1
|
Cao Q, Ammerman A, Saimi M, Lin Z, Shen G, Chen H, Sun J, Chai M, Liu S, Hsu FF, Krezel AM, Gross ML, Xu J, Garcia BA, Liu B, Li W. Molecular basis of vitamin-K-driven γ-carboxylation at the membrane interface. Nature 2025; 639:816-824. [PMID: 39880037 DOI: 10.1038/s41586-025-08648-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/14/2025] [Indexed: 01/31/2025]
Abstract
The γ-carboxylation of glutamate residues enables Ca2+-mediated membrane assembly of protein complexes that support broad physiological functions, including haemostasis, calcium homeostasis, immune response and endocrine regulation1-4. Modulating γ-carboxylation levels provides prevalent treatments for haemorrhagic and thromboembolic diseases5. This unique post-translational modification requires vitamin K hydroquinone (KH2) to drive highly demanding reactions6 catalysed by the membrane-integrated γ-carboxylase (VKGC). Here, to decipher the underlying mechanisms, we determined cryo-electron microscopy structures of human VKGC in unbound form, with KH2 and four haemostatic and non-haemostatic proteins possessing propeptides and glutamate-rich domains in different carboxylation states. VKGC recognizes substrate proteins through knob-and-hole interactions with propeptides, thereby bringing tethered glutamate-containing segments for processive carboxylation within a large chamber that provides steric control. Propeptide binding also triggers a global conformational change to signal VKGC activation. Through sequential deprotonation and KH2 epoxidation, VKGC generates a free hydroxide ion as an exceptionally strong base that is required to deprotonate the γ-carbon of glutamate for CO2 addition. The diffusion of this superbase-protected and guided by a sealed hydrophobic tunnel-elegantly resolves the challenge of coupling KH2 epoxidation to γ-carboxylation across the membrane interface. These structural insights and extensive functional experiments advance membrane enzymology and propel the development of treatments for γ-carboxylation disorders.
Collapse
Affiliation(s)
- Qing Cao
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
| | - Aaron Ammerman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
| | - Mierxiati Saimi
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
| | - Zongtao Lin
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
| | - Guomin Shen
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
- Department of Cell Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, People's Republic of China
| | - Huaping Chen
- Department of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Jie Sun
- Department of Chemistry, Washington University, St Louis, MO, USA
| | - Mengqi Chai
- Department of Chemistry, Washington University, St Louis, MO, USA
| | - Shixuan Liu
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
| | - Fong-Fu Hsu
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Andrzej M Krezel
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
| | - Michael L Gross
- Department of Chemistry, Washington University, St Louis, MO, USA
| | - Jinbin Xu
- Department of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
| | - Bin Liu
- The Hormel Institute, University of Minnesota, Austin, MN, USA.
| | - Weikai Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
2
|
Shen G, Gao M, Cao Q, Li W. The Molecular Basis of FIX Deficiency in Hemophilia B. Int J Mol Sci 2022; 23:2762. [PMID: 35269902 PMCID: PMC8911121 DOI: 10.3390/ijms23052762] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 12/15/2022] Open
Abstract
Coagulation factor IX (FIX) is a vitamin K dependent protein and its deficiency causes hemophilia B, an X-linked recessive bleeding disorder. More than 1000 mutations in the F9 gene have been identified in hemophilia B patients. Here, we systematically summarize the structural and functional characteristics of FIX and the pathogenic mechanisms of the mutations that have been identified to date. The mechanisms of FIX deficiency are diverse in these mutations. Deletions, insertions, duplications, and indels generally lead to severe hemophilia B. Those in the exon regions generate either frame shift or inframe mutations, and those in the introns usually cause aberrant splicing. Regarding point mutations, the bleeding phenotypes vary from severe to mild in hemophilia B patients. Generally speaking, point mutations in the F9 promoter region result in hemophilia B Leyden, and those in the introns cause aberrant splicing. Point mutations in the coding sequence can be missense, nonsense, or silent mutations. Nonsense mutations generate truncated FIX that usually loses function, causing severe hemophilia B. Silent mutations may lead to aberrant splicing or affect FIX translation. The mechanisms of missense mutation, however, have not been fully understood. They lead to FIX deficiency, often by affecting FIX's translation, protein folding, protein stability, posttranslational modifications, activation to FIXa, or the ability to form functional Xase complex. Understanding the molecular mechanisms of FIX deficiency will provide significant insight for patient diagnosis and treatment.
