1
|
Yang D, He Y, Li R, Huang Z, Zhou Y, Shi Y, Deng Z, Wu J, Gao Y. Histone H3K79 methylation by DOT1L promotes Aurora B localization at centromeres in mitosis. Cell Rep 2023; 42:112885. [PMID: 37494186 DOI: 10.1016/j.celrep.2023.112885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/23/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023] Open
Abstract
Centromere localization of the chromosome passenger complex (CPC) is paramount for achieving accurate sister chromosome segregation in mitosis. Although it has been widely recognized that the recruitment of CPC is directly regulated by two histone codes, phosphorylation of histone H3 at threonine 3 (H3T3ph) and phosphorylation of histone H2A at threonine 120 (H2AT120ph), the regulation of CPC localization by other histone codes remains elusive. We show that dysfunction of disruptor of telomeric silencing 1 like (DOT1L) leads to mislocation of the CPC in prometaphase, caused by disturbing the level of H3T3ph and its reader Survivin. This cascade is initiated by over-dephosphorylation of H3T3ph mediated by the phosphatase RepoMan-PP1, whose scaffold RepoMan translocalizes to chromosomes, while the level of H3K79me2/3 is diminished. Together, our findings uncover a biological function of DOT1L and H3K79 methylation in mitosis and give insight into how genomic stability is coordinated by different histone codes.
Collapse
Affiliation(s)
- Dan Yang
- The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yanji He
- The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Renyan Li
- Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 401120, China
| | - Zhenting Huang
- Center for Medical Epigenetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Yong Zhou
- The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yingxu Shi
- The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Zhongliang Deng
- The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Jingxian Wu
- Center for Medical Epigenetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Yanfei Gao
- Center for Medical Epigenetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
2
|
Nakamura K, Groth A, Alabert C. Investigating Mitotic Inheritance of Histone Posttranslational Modifications by Triple pSILAC Coupled to Nascent Chromatin Capture. Methods Mol Biol 2022; 2529:407-417. [PMID: 35733024 DOI: 10.1007/978-1-0716-2481-4_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pulse stable isotope labeling with amino acids in cell culture (pSILAC) coupled to mass spectrometric analysis is a powerful tool to study propagation of histone post-translational modifications (PTMs). We describe the combination of triple pSILAC with pulse-chase labeling of newly replicated DNA by nascent chromatin capture (NCC). This technology tracks newly synthesized and recycled old histones, from deposition to transmission to daughter cells, unveiling principles of histone-based inheritance.
Collapse
Affiliation(s)
- Kyosuke Nakamura
- Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Anja Groth
- Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Constance Alabert
- Genome Regulation and Expression, School of Life Sciences, MSI/WTB Complex, University of Dundee, Dundee, UK.
| |
Collapse
|
3
|
Schachner LF, Jooß K, Morgan MA, Piunti A, Meiners MJ, Kafader JO, Lee AS, Iwanaszko M, Cheek MA, Burg JM, Howard SA, Keogh MC, Shilatifard A, Kelleher NL. Decoding the protein composition of whole nucleosomes with Nuc-MS. Nat Methods 2021; 18:303-308. [PMID: 33589837 PMCID: PMC7954958 DOI: 10.1038/s41592-020-01052-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 12/21/2020] [Indexed: 01/30/2023]
Abstract
Current proteomic approaches disassemble and digest nucleosome particles, blurring readouts of the 'histone code'. To preserve nucleosome-level information, we developed Nuc-MS, which displays the landscape of histone variants and their post-translational modifications (PTMs) in a single mass spectrum. Combined with immunoprecipitation, Nuc-MS quantified nucleosome co-occupancy of histone H3.3 with variant H2A.Z (sixfold over bulk) and the co-occurrence of oncogenic H3.3K27M with euchromatic marks (for example, a >15-fold enrichment of dimethylated H3K79me2). Nuc-MS is highly concordant with chromatin immunoprecipitation-sequencing (ChIP-seq) and offers a new readout of nucleosome-level biology.
Collapse
Affiliation(s)
- Luis F Schachner
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Kevin Jooß
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- The Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA
| | - Marc A Morgan
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Andrea Piunti
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Jared O Kafader
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- The Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA
| | - Alexander S Lee
- The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
- The Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marta Iwanaszko
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marcus A Cheek
- EpiCypher, Inc., Research Triangle Park, Durham, NC, USA
| | | | - Sarah A Howard
- EpiCypher, Inc., Research Triangle Park, Durham, NC, USA
| | | | - Ali Shilatifard
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Neil L Kelleher
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.
- The Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA.
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
4
|
Stewart-Morgan KR, Petryk N, Groth A. Chromatin replication and epigenetic cell memory. Nat Cell Biol 2020; 22:361-371. [PMID: 32231312 DOI: 10.1038/s41556-020-0487-y] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/18/2020] [Indexed: 02/07/2023]
Abstract
Propagation of the chromatin landscape across cell divisions is central to epigenetic cell memory. Mechanistic analysis of the interplay between DNA replication, the cell cycle, and the epigenome has provided insights into replication-coupled chromatin assembly and post-replicative chromatin maintenance. These breakthroughs are critical for defining how proliferation impacts the epigenome during cell identity changes in development and disease. Here we review these findings in the broader context of epigenetic inheritance across mitotic cell division.
Collapse
Affiliation(s)
- Kathleen R Stewart-Morgan
- The Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Nataliya Petryk
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.,Epigenetics and Cell Fate, UMR7216 CNRS, University of Paris, Paris, France
| | - Anja Groth
- The Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark. .,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Camarillo JM, Swaminathan S, Abshiru NA, Sikora JW, Thomas PM, Kelleher NL. Coupling Fluorescence-Activated Cell Sorting and Targeted Analysis of Histone Modification Profiles in Primary Human Leukocytes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2526-2534. [PMID: 31286445 PMCID: PMC6917871 DOI: 10.1007/s13361-019-02255-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 05/24/2023]
Abstract
Histone posttranslational modifications (PTMs) are essential for regulating chromatin and maintaining gene expression throughout cell differentiation. Despite the deep level of understanding of immunophenotypic differentiation pathways in hematopoietic cells, few studies have investigated global levels of histone PTMs required for differentiation and maintenance of these distinct cell types. Here, we describe an approach to couple fluorescence-activated cell sorting (FACS) with targeted mass spectrometry to define global "epi-proteomic" signatures for primary leukocytes. FACS was used to sort closely and distantly related leukocytes from normal human peripheral blood for quantitation of histone PTMs with a multiple reaction monitoring LC-MS/MS method measuring histone PTMs on histones H3 and H4. We validate cell sorting directly into H2SO4 for immediate histone extraction to decrease time and number of steps after FACS to analyze histone PTMs. Relative histone PTM levels vary in T cells across healthy donors, and the majority of PTMs remain stable up to 2 days following initial blood draw. Large differences in the levels of histone PTMs are observed across the mature lymphoid and myeloid lineages, as well as between different types within the same lineage, though no differences are observed in closely related T cell subtypes. The results show a streamlined approach for quantifying global changes in histone PTMs in cell types separated by FACS that is poised for clinical deployment.
Collapse
Affiliation(s)
- Jeannie M Camarillo
- Department of Chemistry, Molecular Biosciences and the National Resource for Translational and Developmental Proteomics, Northwestern University, 2170 Campus Drive, Evanston, IL, 60208, USA
| | - Suchitra Swaminathan
- Department of Medicine, Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nebiyu A Abshiru
- Department of Chemistry, Molecular Biosciences and the National Resource for Translational and Developmental Proteomics, Northwestern University, 2170 Campus Drive, Evanston, IL, 60208, USA
| | - Jacek W Sikora
- Department of Chemistry, Molecular Biosciences and the National Resource for Translational and Developmental Proteomics, Northwestern University, 2170 Campus Drive, Evanston, IL, 60208, USA
| | - Paul M Thomas
- Department of Chemistry, Molecular Biosciences and the National Resource for Translational and Developmental Proteomics, Northwestern University, 2170 Campus Drive, Evanston, IL, 60208, USA.
| | - Neil L Kelleher
- Department of Chemistry, Molecular Biosciences and the National Resource for Translational and Developmental Proteomics, Northwestern University, 2170 Campus Drive, Evanston, IL, 60208, USA.
