1
|
Prüschenk S, Majer M, Schreiber R, Schlossmann J. IRAG2 Interacts with IP 3-Receptor Types 1, 2, and 3 and Regulates Intracellular Ca 2+ in Murine Pancreatic Acinar Cells. Int J Mol Sci 2021; 22:ijms222413409. [PMID: 34948204 PMCID: PMC8707672 DOI: 10.3390/ijms222413409] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 01/18/2023] Open
Abstract
The inositol 1,4,5-triphosphate receptor-associated 2 (IRAG2) is also known as Jaw1 or lymphoid-restricted membrane protein (LRMP) and shares homology with the inositol 1,4,5-triphosphate receptor-associated cGMP kinase substrate 1 (IRAG1). IRAG1 interacts with inositol trisphosphate receptors (IP3 receptors /IP3R) via its coiled-coil domain and modulates Ca2+ release from intracellular stores. Due to the homology of IRAG1 and IRAG2, especially in its coiled-coil domain, it is possible that IRAG2 has similar interaction partners like IRAG1 and that IRAG2 also modulates intracellular Ca2+ signaling. In our study, we localized IRAG2 in pancreatic acinar cells of the exocrine pancreas, and we investigated the interaction of IRAG2 with IP3 receptors and its impact on intracellular Ca2+ signaling and exocrine pancreatic function, like amylase secretion. We detected the interaction of IRAG2 with different subtypes of IP3R and altered Ca2+ release in pancreatic acinar cells from mice lacking IRAG2. IRAG2 deficiency decreased basal levels of intracellular Ca2+, suggesting that IRAG2 leads to activation of IP3R under unstimulated basal conditions. Moreover, we observed that loss of IRAG2 impacts the secretion of amylase. Our data, therefore, suggest that IRAG2 modulates intracellular Ca2+ signaling, which regulates exocrine pancreatic function.
Collapse
Affiliation(s)
- Sally Prüschenk
- Department of Pharmacology and Toxicology, Institute of Pharmacy, University of Regensburg, 93040 Regensburg, Germany; (S.P.); (M.M.)
| | - Michael Majer
- Department of Pharmacology and Toxicology, Institute of Pharmacy, University of Regensburg, 93040 Regensburg, Germany; (S.P.); (M.M.)
| | - Rainer Schreiber
- Institute of Physiology, University of Regensburg, 93040 Regensburg, Germany;
| | - Jens Schlossmann
- Department of Pharmacology and Toxicology, Institute of Pharmacy, University of Regensburg, 93040 Regensburg, Germany; (S.P.); (M.M.)
- Correspondence: ; Tel.: +49-941-943-4770
| |
Collapse
|
2
|
Wang S, Yang FJ, Wang X, Zhou Y, Dai B, Han B, Ma HC, Ding YT, Shi XL. PARP-1 promotes tumor recurrence after warm ischemic liver graft transplantation via neutrophil recruitment and polarization. Oncotarget 2017; 8:88918-88933. [PMID: 29179487 PMCID: PMC5687657 DOI: 10.18632/oncotarget.21493] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/26/2017] [Indexed: 12/21/2022] Open
Abstract
Poly (ADP-ribose) polymerase 1 (PARP-1) is a crucial contributor to exacerbate ischemia and reperfusion (IR) injury and cancer process. However, there is little research into whether PARP-1 affects the hepatocellular carcinoma (HCC) recurrence after liver transplantation. In this study, we investigated the influence of PARP-1 on hepatic neutrophil mobilizing and phenotype shifting which may lead to HCC recurrence after liver transplantation. We found that rats received the grafts with warm ischemic injury had higher risk of HCC recurrence, which was markedly prevented by pharmacological inhibition of PARP-1 after liver transplantation. In mouse models, the up-regulation of PARP-1 was closely related to the greater tumor burden and increased hepatic susceptibility to recurrence after IR injury. The reason was that high hepatic PARP-1 led to increased liver CXCL1 levels, which in turn promoted recruitment of neutrophils. Both blocking CXCL1/CXCR2 signaling pathway and depleting neutrophils decreased tumor burden. Moreover, these infiltrating neutrophils were programmed to a proangiogenic phenotype under the influence of PARP-1 in vivo after hepatic IR injury. In conclusion, IR-induced PARP-1 up-regulation increased the hepatic recruitment of neutrophils through regulation of CXCL1/CXCR2 signaling and polarized hepatic neutrophils to proangiogenic phenotype, which further promoted HCC recurrence after transplantation.