Collapse
Affiliation(s)
- Guomin Shen
- Henan International Joint Laboratory of Thrombosis and Hemostasis, Henan University of Science and Technology, Luoyang 471023, China; (M.G.); (Q.C.)
- School of Basic Medical Science, Henan University of Science and Technology, Luoyang 471023, China
| | - Meng Gao
- Henan International Joint Laboratory of Thrombosis and Hemostasis, Henan University of Science and Technology, Luoyang 471023, China; (M.G.); (Q.C.)
- School of Basic Medical Science, Henan University of Science and Technology, Luoyang 471023, China
| | - Qing Cao
- Henan International Joint Laboratory of Thrombosis and Hemostasis, Henan University of Science and Technology, Luoyang 471023, China; (M.G.); (Q.C.)
- School of Basic Medical Science, Henan University of Science and Technology, Luoyang 471023, China
| | - Weikai Li
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
3
|
Ghosh S, Kraus K, Biswas A, Müller J, Buhl AL, Forin F, Singer H, Höning K, Hornung V, Watzka M, Czogalla-Nitsche KJ, Oldenburg J. GGCX mutations show different responses to vitamin K thereby determining the severity of the hemorrhagic phenotype in VKCFD1 patients. J Thromb Haemost 2021; 19:1412-1424. [PMID: 33590680 DOI: 10.1111/jth.15238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/22/2020] [Accepted: 01/04/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND Vitamin K dependent coagulation factor deficiency type 1 (VKCFD1) is a rare hereditary bleeding disorder caused by mutations in γ-glutamyl carboxylase (GGCX). VKCFD1 patients are treated life-long with high doses of vitamin K in order to correct the bleeding phenotype. However, normalization of clotting factor activities cannot be achieved for all VKCFD1 patients. OBJECTIVE The current study aims to investigate the responsiveness to vitamin K for all reported GGCX mutations with respect to clotting factors in order to optimize treatment. METHODS This study developed an assay using genetically engineered GGCX-/- cells, in which GGCX mutations were analyzed with respect to their ability to γ-carboxylate vitamin K dependent pro-coagulatory and anti-coagulatory clotting factors by ELISA. Additionally, factor VII activity was measured in order to proof protein functionality. For specific GGCX mutations immunofluorescent staining was performed to assess the intracellular localization of clotting factors with respect to GGCX wild-type and mutations. RESULTS All GGCX mutations were categorized into responder and low responder mutations, thereby determining the efficiency of vitamin K supplementation. Most VKCFD1 patients have at least one vitamin K responsive GGCX allele that is able to γ-carboxylate clotting factors. In few patients, the hemorrhagic phenotype cannot be reversed by vitamin K administration because GGCX mutations on both alleles affect either structural or catalytically important sites thereby resulting in residual ability to γ-carboxylate clotting factors. CONCLUSION With these new functional data we can predict the hemorrhagic outcome of each VKCFD1 genotype, thus recommending treatments with either vitamin K or prothrombin complex concentrate.