| |
Collapse
|
6
|
Holt MV, Wang T, Young NL. One-Pot Quantitative Top- and Middle-Down Analysis of GluC-Digested Histone H4. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2514-2525. [PMID: 31147891 DOI: 10.1007/s13361-019-02219-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/27/2019] [Accepted: 04/27/2019] [Indexed: 05/28/2023]
Abstract
Histone post-translational modifications (PTMs) have been intensively investigated due to their essential function in eukaryotic genome regulation. Histone modifications have been effectively studied using modified bottom-up proteomics approaches; however, the methods often do not capture single-molecule combinations of PTMs (proteoforms) that mediate known and expected biochemical mechanisms. Both middle-down mass spectrometry (MS) and top-down MS quantitation of H4 proteoforms present viable access to this important information. Histone H4 middle-down has previously avoided GluC digestion due to complex digestion products and interferences; however, the common AspN digestion cleaves at amino acid 23, disconnecting K31ac from other PTMs. Here, we demonstrate the effective use of GluC-based middle-down quantitation and compare it to top-down-based quantitation of proteoforms. Despite potential interferences in the m/z space, the proteoforms arising from all three GluC products (E52, E53, and E63) and intact H4 are chromatographically resolved and successfully analyzed in a single LC-MS analysis. Quantitative results and associated analytical metrics are compared between the different analytes of a single sample digested to different extents to reveal general concordance as well as the relative biases and complementarity of each approach. There is moderate proteoform discordance between digestion products (e.g., E52 and E53); however, each digestion product exhibits high concordance, regardless of digestion time. Under the conditions used, the GluC products are better chromatographically resolved yet show greater variance than the top-down quantitation that are more extensively sampled for MS2. GluC-based middle-down of H4 is thus viable. Both top-down and middle-down approaches have comparable quantitation capacity and are complementary.
Collapse
Affiliation(s)
- Matthew V Holt
- Verna & Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Tao Wang
- Verna & Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Nicolas L Young
- Verna & Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
7
|
van Pijkeren A, Bischoff R, Kwiatkowski M. Mass spectrometric analysis of PTM dynamics using stable isotope labeled metabolic precursors in cell culture. Analyst 2019; 144:6812-6833. [PMID: 31650141 DOI: 10.1039/c9an01258c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biological organisms represent highly dynamic systems, which are continually exposed to environmental factors and always strive to restore steady-state homeostasis. Posttranslational modifications are key regulators with which biological systems respond to external stimuli. To understand how homeostasis is restored, it is important to study the kinetics of posttranslational modifications. In this review we discuss proteomic approaches using stable isotope labeled metabolic precursors to study dynamics of posttranslational modifications in cell culture.
Collapse
Affiliation(s)
- Alienke van Pijkeren
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | |
Collapse
|
8
|
Yeast epigenetics: the inheritance of histone modification states. Biosci Rep 2019; 39:BSR20182006. [PMID: 30877183 PMCID: PMC6504666 DOI: 10.1042/bsr20182006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 01/12/2023] Open
Abstract
Saccharomyces cerevisiae (budding yeast) and Schizosaccharomyces pombe (fission yeast) are two of the most recognised and well-studied model systems for epigenetic regulation and the inheritance of chromatin states. Their silent loci serve as a proxy for heterochromatic chromatin in higher eukaryotes, and as such both species have provided a wealth of information on the mechanisms behind the establishment and maintenance of epigenetic states, not only in yeast, but in higher eukaryotes. This review focuses specifically on the role of histone modifications in governing telomeric silencing in S. cerevisiae and centromeric silencing in S. pombe as examples of genetic loci that exemplify epigenetic inheritance. We discuss the recent advancements that for the first time provide a mechanistic understanding of how heterochromatin, dictated by histone modifications specifically, is preserved during S-phase. We also discuss the current state of our understanding of yeast nucleosome dynamics during DNA replication, an essential component in delineating the contribution of histone modifications to epigenetic inheritance.
Collapse
|
9
|
Kim JE. Bookmarking by histone methylation ensures chromosomal integrity during mitosis. Arch Pharm Res 2019; 42:466-480. [PMID: 31020544 DOI: 10.1007/s12272-019-01156-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/19/2019] [Indexed: 12/22/2022]
Abstract
The cell cycle is an orchestrated process that replicates DNA and transmits genetic information to daughter cells. Cell cycle progression is governed by diverse histone modifications that control gene transcription in a timely fashion. Histone modifications also regulate cell cycle progression by marking specific chromatic regions. While many reviews have covered histone phosphorylation and acetylation as regulators of the cell cycle, little attention has been paid to the roles of histone methylation in the faithful progression of mitosis. Indeed, specific histone methylations occurring before, during, or after mitosis affect kinetochore assembly and chromosome condensation and segregation. In addition to timing, histone methylations specify the chromatin regions such as chromosome arms, pericentromere, and centromere. Therefore, spatiotemporal programming of histone methylations ensures epigenetic inheritance through mitosis. This review mainly discusses histone methylations and their relevance to mitotic progression.
Collapse
Affiliation(s)
- Ja-Eun Kim
- Department of Pharmacology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
10
|
Fukuda M, Sakaue-Sawano A, Shimura C, Tachibana M, Miyawaki A, Shinkai Y. G9a-dependent histone methylation can be induced in G1 phase of cell cycle. Sci Rep 2019; 9:956. [PMID: 30700744 PMCID: PMC6354049 DOI: 10.1038/s41598-018-37507-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/07/2018] [Indexed: 12/19/2022] Open
Abstract
Epigenetic information (epigenome) on chromatin is crucial for the determination of cellular identity and for the expression of cell type-specific biological functions. The cell type-specific epigenome is maintained beyond replication and cell division. Nucleosomes of chromatin just after DNA replication are a mixture of old histones with the parental epigenome and newly synthesized histones without such information. The diluted epigenome is mostly restored within one cell cycle using the epigenome on the parental DNA and nucleosomes as replication templates. However, many important questions about the epigenome replication process remain to be clarified. In this study, we investigated the model system comprising of dimethylated histone H3 lysine 9 (H3K9me2) and its regulation by the lysine methyltransferase G9a. Using this epigenome model system, we addressed whether H3K9me2 can be induced in specific cell cycle stages, especially G1. Using cell cycle-specific degrons, we achieved G1 or late G1-to M phases specific accumulation of exogenous G9a in G9a deficient cells. Importantly, global levels of H3K9me2 were significantly recovered by both cell types. These data indicate that H3K9me2 may be plastic and inducible, even in the long-living, terminally-differentiated, post-mitotic, G0-G1 cell population in vivo. This knowledge is valuable in designing epigenome-manipulation-based treatments for diseases.
Collapse
Affiliation(s)
- Mikiko Fukuda
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Asako Sakaue-Sawano
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Chikako Shimura
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Makoto Tachibana
- Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan.,Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, 53 Shogoin, Kawara-cho, Sakyo-ku, Kyoto, 606-8597, Japan
| | - Atsushi Miyawaki
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yoichi Shinkai
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
11
|
Wang T, Holt MV, Young NL. Early butyrate induced acetylation of histone H4 is proteoform specific and linked to methylation state. Epigenetics 2018; 13:519-535. [PMID: 29940793 DOI: 10.1080/15592294.2018.1475979] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Histone posttranslational modifications (PTMs) help regulate DNA templated processes; however, relatively little work has unbiasedly explored the single-molecule combinations of histone PTMs, their dynamics on short timescales, or how these preexisting histone PTMs modulate further histone modifying enzyme activity. We use quantitative top down proteomics to unbiasedly measure histone H4 proteoforms (single-molecule combinations of PTMs) upon butyrate treatment. Our results show that histone proteoforms change in cells within 10 minutes of application of sodium butyrate. Cells recover from treatment within 30 minutes after removal of butyrate. Surprisingly, K20me2 containing proteoforms are the near-exclusive substrate of histone acetyltransferases upon butyrate treatment. Single-molecule hierarchies of progressive PTMs mostly dictate the addition and removal of histone PTMs (K16ac > K12ac ≥ K8ac > K5ac, and the reverse on recovery). This reveals the underlying single-molecule mechanism that explains the previously reported but indistinct and unexplained patterns of H4 acetylation. Thus, preexisting histone PTMs strongly modulate histone modifying enzyme activity and this suggests that proteoform constrained reaction pathways are crucial mechanisms that enable the long-term stability of the cellular epigenetic state.