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.,Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Fa-Ji Yang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xun Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yuan Zhou
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Bo Dai
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Bing Han
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Hu-Cheng Ma
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yi-Tao Ding
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.,Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiao-Lei Shi
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.,Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
3
|
Liang W, Ni Y, Chen F. Tumor resistance to vascular disrupting agents: mechanisms, imaging, and solutions. Oncotarget 2016; 7:15444-59. [PMID: 26812886 PMCID: PMC4941252 DOI: 10.18632/oncotarget.6999] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 01/14/2016] [Indexed: 01/04/2023] Open
Abstract
The emergence of vascular disrupting agents (VDAs) is a significant advance in the treatment of solid tumors. VDAs induce rapid and selective shutdown of tumor blood flow resulting in massive necrosis. However, a viable marginal tumor rim always remains after VDA treatment and is a major cause of recurrence. In this review, we discuss the mechanisms involved in the resistance of solid tumors to VDAs. Hypoxia, tumor-associated macrophages, and bone marrow-derived circulating endothelial progenitor cells all may contribute to resistance. Resistance can be monitored using magnetic resonance imaging markers. The various solutions proposed to manage tumor resistance to VDAs emphasize combining these agents with other approaches including antiangiogenic agents, chemotherapy, radiotherapy, radioimmunotherapy, and sequential dual-targeting internal radiotherapy.
Collapse
Affiliation(s)
- Wenjie Liang
- Department of Radiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yicheng Ni
- Radiology Section, University Hospitals, University of Leuven, Leuven, Belgium
| | - Feng Chen
- Department of Radiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Molecular targets and pathways involved in liver metastasis of colorectal cancer. Clin Exp Metastasis 2015; 32:623-35. [DOI: 10.1007/s10585-015-9732-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 06/17/2015] [Indexed: 02/08/2023]
|
5
|
Abstract
Oxygen is the basic molecule which supports life and it truly is "god's gift to life." Despite its immense importance, research on "oxygen biology" has never received the light of the day and has been limited to physiological and biochemical studies. It seems that in modern day biology, oxygen research is summarized in one word "hypoxia." Scientists have focused on hypoxia-induced transcriptomics and molecular-cellular alterations exclusively in disease models. Interestingly, the potential of oxygen to control the basic principles of biology like homeostatic maintenance, transcription, replication, and protein folding among many others, at the molecular level, has been completely ignored. Here, we present a perspective on the crucial role played by oxygen in regulation of basic biological phenomena. Our conclusion highlights the importance of establishing novel research areas like oxygen biology, as there is great potential in this field for basic science discoveries and clinical benefits to the society.