Collapse
Affiliation(s)
- Suvoshree Ghosh
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| | - Katrin Kraus
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| | - Arijit Biswas
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| | - Jens Müller
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| | - Anna-Lena Buhl
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| | - Francesco Forin
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| | - Heike Singer
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| | - Klara Höning
- Institute for Clinical Chemistry and Clinical Pharmacology, Unit for Clinical Biochemistry, University Hospital, University of Bonn, Bonn, Germany
| | - Veit Hornung
- Institute for Clinical Chemistry and Clinical Pharmacology, Unit for Clinical Biochemistry, University Hospital, University of Bonn, Bonn, Germany
- GeneCenter and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Matthias Watzka
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
- Center for Rare Diseases Bonn, University Clinic Bonn, Bonn, Germany
| | - Katrin J Czogalla-Nitsche
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| | - Johannes Oldenburg
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
- Center for Rare Diseases Bonn, University Clinic Bonn, Bonn, Germany
| |
Collapse
|
4
|
Gao W, Xu Y, Liu H, Gao M, Cao Q, Wang Y, Cui L, Huang R, Shen Y, Li S, Yang H, Chen Y, Li C, Yu H, Li W, Shen G. Characterization of missense mutations in the signal peptide and propeptide of FIX in hemophilia B by a cell-based assay. Blood Adv 2020; 4:3659-3667. [PMID: 32766856 PMCID: PMC7422117 DOI: 10.1182/bloodadvances.2020002520] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/06/2020] [Indexed: 11/20/2022] Open
Abstract
Many mutations in the signal peptide and propeptide of factor IX (FIX) cause hemophilia B. A FIX variants database reports 28 unique missense mutations in these regions that lead to FIX deficiency, but the underlying mechanism is known only for the mutations on R43 that interfere with propeptide cleavage. It remains unclear how other mutations result in FIX deficiency and why patients carrying the same mutation have different bleeding tendencies. Here, we modify a cell-based reporter assay to characterize the missense mutations in the signal peptide and propeptide of FIX. The results show that the level of secreted conformation-specific reporter (SCSR), which has a functional γ-carboxyglutamate (Gla) domain of FIX, decreases significantly in most mutations. The decreased SCSR level is consistent with FIX deficiency in hemophilia B patients. Moreover, we find that the decrease in the SCSR level is caused by several distinct mechanisms, including interfering with cotranslational translocation into the endoplasmic reticulum, protein secretion, γ-carboxylation of the Gla domain, and cleavage of the signal peptide or propeptide. Importantly, our results also show that the SCSR levels of most signal peptide and propeptide mutations increase with vitamin K concentration, suggesting that the heterogeneity of bleeding tendencies may be related to vitamin K levels in the body. Thus, oral administration of vitamin K may alleviate the severity of bleeding tendencies in patients with missense mutations in the FIX signal peptide and propeptide regions.
Collapse
Affiliation(s)
- Wenwen Gao
- Department of Medical Genetics, Institute of Hemostasis and Thrombosis, School of Basic Medical Sciences, and
| | - Yaqi Xu
- Department of Medical Genetics, Institute of Hemostasis and Thrombosis, School of Basic Medical Sciences, and
| | - Hongli Liu
- Department of Medical Genetics, Institute of Hemostasis and Thrombosis, School of Basic Medical Sciences, and
| | - Meng Gao
- Department of Medical Genetics, Institute of Hemostasis and Thrombosis, School of Basic Medical Sciences, and
| | - Qing Cao
- Department of Medical Genetics, Institute of Hemostasis and Thrombosis, School of Basic Medical Sciences, and
| | - Yiyi Wang