Collapse
Affiliation(s)
- Tao Wang
- a Verna & Marrs McLean Department of Biochemistry & Molecular Biology , Baylor College of Medicine , Houston , TX
| | - Matthew V Holt
- a Verna & Marrs McLean Department of Biochemistry & Molecular Biology , Baylor College of Medicine , Houston , TX
| | - Nicolas L Young
- a Verna & Marrs McLean Department of Biochemistry & Molecular Biology , Baylor College of Medicine , Houston , TX.,b Department of Molecular and Cellular Biology , Baylor College of Medicine , Houston , TX
| |
Collapse
|
12
|
Wang T, Holt MV, Young NL. The histone H4 proteoform dynamics in response to SUV4-20 inhibition reveals single molecule mechanisms of inhibitor resistance. Epigenetics Chromatin 2018; 11:29. [PMID: 29880017 PMCID: PMC5992683 DOI: 10.1186/s13072-018-0198-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/27/2018] [Indexed: 12/25/2022] Open
Abstract
Background The dynamics of histone post-translational modifications (PTMs) are sparsely described, especially in their true physiological context of proteoforms (single histone molecules harboring combinations of PTMs). Methods Here we time-resolve the response of cells to SUV4-20 methyltransferase inhibition and unbiasedly quantitate the dynamic response of histone H4 PTMs and proteoforms. Results Contrary to the prevailing dogma, cells exhibit an immediate-early response with changes to histone proteoforms. Cells also recover to basal-like conditions upon removal of epigenetic inhibitors rapidly. Inhibition of SUV4-20 results in decreased H4{K20me2}; however, no effects on H4{K20me3} are observed, implying that another enzyme mediates H4K20me3. Most surprisingly, SUV4-20 inhibition results in an increase in histone H4 acetylation attributable to proteoforms containing K20me2. This led us to hypothesize that hyperacetylated proteoforms protect K20me2 from demethylation as an evolved compensatory mechanism. This concept is supported by subsequent results that pretreatment with an HDACi substantially diminishes the effects of SUV4-20 inhibition in prone cells and is further confirmed by HATi-facilitating SUV4-20 inhibition to decrease discrete H4{K20me2} in resistant cells. Conclusions The chromatin response of cells to sudden perturbations is significantly faster, nuanced and complex than previously described. The persistent nature of chromatin regulation may be achieved by a network of dynamic equilibria with compensatory mechanisms that operate at the proteoform level. Electronic supplementary material The online version of this article (10.1186/s13072-018-0198-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tao Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Matthew V Holt
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Nicolas L Young
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA. .,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
13
|
Zane L, Chapus F, Pegoraro G, Misteli T. HiHiMap: single-cell quantitation of histones and histone posttranslational modifications across the cell cycle by high-throughput imaging. Mol Biol Cell 2017; 28:2290-2302. [PMID: 28615324 PMCID: PMC5555657 DOI: 10.1091/mbc.e16-12-0870] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 06/08/2017] [Accepted: 06/09/2017] [Indexed: 01/22/2023] Open
Abstract
High-throughput Histone Mapping (HiHiMap) is an automated high-throughput imaging technique to determine histone and histone PTMs across the cell cycle at the single-cell level in a highly parallel format. The method is widely applicable to the systematic study of histone modifications in physiological and pathological settings. We describe High-throughput Histone Mapping (HiHiMap), a high-throughput imaging method to measure histones and histone posttranslational modifications (PTMs) in single cells. HiHiMap uses imaging-based quantification of DNA and cyclin A to stage individual cells in the cell cycle to determine the levels of histones or histone PTMs in each stage of the cell cycle. As proof of principle, we apply HiHiMap to measure the level of 21 core histones, histone variants, and PTMs in primary, immortalized, and transformed cells. We identify several histone modifications associated with oncogenic transformation. HiHiMap allows the rapid, high-throughput study of histones and histone PTMs across the cell cycle and the study of subpopulations of cells.
Collapse
Affiliation(s)
- Linda Zane
- Cell Biology of Genomes, National Institutes of Health, Bethesda, MD 20892
| | - Fleur Chapus
- Cell Biology of Genomes, National Institutes of Health, Bethesda, MD 20892
| | - Gianluca Pegoraro
- NCI High-Throughput Imaging Facility, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Tom Misteli
- Cell Biology of Genomes, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
14
|
A Novel Histone Crosstalk Pathway Important for Regulation of UV-Induced DNA Damage Repair in Saccharomyces cerevisiae. Genetics 2017; 206:1389-1402. [PMID: 28522541 DOI: 10.1534/genetics.116.195735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 05/16/2017] [Indexed: 02/04/2023] Open
Abstract
Histone post-translational modifications play vital roles in a variety of nuclear processes, including DNA repair. It has been previously shown that histone H3K79 methylation is important for the cellular response to DNA damage caused by ultraviolet (UV) radiation, with evidence that specific methylation states play distinct roles in UV repair. Here, we report that H3K79 methylation is reduced in response to UV exposure in Saccharomyces cerevisiae This reduction is specific to the dimethylated state, as trimethylation levels are minimally altered by UV exposure. Inhibition of this reduction has a deleterious effect on UV-induced sister chromatid exchange, suggesting that H3K79 dimethylation levels play a regulatory role in UV repair. Further evidence implicates an additional role for H3K79 dimethylation levels in error-free translesion synthesis, but not in UV-induced G1/S checkpoint activation or double-stranded break repair. Additionally, we find that H3K79 dimethylation levels are influenced by acetylatable lysines on the histone H4 N-terminal tail, which are hyperacetylated in response to UV exposure. Preclusion of H4 acetylation prevents UV-induced reduction of H3K79 dimethylation, and similarly has a negative effect on UV-induced sister chromatid exchange. These results point to the existence of a novel histone crosstalk pathway that is important for the regulation of UV-induced DNA damage repair.
Collapse
|
15
|
SETD4 Regulates Cell Quiescence and Catalyzes the Trimethylation of H4K20 during Diapause Formation in Artemia. Mol Cell Biol 2017; 37:MCB.00453-16. [PMID: 28031330 DOI: 10.1128/mcb.00453-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/02/2016] [Indexed: 01/19/2023] Open
Abstract
As a prominent characteristic of cell life, the regulation of cell quiescence is important for proper development, regeneration, and stress resistance and may play a role in certain degenerative diseases. However, the mechanism underlying quiescence remains largely unknown. Encysted embryos of Artemia are useful for studying the regulation of this state because they remain quiescent for prolonged periods during diapause, a state of obligate dormancy. In the present study, SET domain-containing protein 4, a histone lysine methyltransferase from Artemia, was identified, characterized, and named Ar-SETD4. We found that Ar-SETD4 was expressed abundantly in Artemia diapause embryos, in which cells were in a quiescent state. Meanwhile, trimethylated histone H4K20 (H4K20me3) was enriched in diapause embryos. The knockdown of Ar-SETD4 reduced the level of H4K20me3 significantly and prevented the formation of diapause embryos in which neither the cell cycle nor embryogenesis ceased. The catalytic activity of Ar-SETD4 on H4K20me3 was confirmed by an in vitro histone methyltransferase (HMT) assay and overexpression in cell lines. This study provides insights into the function of SETD4 and the mechanism of cell quiescence regulation.