Collapse
|
6
|
McCann GA, Naidu S, Rath KS, Bid HK, Tierney BJ, Suarez A, Varadharaj S, Zhang J, Hideg K, Houghton P, Kuppusamy P, Cohn DE, Selvendiran K. Targeting constitutively-activated STAT3 in hypoxic ovarian cancer, using a novel STAT3 inhibitor. Oncoscience 2014; 1:216-28. [PMID: 25594014 PMCID: PMC4278289 DOI: 10.18632/oncoscience.26] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 03/31/2014] [Indexed: 01/04/2023] Open
Abstract
Tumor hypoxia, a feature of many solid tumors including ovarian cancer, is associated with resistance to therapies. We previously demonstrated that hypoxic exposure results in increased expression of phosphorylated signal transducer and activator of transcription 3 (pSTAT3). We hypothesized the activation of STAT3 could lead to chemotherapeutic resistance in ovarian cancer cells in hypoxic conditions. In this study, we demonstrate the level of pSTAT3 Tyr705 is increased in the hypoxic regions of human epithelial ovarian cancer (EOC) specimens, as determined by HIF-1α and CD-31 staining. In vitro mutagenesis studies proved that pSTAT3 Tyr705 is necessary for cell survival and proliferation under hypoxic conditions. In addition, we show that S1PR1, a regulator of STAT3 transcription via the JAK/STAT pathway, is highly expressed in hypoxic ovarian cancer cells (HOCCs). Knock down of S1PR1 in HOCCs reduced pSTAT3 Tyr705 levels and was associated with decreased cell survival. Treatment of HOCCs with the STAT3 inhibitor HO-3867 resulted in a rapid and dramatic decrease in pSTAT3 Tyr705 levels as a result of ubiquitin proteasome degradation. STAT3-target proteins Bcl-xL, cyclin D2 and VEGF showed similar decreases in HO-3867 treated cells. Taken together, these findings suggest that activation of STAT3 Tyr705 promotes cell survival and proliferation in HOCCs, and that S1PR1 is involved in the initiation of STAT3 activation. Targeting hypoxia-mediated STAT3 activation represents a therapeutic option for ovarian cancer and other solid tumors.
Collapse
Affiliation(s)
- Georgia A McCann
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Shan Naidu
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Kellie S Rath
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| | | | - Brent J Tierney
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Adrian Suarez
- Department of Pathology, Divisions of Gynecological Pathology and Cytopathology, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Saradhadevi Varadharaj
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Jianying Zhang
- Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Kálmán Hideg
- Institute of Organic and Medicinal Chemistry, University of Pécs, Pécs, Hungary
| | | | | | - David E Cohn
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Karuppaiyah Selvendiran
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| |
Collapse
|
7
|
Mun J, Jabbar AA, Devi NS, Yin S, Wang Y, Tan C, Culver D, Snyder JP, Van Meir EG, Goodman MM. Design and in vitro activities of N-alkyl-N-[(8-R-2,2-dimethyl-2H-chromen-6-yl)methyl]heteroarylsulfonamides, novel, small-molecule hypoxia inducible factor-1 pathway inhibitors and anticancer agents. J Med Chem 2012; 55:6738-50. [PMID: 22746274 PMCID: PMC3756490 DOI: 10.1021/jm300752n] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The hypoxia inducible factor (HIF) pathway is an attractive target for cancer, as it controls tumor adaptation to growth under hypoxia and mediates chemotherapy and radiation resistance. We previously discovered 3,4-dimethoxy-N-[(2,2-dimethyl-2H-chromen-6-yl)methyl]-N-phenylbenzenesulfonamide as a novel, small-molecule HIF-1 pathway inhibitor in a high-throughput cell-based assay, but its in vivo delivery is hampered by poor aqueous solubility (0.009 μM in water; log P(7.4) = 3.7). Here we describe the synthesis of 12 N-alkyl-N-[(8-R-2,2-dimethyl-2H-chromen-6-yl)methyl]heteroarylsulfonamides, which were designed to possess optimal lipophilicities and aqueous solubilities by in silico calculations. Experimental log P(7.4) values of 8 of the 12 new analogs ranged from 1.2-3.1. Aqueous solubilities of three analogs were measured, among which the most soluble N-[(8-methoxy-2,2-dimethyl-2H-chromen-6-yl)methyl]-N-(propan-2-yl)pyridine-2-sulfonamide had an aqueous solubility of 80 μM, e.g., a solubility improvement of ∼9000-fold. The pharmacological optimization had limited impact on drug efficacy as the compounds retained IC(50) values at or below 5 μM in our HIF-dependent reporter assay.