- Department of Medical Genetics, Institute of Hemostasis and Thrombosis, School of Basic Medical Sciences, and
| | - Longteng Cui
- Department of Medical Genetics, Institute of Hemostasis and Thrombosis, School of Basic Medical Sciences, and
| | - Rong Huang
- Department of Medical Genetics, Institute of Hemostasis and Thrombosis, School of Basic Medical Sciences, and
| | - Yan Shen
- Department of Medical Genetics, Institute of Hemostasis and Thrombosis, School of Basic Medical Sciences, and
| | - Sanqiang Li
- Department of Medical Genetics, Institute of Hemostasis and Thrombosis, School of Basic Medical Sciences, and
| | - Haiping Yang
- Department of Medical Genetics, Institute of Hemostasis and Thrombosis, School of Basic Medical Sciences, and
- First Affiliated Hospital, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Yixiang Chen
- Department of Medical Genetics, Institute of Hemostasis and Thrombosis, School of Basic Medical Sciences, and
| | - Chaokun Li
- Sino-UK Joint Laboratory for Brain Function and Injury, School of Basic Medical Sciences, and
| | - Haichuan Yu
- Department of Biochemistry and Molecular Biology, School of Medical Laboratory, Xinxiang Medical University, Xinxiang, People's Republic of China; and
| | - Weikai Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | - Guomin Shen
- Department of Medical Genetics, Institute of Hemostasis and Thrombosis, School of Basic Medical Sciences, and
| |
Collapse
|
5
|
Ayombil F, Camire RM. Insights into vitamin K-dependent carboxylation: home field advantage. Haematologica 2020; 105:1996-1998. [PMID: 32739888 DOI: 10.3324/haematol.2020.253690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Francis Ayombil
- Division of Hematology and the Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia
| | - Rodney M Camire
- Division of Hematology and the Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
6
|
Hao Z, Jin DY, Stafford DW, Tie JK. Vitamin K-dependent carboxylation of coagulation factors: insights from a cell-based functional study. Haematologica 2019; 105:2164-2173. [PMID: 31624106 PMCID: PMC7395276 DOI: 10.3324/haematol.2019.229047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/11/2019] [Indexed: 12/21/2022] Open
Abstract
Vitamin K-dependent carboxylation is a post-translational modification essential for the biological function of coagulation factors. Defects in carboxylation are mainly associated with bleeding disorders. With the discovery of new vitamin K-dependent proteins, the importance of carboxylation now encompasses vascular calcification, bone metabolism, and other important physiological processes. Our current knowledge of carboxylation, however, comes mainly from in vitro studies carried out under artificial conditions, which have a limited usefulness in understanding the carboxylation of vitamin K-dependent proteins in native conditions. Using a recently established mammalian cell-based assay, we studied the carboxylation of coagulation factors in a cellular environment. Our results show that the coagulation factor’s propeptide controls substrate binding and product releasing during carboxylation, and the propeptide of factor IX appears to have the optimal affinity for efficient carboxylation. Additionally, non-conserved residues in the propeptide play an important role in carboxylation. A cell-based functional study of naturally occurring mutations in the propeptide successfully interpreted the clinical phenotype of warfarin’s hypersensitivity during anticoagulation therapy in patients with these mutations. Unlike results obtained from in vitro studies, results from our cell-based study indicate that although the propeptide of osteocalcin cannot direct the carboxylation of the coagulation factor, it is required for the efficient carboxylation of osteocalcin. This suggests that the coagulation factors may have a different mechanism of carboxylation from osteocalcin. Together, results from this study provide insight into efficiently controlling one physiological process, such as coagulation without affecting the other, like bone metabolism.