Collapse
|
16
|
Preclinical Pharmacokinetics and Pharmacodynamics of Pinometostat (EPZ-5676), a First-in-Class, Small Molecule S-Adenosyl Methionine Competitive Inhibitor of DOT1L. Eur J Drug Metab Pharmacokinet 2017; 42:891-901. [DOI: 10.1007/s13318-017-0404-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
The Relationship Between DOT1L, Histone H3 Methylation, and Genome Stability in Cancer. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s40610-017-0051-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Vlaming H, Molenaar TM, van Welsem T, Poramba-Liyanage DW, Smith DE, Velds A, Hoekman L, Korthout T, Hendriks S, Altelaar AFM, van Leeuwen F. Direct screening for chromatin status on DNA barcodes in yeast delineates the regulome of H3K79 methylation by Dot1. eLife 2016; 5. [PMID: 27922451 PMCID: PMC5179194 DOI: 10.7554/elife.18919] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 12/02/2016] [Indexed: 12/22/2022] Open
Abstract
Given the frequent misregulation of chromatin in cancer, it is important to understand the cellular mechanisms that regulate chromatin structure. However, systematic screening for epigenetic regulators is challenging and often relies on laborious assays or indirect reporter read-outs. Here we describe a strategy, Epi-ID, to directly assess chromatin status in thousands of mutants. In Epi-ID, chromatin status on DNA barcodes is interrogated by chromatin immunoprecipitation followed by deep sequencing, allowing for quantitative comparison of many mutants in parallel. Screening of a barcoded yeast knock-out collection for regulators of histone H3K79 methylation by Dot1 identified all known regulators as well as novel players and processes. These include histone deposition, homologous recombination, and adenosine kinase, which influences the methionine cycle. Gcn5, the acetyltransferase within the SAGA complex, was found to regulate histone methylation and H2B ubiquitination. The concept of Epi-ID is widely applicable and can be readily applied to other chromatin features. DOI:http://dx.doi.org/10.7554/eLife.18919.001 To fit into the nucleus of eukaryotic cells (which include plant, animal and yeast cells), DNA wraps around histone proteins to form a structure called chromatin. Histones can be modified by a variety of chemical tags, which affect how easily nearby DNA can be accessed by other molecules in the cell. These modifications therefore help to control the activity of the genes encoded in the DNA and other key processes such as DNA repair. If histone modifications are not regulated correctly, diseases such as cancer may result. Enzymes generally perform the actual modification, but there is another layer of regulation that controls the activity of these enzymes that not much is known about. The activity of an enzyme that performs a histone modification known as H3K79 methylation (which involves a methyl chemical group being added to a particular region of a particular histone protein) has been linked to some forms of leukemia. Collections of mutant yeast cells can be used to identify the factors that regulate histone modifications in both yeast and human cells. However, current methods that screen for these regulators are time consuming. To make the search for histone modification regulators more efficient, Vlaming et al. developed a new screening procedure called Epi-ID that can measure the amount of a specific histone modification in thousands of budding yeast mutants at the same time. In Epi-ID, each mutant yeast cell has a unique DNA sequence, or “barcode”. The mutant cells are mixed together and the barcodes that are modified by a particular histone modification – such as H3K79 methylation – are isolated and then counted using a DNA sequencing technique. A high barcode count of a certain mutant indicates that more of the histone modification occurs in that mutant. Using Epi-ID to survey H3K79 methylation enabled Vlaming et al. to successfully identify all previously known H3K79 methylation regulators, as well several new ones. These new regulators included enzymes that deposit histones on DNA, that carry out DNA repair, and that modify or de-modify histone proteins. To move forward with the newly identified regulators, it will be important to analyze how they control H3K79 methylation in yeast cells and to determine whether the regulators also control H3K79 methylation in human cells. Finally, Epi-ID can be used to identify regulators of other types of histone modifications. A better understanding of chromatin regulation – and H3K79 methylation regulation in particular – can increase our understanding of diseases in which chromatin is deregulated, and may yield new strategies for the treatment of such diseases. DOI:http://dx.doi.org/10.7554/eLife.18919.002
Collapse
Affiliation(s)
- Hanneke Vlaming
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Thom M Molenaar
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Tibor van Welsem
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - Desiree E Smith
- Department of Clinical Chemistry, Metabolic Laboratory, VU University Medical Center, Amsterdam, Netherlands
| | - Arno Velds
- Central Genomics Facility, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Liesbeth Hoekman
- Mass Spectrometry/Proteomics Facility, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Tessy Korthout
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Sjoerd Hendriks
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - A F Maarten Altelaar
- Mass Spectrometry/Proteomics Facility, Netherlands Cancer Institute, Amsterdam, Netherlands.,Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
19
|
Noberini R, Sigismondo G, Bonaldi T. The contribution of mass spectrometry-based proteomics to understanding epigenetics. Epigenomics 2016; 8:429-45. [DOI: 10.2217/epi.15.108] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Chromatin is a macromolecular complex composed of DNA and histones that regulate gene expression and nuclear architecture. The concerted action of DNA methylation, histone post-translational modifications and chromatin-associated proteins control the epigenetic regulation of the genome, ultimately determining cell fate and the transcriptional outputs of differentiated cells. Deregulation of this complex machinery leads to disease states, and exploiting epigenetic drugs is becoming increasingly attractive for therapeutic intervention. Mass spectrometry (MS)-based proteomics emerged as a powerful tool complementary to genomic approaches for epigenetic research, allowing the unbiased and comprehensive analysis of histone post-translational modifications and the characterization of chromatin constituents and chromatin-associated proteins. Furthermore, MS holds great promise for epigenetic biomarker discovery and represents a useful tool for deconvolution of epigenetic drug targets. Here, we will provide an overview of the applications of MS-based proteomics in various areas of chromatin biology.
Collapse
Affiliation(s)
- Roberta Noberini
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia, via Adamello 16, Milano, Italy
| | - Gianluca Sigismondo
- Department of Experimental Oncology, European Institute of Oncology, via Adamello 16, Milano, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology, via Adamello 16, Milano, Italy
| |
Collapse
|
20
|
Vlaming H, van Leeuwen F. The upstreams and downstreams of H3K79 methylation by DOT1L. Chromosoma 2016; 125:593-605. [PMID: 26728620 DOI: 10.1007/s00412-015-0570-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/16/2015] [Accepted: 12/21/2015] [Indexed: 12/14/2022]
Abstract
Histone modifications regulate key processes of eukaryotic genomes. Misregulation of the enzymes that place these modifications can lead to disease. An example of this is DOT1L, the enzyme that can mono-, di-, and trimethylate the nucleosome core on lysine 79 of histone H3 (H3K79). DOT1L plays a role in development and its misregulation has been implicated in several cancers, most notably leukemias caused by a rearrangement of the MLL gene. A DOT1L inhibitor is in clinical trials for these leukemias and shows promising results, yet we are only beginning to understand DOT1L's function and regulation in the cell. Here, we review what happens upstream and downstream of H3K79 methylation. H3K79 methylation levels are highest in transcribed genes, where H2B ubiquitination can promote DOT1L activity. In addition, DOT1L can be targeted to transcribed regions of the genome by several of its interaction partners. Although methylation levels strongly correlate with transcription, the mechanistic link between the two is unclear and probably context-dependent. Methylation of H3K79 may act through recruiting or repelling effector proteins, but we do not yet know which effectors mediate DOT1L's functions. Understanding DOT1L biology better will help us to understand the effects of DOT1L inhibitors and may allow the development of alternative strategies to target the DOT1L pathway.
Collapse
Affiliation(s)
- Hanneke Vlaming
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands.
| |
Collapse
|
21
|
Alabert C, Barth TK, Reverón-Gómez N, Sidoli S, Schmidt A, Jensen ON, Imhof A, Groth A. Two distinct modes for propagation of histone PTMs across the cell cycle. Genes Dev 2015; 29:585-90. [PMID: 25792596 PMCID: PMC4378191 DOI: 10.1101/gad.256354.114] [Citation(s) in RCA: 299] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Epigenetic states defined by chromatin can be maintained through mitotic cell division. However, it remains unknown how histone-based information is transmitted. Here we combine nascent chromatin capture (NCC) and triple-SILAC (stable isotope labeling with amino acids in cell culture) labeling to track histone modifications and histone variants during DNA replication and across the cell cycle. We show that post-translational modifications (PTMs) are transmitted with parental histones to newly replicated DNA. Di- and trimethylation marks are diluted twofold upon DNA replication, as a consequence of new histone deposition. Importantly, within one cell cycle, all PTMs are restored. In general, new histones are modified to mirror the parental histones. However, H3K9 trimethylation (H3K9me3) and H3K27me3 are propagated by continuous modification of parental and new histones because the establishment of these marks extends over several cell generations. Together, our results reveal how histone marks propagate and demonstrate that chromatin states oscillate within the cell cycle.
Collapse
Affiliation(s)
- Constance Alabert
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark; Centre for Epigenetics, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Teresa K Barth
- Munich Centre of Integrated Protein Science, Ludwig-Maximillians University of Munich, 80336 Munich, Germany; Adolf Butenandt Institute, Ludwig-Maximillians University of Munich, 80336 Munich, Germany
| | - Nazaret Reverón-Gómez
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark; Centre for Epigenetics, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Simone Sidoli
- Centre for Epigenetics, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense, Denmark
| | - Andreas Schmidt
- Munich Centre of Integrated Protein Science, Ludwig-Maximillians University of Munich, 80336 Munich, Germany; Adolf Butenandt Institute, Ludwig-Maximillians University of Munich, 80336 Munich, Germany
| | - Ole N Jensen
- Centre for Epigenetics, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense, Denmark
| | - Axel Imhof
- Munich Centre of Integrated Protein Science, Ludwig-Maximillians University of Munich, 80336 Munich, Germany; Adolf Butenandt Institute, Ludwig-Maximillians University of Munich, 80336 Munich, Germany;
| | - Anja Groth
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark; Centre for Epigenetics, University of Copenhagen, 2200 Copenhagen, Denmark;
| |
Collapse
|
22
|
Annunziato AT. The Fork in the Road: Histone Partitioning During DNA Replication. Genes (Basel) 2015; 6:353-71. [PMID: 26110314 PMCID: PMC4488668 DOI: 10.3390/genes6020353] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 12/22/2022] Open
Abstract
In the following discussion the distribution of histones at the replication fork is examined, with specific attention paid to the question of H3/H4 tetramer "splitting." After a presentation of early experiments surrounding this topic, more recent contributions are detailed. The implications of these findings with respect to the transmission of histone modifications and epigenetic models are also addressed.
