loss of cell viability on lung epithelial cells.
Collapse
Affiliation(s)
- Ramya Gopikrishnan
- Molecular Toxicology Laboratory, Center for Biotechnology and Biomedical Sciences, Department of Biology, Norfolk State University, Norfolk, VA 23504, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Reactive oxygen species mediated tissue damage in high energy proton irradiated mouse brain. Mol Cell Biochem 2011; 360:189-95. [DOI: 10.1007/s11010-011-1056-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 09/08/2011] [Indexed: 10/17/2022]
|
27
|
Ristić-Fira A, Todorović D, Zakula J, Keta O, Cirrone P, Cuttone G, Petrović I. Response of human HTB140 melanoma cells to conventional radiation and hadrons. Physiol Res 2011; 60:S129-35. [PMID: 21777021 DOI: 10.33549/physiolres.932181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Conventional radiotherapy with X- and gamma-rays is one of the common and effective treatments of cancer. High energy hadrons, i.e., charged particles like protons and (12)C ions, due to their specific physics and radiobiological advantages are increasingly used. In this study, effectiveness of different radiation types is evaluated on the radio-resistant human HTB140 melanoma cells. The cells were irradiated with gamma-rays, the 62 MeV protons at the Bragg peak and in the middle of the spread-out Bragg peak (SOBP), as well as with the 62 MeV/u (12)C ions. The doses ranged from 2 to 24 Gy. Cell survival and proliferation were assessed 7 days after irradiation, whereas apoptosis was evaluated after 48 h. The acquired results confirmed the high radio-resistance of cells, showing better effectiveness of protons than gamma-rays. The best efficiency was obtained with (12)C ions due to higher linear energy transfer. All analyzed radiation qualities reduced cell proliferation. The highest proliferation was detected for (12)C ions because of their large killing capacity followed by small induction of reparable lesions. This enabled unharmed cells to preserve proliferative activity. Irradiations with protons and (12)C ions revealed similar moderate pro-apoptotic ability that is in agreement with the level of cellular radio-resistance.
Collapse
Affiliation(s)
- A Ristić-Fira
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia.
| | | | | | | | | | | | | |
Collapse
|
28
|
Ravichandran P, Baluchamy S, Gopikrishnan R, Biradar S, Ramesh V, Goornavar V, Thomas R, Wilson BL, Jeffers R, Hall JC, Ramesh GT. Pulmonary biocompatibility assessment of inhaled single-wall and multiwall carbon nanotubes in BALB/c mice. J Biol Chem 2011; 286:29725-33. [PMID: 21705330 DOI: 10.1074/jbc.m111.251884] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
With the widespread application of carbon nanotubes (CNTs) in diverse commercial processes, scientists are now concerned about the potential health risk of occupational exposures. In this study, CNT-induced pulmonary toxicity was investigated by exposing BALB/c mice to aerosolized single-wall (SW) CNT and multiwall (MW) CNT (5 μg/g of mice) for 7 consecutive days in a nose-only exposure system. Microscopic studies showed that inhaled CNTs were homogeneously distributed in the mouse lung. The total number of bronchoalveolar lavage polymorphonuclear leukocytes recovered from the mice exposed to SWCNT and MWCNT (1.2 × 10(6) ± 0.52 and 9.87 × 10(5) ± 1.45; respectively) was significantly greater than control mice (5.46 × 10(5) ± 0.78). Rapid development of pulmonary fibrosis in mice that inhaled CNT was also confirmed by significant increases in the collagen level. The lactate dehydrogenase levels were increased nearly 2- and 2.4-fold in mice that inhaled SWCNT and MWCNT, respectively, as compared with control mice. In addition, exposure of CNTs to mice showed a significant (p < 0.05) reduction of antioxidants (glutathione, superoxide dismutase, and catalase) and induction of oxidants (myloperoxidase, oxidative stress, and lipid peroxidation) compared with control. Apoptosis-related proteins such as caspase-3 and -8 activities were also significantly increased in mice that inhaled CNT than in control mice. Together, this study shows that inhaled CNTs induce inflammation, fibrosis, alteration of oxidant and antioxidant levels, and induction of apoptosis-related proteins in the lung tissues to trigger cell death.
Collapse
Affiliation(s)
- Prabakaran Ravichandran
- Center for Biotechnology and Biomedical Sciences, Department of Biology, Norfolk State University, Norfolk, Virginia 23504, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|