Collapse
Affiliation(s)
- Zhenyu Hao
- Department of Biology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Da-Yun Jin
- Department of Biology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Darrel W Stafford
- Department of Biology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jian-Ke Tie
- Department of Biology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
7
|
Vatandoost J, Zarei Sani O. Effect of propeptide amino acid substitution in γ-carboxylation, activity and expression of recombinant human coagulation factor IX. Biotechnol Prog 2017; 34:515-520. [PMID: 29086495 DOI: 10.1002/btpr.2582] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 09/18/2017] [Indexed: 11/07/2022]
Abstract
The production of recombinant vitamin K dependent (VKD) proteins for therapeutic purposes is an important challenge in the pharmaceutical industry. These proteins are primarily synthesized as precursor molecules and contain pre-propeptide sequences. The propeptide is connected to γ-carboxylase enzyme through the γ-carboxylase recognition site for the direct γ-carboxylation of VKD proteins that has a significant impact on their biological activity. Propeptides have different attitudes toward γ-carboxylase and certain amino acids in propeptide sequences are responsible for the differences in γ-carboxylase affinity. By aiming to replace amino acids in hFIX propeptide domain based on the prothrombin propeptide, pMT-hFIX-M14 expression cassette, containing cDNA of hFIX with substituted -14 residues (Asp to Ala) was made. After transfection of Drosophila S2 cells, expression of the active hFIX was analyzed by performing ELISA and coagulation test. A 1.4-fold increase in the mutant recombinant hFIX expression level was observed in comparison with that of a native recombinant hFIX. The enhanced hFIX activity and specific activity of the hFIXD-14A (2.2 and 1.6 times, respectively) were further confirmed by comparing coagulation activity levels of substituted and native hFIX. Enrichment for functional, fully γ-carboxylated hFIX species via barium citrate adsorption demonstrated 2-fold enhanced recovery in the S2-expressing hFIXD-14A relative to that expressed native hFIX. These results show that changing -14 residues leads to a decrease in the binding affinity to substrate, increase in γ-carboxylation and activity of recombinant hFIX. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:515-520, 2018.
Collapse
Affiliation(s)
| | - Omid Zarei Sani
- Dept. of Biology, Islamic Azad University, Damghan Branch, Damghan, Iran
| |
Collapse
|
8
|
Justice ED, Barnum SJ, Kidd T. The WAGR syndrome gene PRRG4 is a functional homologue of the commissureless axon guidance gene. PLoS Genet 2017; 13:e1006865. [PMID: 28859078 PMCID: PMC5578492 DOI: 10.1371/journal.pgen.1006865] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/11/2017] [Indexed: 01/20/2023] Open
Abstract
WAGR syndrome is characterized by Wilm's tumor, aniridia, genitourinary abnormalities and intellectual disabilities. WAGR is caused by a chromosomal deletion that includes the PAX6, WT1 and PRRG4 genes. PRRG4 is proposed to contribute to the autistic symptoms of WAGR syndrome, but the molecular function of PRRG4 genes remains unknown. The Drosophila commissureless (comm) gene encodes a short transmembrane protein characterized by PY motifs, features that are shared by the PRRG4 protein. Comm intercepts the Robo axon guidance receptor in the ER/Golgi and targets Robo for degradation, allowing commissural axons to cross the CNS midline. Expression of human Robo1 in the fly CNS increases midline crossing and this was enhanced by co-expression of PRRG4, but not CYYR, Shisa or the yeast Rcr genes. In cell culture experiments, PRRG4 could re-localize hRobo1 from the cell surface, suggesting that PRRG4 is a functional homologue of Comm. Comm is required for axon guidance and synapse formation in the fly, so PRRG4 could contribute to the autistic symptoms of WAGR by disturbing either of these processes in the developing human brain.
Collapse
Affiliation(s)
- Elizabeth D. Justice
- Department of Biology/ms 314, University of Nevada, Reno, Nevada, United States of America
| | - Sarah J. Barnum
- Department of Biology/ms 314, University of Nevada, Reno, Nevada, United States of America
| | - Thomas Kidd
- Department of Biology/ms 314, University of Nevada, Reno, Nevada, United States of America
| |
Collapse
|
9
|
Abstract
Vitamin K-dependent carboxylation, an essential posttranslational modification catalyzed by gamma-glutamyl carboxylase, is required for the biological functions of proteins that control blood coagulation, vascular calcification, bone metabolism, and other important physiological processes. Concomitant with carboxylation, reduced vitamin K (KH2) is oxidized to vitamin K epoxide (KO). KO must be recycled back to KH2 by the enzymes vitamin K epoxide reductase and vitamin K reductase in a pathway known as the vitamin K cycle. Our current knowledge about the enzymes of the vitamin K cycle is mainly based on in vitro studies of each individual enzymes under artificial conditions, which are of limited usefulness in understanding how the complex carboxylation process is carried out in the physiological environment. In this chapter, we review the current in vitro activity assays for vitamin K cycle enzymes. We describe the rationale, establishment, and application of cell-based assays for the functional study of these enzymes in the native cellular milieu. In these cell-based assays, different vitamin K-dependent proteins were designed and stably expressed in mammalian cells as reporter proteins to accommodate the readily used enzyme-linked immunosorbent assay for carboxylation efficiency evaluation. Additionally, recently emerged genome-editing techniques TALENs and CRISPR-Cas9 were used to knock out the endogenous enzymes in the reporter cell lines to eliminate the background. These cell-based assays are easy to scale up for high-throughput screening of inhibitors of vitamin K cycle enzymes and have been successfully used to clarify the genotypes and their clinical phenotypes of enzymes of the vitamin K cycle.