Collapse
Affiliation(s)
- Anthony T Annunziato
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
23
|
Stulemeijer IJE, De Vos D, van Harten K, Joshi OK, Blomberg O, van Welsem T, Terweij M, Vlaming H, de Graaf EL, Altelaar AFM, Bakker BM, van Leeuwen F. Dot1 histone methyltransferases share a distributive mechanism but have highly diverged catalytic properties. Sci Rep 2015; 5:9824. [PMID: 25965993 PMCID: PMC4650758 DOI: 10.1038/srep09824] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/19/2015] [Indexed: 11/17/2022] Open
Abstract
The conserved histone methyltransferase Dot1 establishes an H3K79 methylation pattern
consisting of mono-, di- and trimethylation states on histone H3 via a distributive
mechanism. This mechanism has been shown to be important for the regulation of the
different H3K79 methylation states in yeast. Dot1 enzymes in yeast, Trypanosoma
brucei (TbDot1A and TbDot1B, which methylate H3K76) and human (hDot1L)
generate very divergent methylation patterns. To understand how these
species-specific methylation patterns are generated, the methylation output of the
Dot1 enzymes was compared by expressing them in yeast at various expression levels.
Computational simulations based on these data showed that the Dot1 enzymes have
highly distinct catalytic properties, but share a distributive mechanism. The
mechanism of methylation and the distinct rate constants have implications for the
regulation of H3K79/K76 methylation. A mathematical model of H3K76 methylation
during the trypanosome cell cycle suggests that temporally-regulated consecutive
action of TbDot1A and TbDot1B is required for the observed regulation of H3K76
methylation states.
Collapse
Affiliation(s)
- Iris J E Stulemeijer
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands
| | - Dirk De Vos
- Department of Biology, University of Antwerp, Antwerp, 2020, Belgium
| | - Kirsten van Harten
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands
| | - Onkar K Joshi
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands
| | - Olga Blomberg
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands
| | - Tibor van Welsem
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands
| | - Marit Terweij
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands
| | - Hanneke Vlaming
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands
| | - Erik L de Graaf
- Biomolecular Mass Spectrometry and Proteomics Group, The Netherlands Proteomics Centre, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - A F Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics Group, The Netherlands Proteomics Centre, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Barbara M Bakker
- Department of Pediatrics, Systems Biology Centre for Energy Metabolism and Ageing, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, 9713 GZ, The Netherlands
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands
| |
Collapse
|
24
|
Histone exchange, chromatin structure and the regulation of transcription. Nat Rev Mol Cell Biol 2015; 16:178-89. [DOI: 10.1038/nrm3941] [Citation(s) in RCA: 650] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Zheng Y, Tipton JD, Thomas PM, Kelleher NL, Sweet SMM. Site-specific human histone H3 methylation stability: fast K4me3 turnover. Proteomics 2014; 14:2190-9. [PMID: 24826939 DOI: 10.1002/pmic.201400060] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/11/2014] [Accepted: 05/09/2014] [Indexed: 12/16/2022]
Abstract
We employ stable-isotope labeling and quantitative mass spectrometry to track histone methylation stability. We show that H3 trimethyl K9 and K27 are slow to be established on new histones and slow to disappear from old histones, with half-lives of multiple cell divisions. By contrast, the transcription-associated marks K4me3 and K36me3 turn over far more rapidly, with half-lives of 6.8 h and 57 h, respectively. Inhibition of demethylases increases K9 and K36 methylation, with K9 showing the largest and most robust increase. We interpret different turnover rates in light of genome-wide localization data and transcription-dependent nucleosome rearrangements proximal to the transcription start site.
Collapse
Affiliation(s)
- Yupeng Zheng
- Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | | | | | | | | |
Collapse
|
26
|
Abstract
Epigenetic regulation of cellular identity and function is at least partly achieved through changes in covalent modifications on DNA and histones. Much progress has been made in recent years to understand how these covalent modifications affect cell identity and function. Despite the advances, whether and how epigenetic factors contribute to memory formation is still poorly understood. In this review, we discuss recent progress in elucidating epigenetic mechanisms of learning and memory, primarily at the DNA level, and look ahead to discuss their potential implications in reward memory and development of drug addiction.
Collapse
Affiliation(s)
- Luis M Tuesta
- Howard Hughes Medical Institute, Boston, MA, USA Program in Cellular and Molecular Medicine Boston Children's Hospital, Boston, MA, USA Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Yi Zhang
- Howard Hughes Medical Institute, Boston, MA, USA Program in Cellular and Molecular Medicine Boston Children's Hospital, Boston, MA, USA Department of Genetics, Harvard Medical School, Boston, MA, USA Harvard Stem Cell Institute Harvard Medical School, Boston, MA, USA
| |
Collapse
|
27
|
Nguyen HT, Tian G, Murph MM. Molecular epigenetics in the management of ovarian cancer: are we investigating a rational clinical promise? Front Oncol 2014; 4:71. [PMID: 24782983 PMCID: PMC3986558 DOI: 10.3389/fonc.2014.00071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/20/2014] [Indexed: 12/21/2022] Open
Abstract
Epigenetics is essentially a phenotypical change in gene expression without any alteration of the DNA sequence; the emergence of epigenetics in cancer research and mainstream oncology is fueling new hope. However, it is not yet known whether this knowledge will translate to improved clinical management of ovarian cancer. In this malignancy, women are still undergoing chemotherapy similar to what was approved in 1978, which to this day represents one of the biggest breakthroughs for treating ovarian cancer. Although liquid tumors are benefiting from epigenetically related therapies, solid tumors like ovarian cancer are not (yet?). Herein, we will review the science of molecular epigenetics, especially DNA methylation, histone modifications and microRNA, but also include transcription factors since they, too, are important in ovarian cancer. Pre-clinical and clinical research on the role of epigenetic modifications is also summarized. Unfortunately, ovarian cancer remains an idiopathic disease, for the most part, and there are many areas of patient management, which could benefit from improved technology. This review will also highlight the evidence suggesting that epigenetics may have pre-clinical utility in pharmacology and clinical applications for prognosis and diagnosis. Finally, drugs currently in clinical trials (i.e., histone deacetylase inhibitors) are discussed along with the promise for epigenetics in the exploitation of chemoresistance. Whether epigenetics will ultimately be the answer to better management in ovarian cancer is currently unknown; but we hope so in the future.
Collapse
Affiliation(s)
- Ha T Nguyen
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy , Athens, GA , USA
| | - Geng Tian
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy , Athens, GA , USA ; Department of Obstetrics and Gynecology, The Second Hospital of Jilin University , Changchun , China
| | - Mandi M Murph
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy , Athens, GA , USA
| |
Collapse
|
28
|
Soldi M, Bremang M, Bonaldi T. Biochemical systems approaches for the analysis of histone modification readout. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:657-68. [PMID: 24681439 DOI: 10.1016/j.bbagrm.2014.03.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/06/2014] [Accepted: 03/18/2014] [Indexed: 11/28/2022]
Abstract
Chromatin is the macromolecular nucleoprotein complex that governs the organization of genetic material in the nucleus of eukaryotic cells. In chromatin, DNA is packed with histone proteins into nucleosomes. Core histones are prototypes of hyper-modified proteins, being decorated by a large number of site-specific reversible and irreversible post-translational modifications (PTMs), which contribute to the maintenance and modulation of chromatin plasticity, gene activation, and a variety of other biological processes and disease states. The observations of the variety, frequency and co-occurrence of histone modifications in distinct patterns at specific genomic loci have led to the idea that hPTMs can create a molecular barcode, read by effector proteins that translate it into a specific transcriptional state, or process, on the underlying DNA. However, despite the fact that this histone-code hypothesis was proposed more than 10 years ago, the molecular details of its working mechanisms are only partially characterized. In particular, two questions deserve specific investigation: how the different modifications associate and synergize into patterns and how these PTM configurations are read and translated by multi-protein complexes into a specific functional outcome on the genome. Mass spectrometry (MS) has emerged as a versatile tool to investigate chromatin biology, useful for both identifying and validating hPTMs, and to dissect the molecular determinants of histone modification readout systems. We review here the MS techniques and the proteomics methods that have been developed to address these fundamental questions in epigenetics research, emphasizing approaches based on the proteomic dissection of distinct native chromatin regions, with a critical evaluation of their present challenges and future potential. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function.