Collapse
Affiliation(s)
- Jiyoung Mun
- Department of Radiology and imaging sciences, Emory University CSI, Wesley Woods Health Center, 1841 Clifton Road, NE, Atlanta, GA 30329
| | - Adnan Abdul Jabbar
- Hematology and Medical Oncology, Emory University School of Medicine, Emory University, Atlanta, GA 30322
| | | | - Shaoman Yin
- Department of Neurosurgery, Emory University, Atlanta, GA 30322
| | - Yingzhe Wang
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Atlanta, GA 30341
| | - Chalet Tan
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Atlanta, GA 30341
| | - Deborah Culver
- Emory Institute for Drug Discovery, Emory University, Atlanta, Georgia 30322
| | - James P. Snyder
- Emory Institute for Drug Discovery, Emory University, Atlanta, Georgia 30322
- Department of Chemistry, Emory University, Atlanta, Georgia, 30322
| | - Erwin G. Van Meir
- Department of Neurosurgery, Emory University, Atlanta, GA 30322
- Hematology and Medical Oncology, Emory University School of Medicine, Emory University, Atlanta, GA 30322
- Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | - Mark M. Goodman
- Department of Radiology and imaging sciences, Emory University CSI, Wesley Woods Health Center, 1841 Clifton Road, NE, Atlanta, GA 30329
- Winship Cancer Institute, Emory University, Atlanta, GA 30322
| |
Collapse
|
8
|
Cui H, Grosso S, Schelter F, Mari B, Krüger A. On the Pro-Metastatic Stress Response to Cancer Therapies: Evidence for a Positive Co-Operation between TIMP-1, HIF-1α, and miR-210. Front Pharmacol 2012; 3:134. [PMID: 22807917 PMCID: PMC3395024 DOI: 10.3389/fphar.2012.00134] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 06/24/2012] [Indexed: 01/18/2023] Open
Abstract
In contrast to expectations in the past that tumor starvation or unselective inhibition of proteolytic activity would cure cancer, there is accumulating evidence that microenvironmental stress, such as hypoxia or broad-spectrum inhibition of metalloproteinases can promote metastasis. In fact, malignant tumor cells, due to their genetic and epigenetic instability, are predisposed to react to stress by adaptation and, if the stress persists, by escape and formation of metastasis. Recent recognition of the concepts of dynamic evolution as well as population and systems biology is extremely helpful to understand the disappointments of clinical trials with new drugs and may lead to paradigm-shifts in therapy strategies. This must be complemented by an increased understanding of molecular mechanism involved in stress response. Here, we review new roles of Hypoxia-inducible factor-1 (HIF-1), one transcription factor regulating stress response-related gene expression: HIF-1 is crucial for invasion and metastasis, independent from its pro-survival function. In addition, HIF-1 mediates pro-metastatic microenvironmental changes of the proteolytic balance as triggered by high systemic levels of tissue inhibitor of metalloproteinases-1 (TIMP-1), typical for many aggressive cancers, and regulates the metabolic switch to glycolysis, notably via activation of the microRNA miR-210. There is preliminary evidence that TIMP-1 also induces miR-210. Such positive-regulatory co-operation of HIF-1α, miR-210, and TIMP-1, all described to correlate with bad prognosis of cancer patients, opens new perspectives of gaining insight into molecular mechanisms of metastasis-inducing evasion of tumor cells from stress.