Collapse
Affiliation(s)
- J-K Tie
- University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| | - D W Stafford
- University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
10
|
Tie JK, Carneiro JDA, Jin DY, Martinhago CD, Vermeer C, Stafford DW. Characterization of vitamin K-dependent carboxylase mutations that cause bleeding and nonbleeding disorders. Blood 2016; 127:1847-55. [PMID: 26758921 PMCID: PMC4832504 DOI: 10.1182/blood-2015-10-677633] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/06/2016] [Indexed: 01/07/2023] Open
Abstract
Vitamin K-dependent coagulation factors deficiency is a bleeding disorder mainly associated with mutations in γ-glutamyl carboxylase (GGCX) that often has fatal outcomes. Some patients with nonbleeding syndromes linked to GGCX mutations, however, show no coagulation abnormalities. The correlation between GGCX genotypes and their clinical phenotypes has been previously unknown. Here we report the identification and characterization of novel GGCX mutations in a patient with both severe cerebral bleeding disorder and comorbid Keutel syndrome, a nonbleeding malady caused by functional defects of matrix γ-carboxyglutamate protein (MGP). To characterize GGCX mutants in a cellular milieu, we established a cell-based assay by stably expressing 2 reporter proteins (a chimeric coagulation factor and MGP) in HEK293 cells. The endogenous GGCX gene in these cells was knocked out by CRISPR-Cas9-mediated genome editing. Our results show that, compared with wild-type GGCX, the patient's GGCX D153G mutant significantly decreased coagulation factor carboxylation and abolished MGP carboxylation at the physiological concentration of vitamin K. Higher vitamin K concentrations can restore up to 60% of coagulation factor carboxylation but do not ameliorate MGP carboxylation. These results are consistent with the clinical results obtained from the patient treated with vitamin K, suggesting that the D153G alteration in GGCX is the causative mutation for both the bleeding and nonbleeding disorders in our patient. These findings provide the first evidence of a GGCX mutation resulting in 2 distinct clinical phenotypes; the established cell-based assay provides a powerful tool for studying the clinical consequences of naturally occurring GGCX mutations in vivo.
