1
|
Balogh G, Bereczky Z. The Interaction of Factor Xa and IXa with Non-Activated Antithrombin in Michaelis Complex: Insights from Enhanced-Sampling Molecular Dynamics Simulations. Biomolecules 2023; 13:biom13050795. [PMID: 37238665 DOI: 10.3390/biom13050795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
The interaction between coagulation factors Xa and IXa and the activated state of their inhibitor, antithrombin (AT),have been investigated using X-ray diffraction studies. However, only mutagenesis data are available for non-activated AT. Our aim was to propose a model based on docking and advanced-sampling molecular dynamics simulations that can reveal the conformational behavior of the systems when AT is not binding a pentasaccharide. We built the initial structure for non-activated AT-FXa and AT-FIXa complexes using HADDOCK 2.4. The conformational behavior was studied using Gaussian accelerated molecular dynamics simulations. In addition to the docked complexes, two systems based on the X-ray structures were also simulated, with and without the ligand. The simulations revealed large variability in conformation for both factors. In the docking-based complex of AT-FIXa, conformations with stable Arg150-AT interactions can exist for longer time periods but the system also has a higher tendency for reaching states with very limited interaction with the "exosite" of AT. By comparing simulations with or without the pentasaccharide, we were able to gain insights into the effects of conformational activation on the Michaelis complexes. RMSF analysis and correlation calculations for the alpha-carbon atoms revealed important details of the allosteric mechanisms. Our simulations provide atomistic models for better understanding the conformational activation mechanism of AT against its target factors.
Collapse
Affiliation(s)
- Gábor Balogh
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Zsuzsanna Bereczky
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
2
|
Yang L, Rezaie AR. Characterization of Protein Z-Dependent Protease Inhibitor/Antithrombin Chimeras Provides Insight into the Serpin Specificity of Coagulation Proteases. ACS OMEGA 2017; 2:3276-3283. [PMID: 28782047 PMCID: PMC5537704 DOI: 10.1021/acsomega.7b00606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/28/2017] [Indexed: 06/07/2023]
Abstract
Protein Z (PZ)-dependent protease inhibitor (ZPI) and antithrombin (AT) are two physiological serpin inhibitors involved in the regulation of proteolytic activities of the blood coagulation cascade. ZPI has restricted protease specificity capable of inhibiting factors Xa (FXa) and XIa (FXIa) but exhibiting no reactivity with other coagulation proteases. Unlike ZPI, AT is a general inhibitor of all coagulation proteases and the only physiological inhibitor of factor IXa (FIXa). To understand the molecular determinants of protease specificity of the two serpins, we engineered two ZPI mutants in which the P12-P3' residues of the reactive center loop of ZPI were replaced with either P12-P3' or P12-P7' residues of AT (ZPI-ATP12-P3' and ZPI-ATP12-P7'). The reactivity of chimeras with FXa was improved ∼4-25-fold in the absence of PZ. Both chimeras inhibited FIXa with rate constants that were ∼2 orders of magnitude higher than the rate of the AT inhibition of the protease. PZ improved the reactivity of chimeras with FIXa by another 2 orders of magnitude, rendering the chimeras potent inhibitors of FIXa so that the PZ-mediated inhibitory activity of the ZPI-AT chimeras toward FIXa was ∼20-fold higher than that of the fondaparinux-catalyzed inhibition of FIXa by AT. Further studies revealed that the substitution of P1-Tyr of ZPI with an Arg is sufficient to convert the serpin to an effective inhibitor of FIXa. The potential therapeutic utility of the serpin chimeras as specific inhibitors of FIXa was diminished by findings that the chimeras function as effective substrates for other coagulation proteases.
Collapse
Affiliation(s)
- Likui Yang
- Cardiovascular
Biology Research Program, Oklahoma Medical
Research Foundation, Oklahoma
City, Oklahoma 73104, United States
| | - Alireza R. Rezaie
- Cardiovascular
Biology Research Program, Oklahoma Medical
Research Foundation, Oklahoma
City, Oklahoma 73104, United States
- Department
of Biochemistry and Molecular Biology, University
of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| |
Collapse
|
3
|
Abstract
Heparin has been recognized as a valuable anticoagulant and antithrombotic for several decades and is still widely used in clinical practice for a variety of indications. The anticoagulant activity of heparin is mainly attributable to the action of a specific pentasaccharide sequence that acts in concert with antithrombin, a plasma coagulation factor inhibitor. This observation has led to the development of synthetic heparin mimetics for clinical use. However, it is increasingly recognized that heparin has many other pharmacological properties, including but not limited to antiviral, anti-inflammatory, and antimetastatic actions. Many of these activities are independent of its anticoagulant activity, although the mechanisms of these other activities are currently less well defined. Nonetheless, heparin is being exploited for clinical uses beyond anticoagulation and developed for a wide range of clinical disorders. This article provides a "state of the art" review of our current understanding of the pharmacology of heparin and related drugs and an overview of the status of development of such drugs.