Collapse
Affiliation(s)
- Haissi Cui
- Klinikum Rechts der Isar der Technischen Universität München, Institut für Experimentelle Onkologie und Therapieforschung München, Germany
| | | | | | | | | |
Collapse
|
9
|
Tumor cell-derived Timp-1 is necessary for maintaining metastasis-promoting Met-signaling via inhibition of Adam-10. Clin Exp Metastasis 2011; 28:793-802. [PMID: 21789719 DOI: 10.1007/s10585-011-9410-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 07/11/2011] [Indexed: 01/03/2023]
Abstract
In many different tumor entities, increased expression of tissue inhibitor of metalloproteinases-1 (Timp-1) is associated with poor prognosis. We previously reported in mouse models that elevated systemic levels of Timp-1 induce a gene expression signature in the liver microenvironment increasing the susceptibility of this organ to tumor cells. This host effect was dependent on increased activity of the hepatocyte growth factor (Hgf)/hepatocyte growth factor receptor (Met) signaling pathway. In a recent study we showed that Met signaling is regulated by Timp-1 as it inhibits the Met sheddase A disintegrin and metalloproteinase-10 (Adam-10). The aim of the present study was to elucidate whether the metastatic potential of tumor cells benefits from autocrine Timp-1 as well and involves Adam-10 and Met signaling. In a syngeneic murine model of experimental liver metastasis Timp-1 expression and Met signaling were localized within metastatic colonies and expressed by tumor cells. Knock down of tumor cell Timp-1 suppressed Met signaling in metastases and inhibited metastasis formation and tumor cell-scattering in the liver. In vitro, knock down of tumor cell Timp-1 prevented Hgf-induced Met phosphorylation. Consequently, knock down of Met sheddase Adam-10 triggered auto-phosphorylation and responsiveness to Hgf. Accordingly, Adam-10 knock down increased Met phosphorylation in metastatic foci and induced tumor cell scattering into the surrounding liver parenchyma. In conclusion, these findings show that tumor cell-derived Timp-1 acts as a positive regulator of the metastatic potential and support the concept that proteases and their natural inhibitors, as members of the protease web, are major players of signaling during normal homeostasis and disease.
Collapse
|
10
|
Schelter F, Halbgewachs B, Bäumler P, Neu C, Görlach A, Schrötzlmair F, Krüger A. Tissue inhibitor of metalloproteinases-1-induced scattered liver metastasis is mediated by hypoxia-inducible factor-1α. Clin Exp Metastasis 2010; 28:91-9. [PMID: 21053058 DOI: 10.1007/s10585-010-9360-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 10/12/2010] [Indexed: 12/16/2022]
Abstract
The "protease web", representing the network of proteases, their inhibitors, and effector molecules, arises as a pivotal determinant of tissue homeostasis. Imbalances of this network, for instance caused by elevated host levels of tissue inhibitor of metalloproteinases-1 (TIMP-1), have been shown to increase the susceptibility of target organs to scattered metastasis by inducing the hepatocyte growth factor (HGF) pathway. Increased expression of the hypoxia-inducible factor-1α-subunit (HIF-1α) is also associated with tumour progression and is also known to induce HGF-signaling via up-regulation of the HGF-receptor Met, namely under canonical stress conditions like lack of oxygen. Here, we aimed to identify a possible metastasis-promoting connection between TIMP-1, HIF-1α, and HGF-signaling. We found that HIF-1α and HIF-1-signaling were increased during liver metastasis of L-CI.5s T-lymphoma cells in TIMP-1 overexpressing syngeneic DBA/2 mice. In vitro, exposure of L-CI.5s cells to recombinant TIMP-1 revealed that TIMP-1 itself was able to induce HIF-1α and HIF-1-signaling. Knock-down of HIF-1α identified tumour cell-derived HIF-1α as mediator of this TIMP-1-induced invasiveness in vitro. In vivo, HIF-1α knock-down significantly impaired Met expression as well as Met phosphorylation and inhibited scattered liver metastasis. Furthermore, HGF-dependent TIMP-1-promoted Met phosphorylation and HGF-dependent TIMP-1-induced invasiveness in vitro was mediated by HIF-1α. We conclude that elevated levels of TIMP-1 in the microenvironment of tumour cells can promote metastasis by inducing HIF-1α-dependent HGF-signaling. This connection between a protease inhibitor (TIMP-1) and a classically stress-related factor (HIF-1α) is a so far undiscovered impact of the "protease web" on tissue homeostasis with important implications for metastasis.
Collapse
Affiliation(s)
- Florian Schelter
- Institut für Experimentelle Onkologie und Therapieforschung des Klinikums rechts der Isar, Technische Universität München, Ismaninger Strasse 22, 81675, München, Germany
| | | | | | | | | | | | | |
Collapse
|