Collapse
Affiliation(s)
- Monica Soldi
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Michael Bremang
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy.
| |
Collapse
|
29
|
Histone variants and epigenetic inheritance. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1819:222-229. [PMID: 24459724 DOI: 10.1016/j.bbagrm.2011.06.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nucleosome particles, which are composed of core histones and DNA, are the basic unit of eukaryotic chromatin. Histone modifications and histone composition determine the structure and function of the chromatin; this genome packaging, often referred to as "epigenetic information", provides additional information beyond the underlying genomic sequence. The epigenetic information must be transmitted from mother cells to daughter cells during mitotic division to maintain the cell lineage identity and proper gene expression. However, the mechanisms responsible for mitotic epigenetic inheritance remain largely unknown. In this review, we focus on recent studies regarding histone variants and discuss the assembly pathways that may contribute to epigenetic inheritance. This article is part of a Special Issue entitled: Histone chaperones and Chromatin assembly.
Collapse
|
30
|
Kim W, Choi M, Kim JE. The histone methyltransferase Dot1/DOT1L as a critical regulator of the cell cycle. Cell Cycle 2014; 13:726-38. [PMID: 24526115 PMCID: PMC3979909 DOI: 10.4161/cc.28104] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Dot1/DOT1L catalyzes the methylation of histone H3 lysine 79 (H3K79), which regulates diverse cellular processes, such as development, reprogramming, differentiation, and proliferation. In regards to these processes, studies of Dot1/DOT1L-dependent H3K79 methylation have mainly focused on the transcriptional regulation of specific genes. Although the gene transcription mediated by Dot1/DOT1L during the cell cycle is not fully understood, H3K79 methylation plays a critical role in the progression of G 1 phase, S phase, mitosis, and meiosis. This modification may contribute to the chromatin structure that controls gene expression, replication initiation, DNA damage response, microtubule reorganization, chromosome segregation, and heterochromatin formation. Overall, Dot1/DOT1L is required to maintain genomic and chromosomal stability. This review summarizes the several functions of Dot1/DOT1L and highlights its role in cell cycle regulation.
Collapse
Affiliation(s)
- Wootae Kim
- Department of Pharmacology; School of Medicine; Kyung Hee University; Seoul, Republic of Korea; Department of Biomedical Science; Graduate School; Kyung Hee University; Seoul, Republic of Korea
| | - Minji Choi
- Department of Pharmacology; School of Medicine; Kyung Hee University; Seoul, Republic of Korea; Department of Biomedical Science; Graduate School; Kyung Hee University; Seoul, Republic of Korea
| | - Ja-Eun Kim
- Department of Pharmacology; School of Medicine; Kyung Hee University; Seoul, Republic of Korea; Department of Biomedical Science; Graduate School; Kyung Hee University; Seoul, Republic of Korea
| |
Collapse
|
31
|
Measurement of acetylation turnover at distinct lysines in human histones identifies long-lived acetylation sites. Nat Commun 2014; 4:2203. [PMID: 23892279 PMCID: PMC3929392 DOI: 10.1038/ncomms3203] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 06/26/2013] [Indexed: 12/12/2022] Open
Abstract
Histone acetylation has long been determined as a highly dynamic modification associated with open chromatin and transcriptional activation. Here we develop a metabolic labelling scheme using stable isotopes to study the kinetics of acetylation turnover at 19 distinct lysines on histones H3, H4 and H2A. Using human HeLa S3 cells, the analysis reveals 12 sites of histone acetylation with fast turnover and 7 sites stable over a 30 h experiment. The sites showing fast turnover (anticipated from classical radioactive measurements of whole histones) have half-lives between ~1-2 h. To support this finding, we use a broad-spectrum deacetylase inhibitor to verify that only fast turnover sites display 2-10-fold increases in acetylation whereas long-lived sites clearly do not. Most of these stable sites lack extensive functional studies or localization within global chromatin, and their role in non-genetic mechanisms of inheritance is as yet unknown.
Collapse
|
32
|
Ontoso D, Kauppi L, Keeney S, San-Segundo PA. Dynamics of DOT1L localization and H3K79 methylation during meiotic prophase I in mouse spermatocytes. Chromosoma 2013; 123:147-64. [PMID: 24105599 DOI: 10.1007/s00412-013-0438-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/06/2013] [Accepted: 09/24/2013] [Indexed: 02/04/2023]
Abstract
During meiotic prophase I, interactions between maternal and paternal chromosomes, under checkpoint surveillance, establish connections between homologs that promote their accurate distribution to meiotic progeny. In human, faulty meiosis causes aneuploidy resulting in miscarriages and genetic diseases. Meiotic processes occur in the context of chromatin; therefore, histone post-translational modifications are expected to play important roles. Here, we report the cytological distribution of the evolutionarily conserved DOT1L methyltransferase and the different H3K79 methylation states resulting from its activity (mono-, di- and tri-methylation; H3K79me1, me2 and me3, respectively) during meiotic prophase I in mouse spermatocytes. In the wild type, whereas low amounts of H3K79me1 are rather uniformly present throughout prophase I, levels of DOT1L, H3K79me2 and H3K79me3 exhibit a notable increase from pachynema onwards, but with differential subnuclear distribution patterns. The heterochromatic centromeric regions and the sex body are enriched for H3K79me3. In contrast, H3K79me2 is present all over the chromatin, but is largely excluded from the sex body despite the accumulation of DOT1L. In meiosis-defective mouse mutants, the increase of DOT1L and H3K79me is blocked at the same stage where meiosis is arrested. H3K79me patterns, combined with the cytological analysis of the H3.3, γH2AX, macroH2A and H2A.Z histone variants, are consistent with a differential role for these epigenetic marks in male mouse meiotic prophase I. We propose that H3K79me2 is related to transcriptional reactivation on autosomes during pachynema, whereas H3K79me3 may contribute to the maintenance of repressive chromatin at centromeric regions and the sex body.
Collapse
Affiliation(s)
- David Ontoso
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas and University of Salamanca, 37007, Salamanca, Spain
| | | | | | | |
Collapse
|
33
|
Budhavarapu VN, Chavez M, Tyler JK. How is epigenetic information maintained through DNA replication? Epigenetics Chromatin 2013; 6:32. [PMID: 24225278 PMCID: PMC3852060 DOI: 10.1186/1756-8935-6-32] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 09/12/2013] [Indexed: 12/23/2022] Open
Abstract
DNA replication is a highly conserved process that accurately copies the genetic information from one generation to the next. The processes of chromatin disassembly and reassembly during DNA replication also have to be precisely regulated to ensure that the genetic material is compactly packaged to fit into the nucleus while also maintaining the epigenetic information that is carried by the histone proteins bound to the DNA, through cell divisions. Half of the histones that are deposited during replication are from the parental chromatin and carry the parental epigenetic information, while the other half of the histones are newly-synthesized. It has been of growing interest to understand how the parental pattern of epigenetic marks is re-established on the newly-synthesized histones, in a DNA sequence-specific manner, in order to maintain the epigenetic information through cell divisions. In this review we will discuss how histone chaperone proteins precisely coordinate the chromatin assembly process during DNA replication. We also discuss the recent evidence that histone-modifying enzymes, rather than the parental histones, are themselves epigenetic factors that remain associated with the DNA through replication to re-establish the epigenetic information on the newly-assembled chromatin.