Collapse
Affiliation(s)
- Barbara Mulloy
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - John Hogwood
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Elaine Gray
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Rebecca Lever
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| |
Collapse
|
4
|
Rashid Q, Kapil C, Singh P, Kumari V, Jairajpuri MA. Understanding the specificity of serpin-protease complexes through interface analysis. J Biomol Struct Dyn 2014; 33:1352-62. [PMID: 25052369 DOI: 10.1080/07391102.2014.947525] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Serpins such as antithrombin, heparin cofactor II, plasminogen activator inhibitor, antitrypsin, antichymotrypsin, and neuroserpin are involved in important biological processes by inhibiting specific serine proteases. Initially, the protease recognizes the mobile reactive loop of the serpin eliciting conformational changes, where the cleaved loop together with the protease inserts into β-sheet A, translocating the protease to the opposite side of inhibitor leading to its inactivation. Serpin interaction with proteases is governed mainly by the reactive center loop residues (RCL). However, in some inhibitory serpins, exosite residues apart from RCL have been shown to confer protease specificity. Further, this forms the basis of multi-specificity of some serpins, but the residues and their dimension at interface in serpin-protease complexes remain elusive. Here, we present a comprehensive structural analysis of the serpin-protease interfaces using bio COmplexes COntact MAPS (COCOMAPS), PRotein Interface Conservation and Energetics (PRICE), and ProFace programs. We have carried out interface, burial, and evolutionary analysis of different serpin-protease complexes. Among the studied complexes, non-inhibitory serpins exhibit larger interface region with greater number of residue involvement as compared to the inhibitory serpins. On comparing the multi-specific serpins (antithrombin and antitrypsin), a difference in the interface area and residue number was observed, suggestive of a differential mechanism of action of these serpins in regulating their different target proteases. Further, detailed study of these multi-specific serpins listed few essential residues (common in all the complexes) and certain specificity (unique to each complex) determining residues at their interfaces. Structural mapping of interface residues suggested that individual patches with evolutionary conserved residues in specific serpins determine their specificity towards a particular protease.
Collapse
Affiliation(s)
- Qudsia Rashid
- a Protein Conformation and Enzymology Lab, Department of Biosciences , Jamia Millia Islamia (A Central University) , New Delhi 110025 , India
| | | | | | | | | |
Collapse
|
5
|
Yang L, Rezaie AR. Residues of the 39-loop restrict the plasma inhibitor specificity of factor IXa. J Biol Chem 2013; 288:12692-8. [PMID: 23530052 DOI: 10.1074/jbc.m113.459347] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The two plasma inhibitors, protein Z-dependent protease inhibitor (ZPI) and tissue factor pathway inhibitor (TFPI), effectively inhibit the activity of activated factor X (FXa); however, neither inhibitor exhibits any reactivity with the homologous protease activated factor IX (FIXa). In this study, we investigated the molecular basis for the lack of reactivity of FIXa with these plasma inhibitors and discovered that unique structural features within residues of the 39-loop are responsible for restricting the inhibitor specificity of FIXa. This loop in FXa is highly acidic and contains three Glu residues at positions 36, 37, and 39. On the other hand, the loop is shorter by one residue in FIXa (residue 37 is missing), and it contains a Lys and an Asp at positions 36 and 39, respectively. We discovered that replacing residues of the 39-loop (residues 31-41) of FIXa with corresponding residues of FXa renders the FIXa chimera susceptible to inactivation by both ZPI and TFPI. Thus, the inactivation rate of the FIXa chimera by ZPI in the presence of protein Z (PZ), negatively charged membrane vesicles, and calcium ions approached the same diffusion-limited rate (>10(7) m(-1) s(-1)) that has been observed for the PZ-dependent inhibition of FXa by ZPI. Interestingly, sequence alignments indicated that, similar to FXa, residue 36 is a Glu in both mouse and bovine FIXa and that both proteases are also susceptible to inhibition by the PZ-ZPI complex. These results suggest that structural features within residues of the 39-loop contribute to the resistance of FIXa to inhibition by plasma inhibitors ZPI and TFPI.
Collapse
Affiliation(s)
- Likui Yang
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | | |
Collapse
|
6
|
Manithody C, Yang L, Rezaie AR. Identification of exosite residues of factor Xa involved in recognition of PAR-2 on endothelial cells. Biochemistry 2012; 51:2551-7. [PMID: 22409427 DOI: 10.1021/bi300200p] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent results have indicated that factor Xa (FXa) cleaves protease-activated receptor 2 (PAR-2) to elicit protective intracellular signaling responses in endothelial cells. In this study, we investigated the molecular determinants of the specificity of FXa interaction with PAR-2 by monitoring the cleavage of PAR-2 by FXa in endothelial cells transiently transfected with a PAR-2 cleavage reporter construct in which the extracellular domain of the receptor was fused to cDNA encoding for alkaline phosphatase. Comparison of the cleavage efficiency of PAR-2 by a series of FXa mutants containing mutations in different surface loops indicated that the acidic residues of 39-loop (Glu-36, Glu-37, and Glu-39) and the basic residues of 60-loop (Lys-62 and Arg-63), 148-loop (Arg-143, Arg-150, and Arg-154), and 162-helix (Arg-165 and Lys-169) contribute to the specificity of receptor recognition by FXa on endothelial cells. This was evidenced by significantly reduced activity of mutants toward PAR-2 expressed on transfected cells. The extent of loss in the PAR-2 cleavage activity of FXa mutants correlated with the extent of loss in their PAR-2-dependent intracellular signaling activity. Further characterization of FXa mutants indicated that, with the exception of basic residues of 162-helix, which play a role in the recognition specificity of the prothrombinase complex, none of the surface loop residues under study makes a significant contribution to the activity of FXa in the prothrombinase complex. These results provide new insight into mechanisms through which FXa specifically interacts with its macromolecular substrates in the clotting and signaling pathways.
Collapse
Affiliation(s)
- Chandrashekhara Manithody
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, United States
| | | | | |
Collapse
|