Collapse
Affiliation(s)
- Jian-Ke Tie
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jorge D A Carneiro
- Instituto da Criança, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Da-Yun Jin
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | - Cees Vermeer
- R&D Group VitaK, Maastricht University, Maastricht, The Netherlands
| | - Darrel W Stafford
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
11
|
Tie JK, Stafford DW. Structural and functional insights into enzymes of the vitamin K cycle. J Thromb Haemost 2016; 14:236-47. [PMID: 26663892 PMCID: PMC5073812 DOI: 10.1111/jth.13217] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/25/2015] [Indexed: 12/20/2022]
Abstract
Vitamin K-dependent proteins require carboxylation of certain glutamates for their biological functions. The enzymes involved in the vitamin K-dependent carboxylation include: gamma-glutamyl carboxylase (GGCX), vitamin K epoxide reductase (VKOR) and an as-yet-unidentified vitamin K reductase (VKR). Due to the hydrophobicity of vitamin K, these enzymes are likely to be integral membrane proteins that reside in the endoplasmic reticulum. Therefore, structure-function studies on these enzymes have been challenging, and some of the results are notably controversial. Patients with naturally occurring mutations in these enzymes, who mainly exhibit bleeding disorders or are resistant to oral anticoagulant treatment, provide valuable information for the functional study of the vitamin K cycle enzymes. In this review, we discuss: (i) the discovery of the enzymatic activities and gene identifications of the vitamin K cycle enzymes; (ii) the identification of their functionally important regions and their active site residues; (iii) the membrane topology studies of GGCX and VKOR; and (iv) the controversial issues regarding the structure and function studies of these enzymes, particularly, the membrane topology, the role of the conserved cysteines and the mechanism of active site regeneration of VKOR. We also discuss the possibility that a paralogous protein of VKOR, VKOR-like 1 (VKORL1), is involved in the vitamin K cycle, and the importance of and possible approaches for identifying the unknown VKR. Overall, we describe the accomplishments and the remaining questions in regard to the structure and function studies of the enzymes in the vitamin K cycle.
Collapse
Affiliation(s)
- J-K Tie
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - D W Stafford
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
12
|
Parker CH, Morgan C, Rand KD, Engen JR, Jorgenson J, Stafford DW. A conformational investigation of propeptide binding to the integral membrane protein γ-glutamyl carboxylase using nanodisc hydrogen exchange mass spectrometry. Biochemistry 2014; 53:1511-20. [PMID: 24512177 PMCID: PMC3970815 DOI: 10.1021/bi401536m] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/07/2014] [Indexed: 01/16/2023]
Abstract
Gamma (γ)-glutamyl carboxylase (GGCX) is an integral membrane protein responsible for the post-translational catalytic conversion of select glutamic acid (Glu) residues to γ-carboxy glutamic acid (Gla) in vitamin K-dependent (VKD) proteins. Understanding the mechanism of carboxylation and the role of GGCX in the vitamin K cycle is of biological interest in the development of therapeutics for blood coagulation disorders. Historically, biophysical investigations and structural characterizations of GGCX have been limited due to complexities involving the availability of an appropriate model membrane system. In previous work, a hydrogen exchange mass spectrometry (HX MS) platform was developed to study the structural configuration of GGCX in a near-native nanodisc phospholipid environment. Here we have applied the nanodisc-HX MS approach to characterize specific domains of GGCX that exhibit structural rearrangements upon binding the high-affinity consensus propeptide (pCon; AVFLSREQANQVLQRRRR). pCon binding was shown to be specific for monomeric GGCX-nanodiscs and promoted enhanced structural stability to the nanodisc-integrated complex while maintaining catalytic activity in the presence of carboxylation co-substrates. Noteworthy modifications in HX of GGCX were prominently observed in GGCX peptides 491-507 and 395-401 upon pCon association, consistent with regions previously identified as sites for propeptide and glutamate binding. Several additional protein regions exhibited minor gains in solvent protection upon propeptide incorporation, providing evidence for a structural reorientation of the GGCX complex in association with VKD carboxylation. The results herein demonstrate that nanodisc-HX MS can be utilized to study molecular interactions of membrane-bound enzymes in the absence of a complete three-dimensional structure and to map dynamic rearrangements induced upon ligand binding.
Collapse
Affiliation(s)
- Christine H. Parker
- Department of Chemistry and Department of
Biology, University of North Carolina at
Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Christopher
R. Morgan
- Department
of Chemistry & Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Kasper D. Rand
- Department
of Chemistry & Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - John R. Engen
- Department
of Chemistry & Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - James
W. Jorgenson
- Department of Chemistry and Department of
Biology, University of North Carolina at
Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Darrel W. Stafford
- Department of Chemistry and Department of
Biology, University of North Carolina at
Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|