Collapse
Affiliation(s)
- Varija N Budhavarapu
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Myrriah Chavez
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Jessica K Tyler
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| |
Collapse
|
34
|
Recombination-induced tag exchange (RITE) cassette series to monitor protein dynamics in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2013; 3:1261-72. [PMID: 23708297 PMCID: PMC3737166 DOI: 10.1534/g3.113.006213] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteins are not static entities. They are highly mobile, and their steady-state levels are achieved by a balance between ongoing synthesis and degradation. The dynamic properties of a protein can have important consequences for its function. For example, when a protein is degraded and replaced by a newly synthesized one, posttranslational modifications are lost and need to be reincorporated in the new molecules. Protein stability and mobility are also relevant for the duplication of macromolecular structures or organelles, which involves coordination of protein inheritance with the synthesis and assembly of newly synthesized proteins. To measure protein dynamics, we recently developed a genetic pulse-chase assay called recombination-induced tag exchange (RITE). RITE has been successfully used in Saccharomyces cerevisiae to measure turnover and inheritance of histone proteins, to study changes in posttranslational modifications on aging proteins, and to visualize the spatiotemporal inheritance of protein complexes and organelles in dividing cells. Here we describe a series of successful RITE cassettes that are designed for biochemical analyses, genomics studies, as well as single cell fluorescence applications. Importantly, the genetic nature and the stability of the tag switch offer the unique possibility to combine RITE with high-throughput screening for protein dynamics mutants and mechanisms. The RITE cassettes are widely applicable, modular by design, and can therefore be easily adapted for use in other cell types or organisms.
Collapse
|
35
|
Abstract
Rearrangements of the MLL gene define a genetically distinct subset of acute leukemias with poor prognosis. Current treatment options are of limited effectiveness; thus, there is a pressing need for new therapies for this disease. Genetic and small molecule inhibitor studies have demonstrated that the histone methyltransferase DOT1L is required for the development and maintenance of MLL-rearranged leukemia in model systems. Here we describe the characterization of EPZ-5676, a potent and selective aminonucleoside inhibitor of DOT1L histone methyltransferase activity. The compound has an inhibition constant value of 80 pM, and demonstrates 37 000-fold selectivity over all other methyltransferases tested. In cellular studies, EPZ-5676 inhibited H3K79 methylation and MLL-fusion target gene expression and demonstrated potent cell killing that was selective for acute leukemia lines bearing MLL translocations. Continuous IV infusion of EPZ-5676 in a rat xenograft model of MLL-rearranged leukemia caused complete tumor regressions that were sustained well beyond the compound infusion period with no significant weight loss or signs of toxicity. EPZ-5676 is therefore a potential treatment of MLL-rearranged leukemia and is under clinical investigation.
Collapse
|
36
|
Terweij M, van Leeuwen F. Histone exchange: sculpting the epigenome. FRONTIERS IN LIFE SCIENCE 2013. [DOI: 10.1080/21553769.2013.838193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
37
|
Alsing AK, Sneppen K. Differentiation of developing olfactory neurons analysed in terms of coupled epigenetic landscapes. Nucleic Acids Res 2013; 41:4755-64. [PMID: 23519617 PMCID: PMC3643594 DOI: 10.1093/nar/gkt181] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 02/26/2013] [Accepted: 02/26/2013] [Indexed: 02/06/2023] Open
Abstract
The olfactory system integrates signals from receptors expressed in olfactory sensory neurons. Each sensory neuron expresses only one of many similar olfactory receptors (ORs). The choice of receptor is made stochastically early in the differentiation process and is maintained throughout the life of the neuron. The underlying mechanism of this stochastic commitment to one of multiple similar OR genes remains elusive. We present a theoretical analysis of a mechanism that invokes important epigenetic properties of the system. The proposed model combines nucleosomes and associated read-write enzymes as mediators of a cis-acting positive feedback with a trans-acting negative feedback, thereby coupling the local epigenetic landscape of the individual OR genes in a way that allow one and only one gene to be active at any time. The model pinpoint that singular gene selection does not require transient mechanisms, enhancer elements or transcription factors to separate choice from maintenance. In addition, our hypothesis allow us to combine all reported characteristics of singular OR gene selection, in particular that OR genes are silenced from OR transgenes. Intriguingly, it predicts that OR transgenes placed in close proximity should always be expressed simultaneously, though rarely.
Collapse
Affiliation(s)
| | - Kim Sneppen
- Center for Models of Life, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| |
Collapse
|
38
|
Huang C, Xu M, Zhu B. Epigenetic inheritance mediated by histone lysine methylation: maintaining transcriptional states without the precise restoration of marks? Philos Trans R Soc Lond B Biol Sci 2013; 368:20110332. [PMID: 23166395 DOI: 10.1098/rstb.2011.0332] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
'Epigenetics' has been defined as the study of 'mitotically and/or meiotically heritable changes in gene function that cannot be explained by changes in DNA sequence'. Chromatin modifications are major carriers of epigenetic information that both reflect and affect the transcriptional states of underlying genes. Several histone modifications are key players that are responsible for classical epigenetic phenomena. However, the mechanisms by which cells pass their histone modifications to daughter cells through mitotic division remain to be unveiled. Here, we review recent progress in the field and conclude that epigenetic modifications are not precisely maintained at a near-mononucleosome level of precision. We also suggest that transcription repression may be maintained by a buffer system that can tolerate a certain degree of fluctuation in repressive histone modification levels. This buffer system protects the repressed genes from potential improper derepression triggered by chromatin modification-level fluctuation resulting from cellular events, such as the cell-cycle-dependent dilution of the chromatin modifications and local responses to environmental cues.
Collapse
Affiliation(s)
- Chang Huang
- College of Biological Sciences, China Agricultural University, Beijing 100094, Republic of China
| | | | | |
Collapse
|
39
|
Mass spectrometry-based proteomics for the analysis of chromatin structure and dynamics. Int J Mol Sci 2013; 14:5402-31. [PMID: 23466885 PMCID: PMC3634404 DOI: 10.3390/ijms14035402] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/24/2013] [Accepted: 02/20/2013] [Indexed: 12/22/2022] Open
Abstract
Chromatin is a highly structured nucleoprotein complex made of histone proteins and DNA that controls nearly all DNA-dependent processes. Chromatin plasticity is regulated by different associated proteins, post-translational modifications on histones (hPTMs) and DNA methylation, which act in a concerted manner to enforce a specific "chromatin landscape", with a regulatory effect on gene expression. Mass Spectrometry (MS) has emerged as a powerful analytical strategy to detect histone PTMs, revealing interplays between neighbouring PTMs and enabling screens for their readers in a comprehensive and quantitative fashion. Here we provide an overview of the recent achievements of state-of-the-art mass spectrometry-based proteomics for the detailed qualitative and quantitative characterization of histone post-translational modifications, histone variants, and global interactomes at specific chromatin regions. This synopsis emphasizes how the advances in high resolution MS, from "Bottom Up" to "Top Down" analysis, together with the uptake of quantitative proteomics methods by chromatin biologists, have made MS a well-established method in the epigenetics field, enabling the acquisition of original information, highly complementary to that offered by more conventional, antibody-based, assays.
Collapse
|
40
|
Bartke T, Borgel J, DiMaggio PA. Proteomics in epigenetics: new perspectives for cancer research. Brief Funct Genomics 2013; 12:205-18. [PMID: 23401080 PMCID: PMC3662889 DOI: 10.1093/bfgp/elt002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The involvement of epigenetic processes in the origin and progression of cancer is now widely appreciated. Consequently, targeting the enzymatic machinery that controls the epigenetic regulation of the genome has emerged as an attractive new strategy for therapeutic intervention. The development of epigenetic drugs requires a detailed knowledge of the processes that govern chromatin regulation. Over the recent years, mass spectrometry (MS) has become an indispensable tool in epigenetics research. In this review, we will give an overview of the applications of MS-based proteomics in studying various aspects of chromatin biology. We will focus on the use of MS in the discovery and mapping of histone modifications and how novel proteomic approaches are being utilized to identify and study chromatin-associated proteins and multi-subunit complexes. Finally, we will discuss the application of proteomic methods in the diagnosis and prognosis of cancer based on epigenetic biomarkers and comment on their future impact on cancer epigenetics.
Collapse
Affiliation(s)
- Till Bartke
- MRC Clinical Sciences Centre, Imperial College London Faculty of Medicine, Hammersmith Hospital Campus, London W12 0NN, UK.
| | | | | |
Collapse
|
41
|
Total kinetic analysis reveals how combinatorial methylation patterns are established on lysines 27 and 36 of histone H3. Proc Natl Acad Sci U S A 2012; 109:13549-54. [PMID: 22869745 DOI: 10.1073/pnas.1205707109] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have developed a targeted method to quantify all combinations of methylation on an H3 peptide containing lysines 27 and 36 (H3K27-K36). By using stable isotopes that separately label the histone backbone and its methylations, we tracked the rates of methylation and demethylation in myeloma cells expressing high vs. low levels of the methyltransferase MMSET/WHSC1/NSD2. Following quantification of 99 labeled H3K27-K36 methylation states across time, a kinetic model converged to yield 44 effective rate constants qualifying each methylation and demethylation step as a function of the methylation state on the neighboring lysine. We call this approach MS-based measurement and modeling of histone methylation kinetics (M4K). M4K revealed that, when dimethylation states are reached on H3K27 or H3K36, rates of further methylation on the other site are reduced as much as 100-fold. Overall, cells with high MMSET have as much as 33-fold increases in the effective rate constants for formation of H3K36 mono- and dimethylation. At H3K27, cells with high MMSET have elevated formation of K27me1, but even higher increases in the effective rate constants for its reversal by demethylation. These quantitative studies lay bare a bidirectional antagonism between H3K27 and H3K36 that controls the writing and erasing of these methylation marks. Additionally, the integrated kinetic model was used to correctly predict observed abundances of H3K27-K36 methylation states within 5% of that actually established in perturbed cells. Such predictive power for how histone methylations are established should have major value as this family of methyltransferases matures as drug targets.
Collapse
|
42
|
Ong SE. The expanding field of SILAC. Anal Bioanal Chem 2012; 404:967-76. [DOI: 10.1007/s00216-012-5998-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 03/21/2012] [Accepted: 03/29/2012] [Indexed: 01/13/2023]
|
43
|
Abstract
Stability and function of eukaryotic genomes are closely linked to chromatin structure and organization. During cell division the entire genome must be accurately replicated and the chromatin landscape reproduced on new DNA. Chromatin and nuclear structure influence where and when DNA replication initiates, whereas the replication process itself disrupts chromatin and challenges established patterns of genome regulation. Specialized replication-coupled mechanisms assemble new DNA into chromatin, but epigenome maintenance is a continuous process taking place throughout the cell cycle. If DNA synthesis is perturbed, cells can suffer loss of both genome and epigenome integrity with severe consequences for the organism.
Collapse
|
44
|
Hersman E, Nelson DM, Griffith WP, Jelinek C, Cotter RJ. Analysis of Histone Modifications from Tryptic Peptides of Deuteroacetylated Isoforms. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2012; 312:5-16. [PMID: 22389584 PMCID: PMC3289288 DOI: 10.1016/j.ijms.2011.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The in vitro deuteroacetylation of histones obtained from biological sources has been used previously in bottom-up mass spectrometry analyses to quantitate the percent of endogenous acetylation of specific lysine sites and/or peptides. In this report, derivatization of unmodified lysine residues on histones is used in combination with high performance mass spectrometry, including combined HPLC MS/MS, to distinguish and quantitate endogenously acetylated isoforms occurring within the same tryptic peptide sequence and to extend this derivatization strategy to other post-translational modifications, specifically methylation, dimethylation and trimethylation. The in vitro deuteroacetylation of monomethylated lysine residues is observed, though dimethylated or trimethylated residues are not derivatised. Comparison of the relative intensities ascribed to the deuteroacetylated and monomethylated species with the deuteroacetylated but unmethylated analog, provides an opportunity to estimate the percent of methylation at that site. In addition to the observed fragmentation patterns, the very high mass accuracy available on the Orbitrap mass spectrometer can be used to confirm the structural isoforms, and in particular to distinguish between trimethylated and acetylated species.
Collapse
Affiliation(s)
- Elisabeth Hersman
- Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | | | | | | |
Collapse
|
45
|
Britton LMP, Gonzales-Cope M, Zee BM, Garcia BA. Breaking the histone code with quantitative mass spectrometry. Expert Rev Proteomics 2012; 8:631-43. [PMID: 21999833 DOI: 10.1586/epr.11.47] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Histone post-translational modifications (PTMs) comprise one of the most intricate nuclear signaling networks that govern gene expression in a long-term and dynamic fashion. These PTMs are considered to be 'epigenetic' or heritable from one cell generation to the next and help establish genomic expression patterns. While much of the analyses of histones have historically been performed using site-specific antibodies, these methods are replete with technical obstacles (i.e., cross-reactivity and epitope occlusion). Mass spectrometry-based proteomics has begun to play a significant role in the interrogation of histone PTMs, revealing many new aspects of these modifications that cannot be easily determined with standard biological approaches. Here, we review the accomplishments of mass spectrometry in the histone field, and outline the future roadblocks that must be overcome for mass spectrometry-based proteomics to become the method of choice for chromatin biologists.
Collapse
Affiliation(s)
- Laura-Mae P Britton
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | |
Collapse
|
46
|
Affiliation(s)
- Hanneke Vlaming
- Division of Gene Regulation & Netherlands Proteomics Center, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Fred van Leeuwen
- Division of Gene Regulation & Netherlands Proteomics Center, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
47
|
Affiliation(s)
- Feng Xian
- Department
of Chemistry and
Biochemistry, Florida State University,
95 Chieftain Way, Tallahassee, Florida 32310-4390, United States
| | - Christopher L. Hendrickson
- Department
of Chemistry and
Biochemistry, Florida State University,
95 Chieftain Way, Tallahassee, Florida 32310-4390, United States
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, 1800
East Paul Dirac Drive, Tallahassee, Florida 32310-4005, United States
| | - Alan G. Marshall
- Department
of Chemistry and
Biochemistry, Florida State University,
95 Chieftain Way, Tallahassee, Florida 32310-4390, United States
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, 1800
East Paul Dirac Drive, Tallahassee, Florida 32310-4005, United States
| |
Collapse
|
48
|
Xu M, Chen S, Zhu B. Investigating the cell cycle-associated dynamics of histone modifications using quantitative mass spectrometry. Methods Enzymol 2012; 512:29-55. [PMID: 22910201 DOI: 10.1016/b978-0-12-391940-3.00002-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In eukaryotic cells, posttranslational modifications (PTMs) on histones regulate chromatin structure and thus impact nearly all chromatin-templated events, including replication, transcription, and DNA repair. During S phase, newly synthesized histones are deposited onto DNA, leading to dilution of total chromatin-associated modifications. To maintain genome organization in daughter cells, histone PTMs must be reestablished in the subsequent cell cycle. Owing to their importance for determining cellular fate, the mechanisms that underlie the inheritance of epigenetic mark from parent cells by daughter cells are of great interest. In recent years, mass spectrometry (MS) has emerged as a powerful tool for identifying and quantifying histone modifications. This chapter describes strategies for investigating the reestablishment of histone PTMs during the mitotic cell cycle using quantitative MS approaches. By introducing these basic principles of experimental design and common protocols, we hope that this chapter will help readers to apply quantitative MS in their own research systems to study the biology of histone modifications.
Collapse
Affiliation(s)
- Mo Xu
- National Institute of Biological Sciences, Beijing, PR China
| | | | | |
Collapse
|
49
|
A model for mitotic inheritance of histone lysine methylation. EMBO Rep 2011; 13:60-7. [PMID: 22056817 DOI: 10.1038/embor.2011.206] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 09/28/2011] [Accepted: 09/28/2011] [Indexed: 11/08/2022] Open
Abstract
Histone lysine methylation has been implicated in epigenetic regulation of transcription. Using stable-isotope labelling and quantitative mass spectrometry, we analysed the dynamics of histone lysine methylation. Here we report that histone methylation levels are transiently reduced during S phase and are gradually re-established during subsequent cell cycle stages. However, despite the recovery of overall methylation levels before the next S phase, the methylation levels of parental and newly incorporated histones differ significantly. In addition, histone methylation levels are maintained at steady states by both restriction of methyltransferase activity and the active turnover of methyl groups in cells undergoing an extended G1/S phase arrest. Finally, we propose a 'buffer model' that unifies the imprecise inheritance of histone methylation and the faithful maintenance of underlying gene silencing.
Collapse
|
50
|
Progressive methylation of ageing histones by Dot1 functions as a timer. EMBO Rep 2011; 12:956-62. [PMID: 21760613 DOI: 10.1038/embor.2011.131] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 06/07/2011] [Indexed: 11/08/2022] Open
Abstract
Post-translational modifications of histone proteins have a crucial role in regulating gene expression. If efficiently re-established after chromosome duplication, histone modifications could help propagate gene expression patterns in dividing cells by epigenetic mechanisms. We used an integrated approach to investigate the dynamics of the conserved methylation of histone H3 Lys 79 (H3K79) by Dot1. Our results show that methylation of H3K79 progressively changes after histone deposition, which is incompatible with a rapid copy mechanism. Instead, methylation accumulates on ageing histones, providing the cell with a timer mechanism to directly couple cell-cycle length to changes in chromatin modification on the nucleosome core.
Collapse
|