1
|
Quantitative Method to Track Proteolytic Invasion in 3D Collagen. Methods Mol Biol 2018. [PMID: 30378053 DOI: 10.1007/978-1-4939-8879-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Since many tumors are associated with a pronounced collagen-rich stromal reaction, there is increasing interest in understanding mechanisms by which cancer cells invade through the collagen barrier. Here we describe a quantitative method to track cell invasion in 3D collagen I gels. We analyze invasion by quantifying proteolytic tracks generated by invading cancer cells through a 3D collagen microenvironment. We provide a detailed protocol for this quantitative assay, which can be used to characterize signaling pathways that regulate invasion in the 3D microenvironment.
Collapse
|
2
|
Karamanou K, Perrot G, Maquart FX, Brézillon S. Lumican as a multivalent effector in wound healing. Adv Drug Deliv Rev 2018; 129:344-351. [PMID: 29501701 DOI: 10.1016/j.addr.2018.02.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/31/2018] [Accepted: 02/26/2018] [Indexed: 12/14/2022]
Abstract
Wound healing, a complex physiological process, is responsible for tissue repair after exposure to destructive stimuli, without resulting in complete functional regeneration. Injuries can be stromal or epithelial, and most cases of wound repair have been studied in the skin and cornea. Lumican, a small leucine-rich proteoglycan, is expressed in the extracellular matrices of several tissues, such as the cornea, cartilage, and skin. This molecule has been shown to regulate collagen fibrillogenesis, keratinocyte phenotypes, and corneal transparency modulation. Lumican is also involved in the extravasation of inflammatory cells and angiogenesis, which are both critical in stromal wound healing. Lumican is the only member of the small leucine-rich proteoglycan family expressed by the epithelia during wound healing. This review summarizes the importance of lumican in wound healing and potential methods of lumican drug delivery to target wound repair are discussed. The involvement of lumican in corneal wound healing is described based on in vitro and in vivo models, with critical emphasis on its underlying mechanisms of action. Similarly, the expression and role of lumican in the healing of other tissues are presented, with emphasis on skin wound healing. Overall, lumican promotes normal wound repair and broadens new therapeutic perspectives for impaired wound healing.
Collapse
Affiliation(s)
- Konstantina Karamanou
- Université de Reims Champagne-Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France; Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece; CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, Reims, France
| | - Gwenn Perrot
- Université de Reims Champagne-Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France; CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, Reims, France
| | - Francois-Xavier Maquart
- Université de Reims Champagne-Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France; CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, Reims, France; CHU Reims, Laboratoire Central de Biochimie, Reims, France
| | - Stéphane Brézillon
- Université de Reims Champagne-Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France; CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, Reims, France.
| |
Collapse
|
3
|
Chow CR, Ebine K, Knab LM, Bentrem DJ, Kumar K, Munshi HG. Cancer Cell Invasion in Three-dimensional Collagen Is Regulated Differentially by Gα13 Protein and Discoidin Domain Receptor 1-Par3 Protein Signaling. J Biol Chem 2015; 291:1605-1618. [PMID: 26589794 DOI: 10.1074/jbc.m115.669606] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Indexed: 12/15/2022] Open
Abstract
Cancer cells can invade in three-dimensional collagen as single cells or as a cohesive group of cells that require coordination of cell-cell junctions and the actin cytoskeleton. To examine the role of Gα13, a G12 family heterotrimeric G protein, in regulating cellular invasion in three-dimensional collagen, we established a novel method to track cell invasion by membrane type 1 matrix metalloproteinase-expressing cancer cells. We show that knockdown of Gα13 decreased membrane type 1 matrix metalloproteinase-driven proteolytic invasion in three-dimensional collagen and enhanced E-cadherin-mediated cell-cell adhesion. E-cadherin knockdown reversed Gα13 siRNA-induced cell-cell adhesion but failed to reverse the effect of Gα13 siRNA on proteolytic invasion. Instead, concurrent knockdown of E-cadherin and Gα13 led to an increased number of single cells rather than groups of cells. Significantly, knockdown of discoidin domain receptor 1 (DDR1), a collagen-binding protein that also co-localizes to cell-cell junctions, reversed the effects of Gα13 knockdown on cell-cell adhesion and proteolytic invasion in three-dimensional collagen. Knockdown of the polarity protein Par3, which can function downstream of DDR1, also reversed the effects of Gα13 knockdown on cell-cell adhesion and proteolytic invasion in three-dimensional collagen. Overall, we show that Gα13 and DDR1-Par3 differentially regulate cell-cell junctions and the actin cytoskeleton to mediate invasion in three-dimensional collagen.
Collapse
Affiliation(s)
- Christina R Chow
- From the Departments of Medicine and; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Ilinois 60611
| | - Kazumi Ebine
- From the Departments of Medicine and; Jesse Brown Veterans Affairs Medical Center, and
| | | | - David J Bentrem
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Ilinois 60611; Jesse Brown Veterans Affairs Medical Center, and; Surgery, Feinberg School of Medicine
| | - Krishan Kumar
- From the Departments of Medicine and; Jesse Brown Veterans Affairs Medical Center, and
| | - Hidayatullah G Munshi
- From the Departments of Medicine and; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Ilinois 60611; Jesse Brown Veterans Affairs Medical Center, and.
| |
Collapse
|
4
|
GLI2-dependent c-MYC upregulation mediates resistance of pancreatic cancer cells to the BET bromodomain inhibitor JQ1. Sci Rep 2015; 5:9489. [PMID: 25807524 PMCID: PMC4452877 DOI: 10.1038/srep09489] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/10/2015] [Indexed: 12/31/2022] Open
Abstract
JQ1 and I-BET151 are selective inhibitors of BET bromodomain proteins that have efficacy against a number of different cancers. Since the effectiveness of targeted therapies is often limited by development of resistance, we examined whether it was possible for cancer cells to develop resistance to the BET inhibitor JQ1. Here we show that pancreatic cancer cells developing resistance to JQ1 demonstrate cross-resistance to I-BET151 and insensitivity to BRD4 downregulation. The resistant cells maintain expression of c-MYC, increase expression of JQ1-target genes FOSL1 and HMGA2, and demonstrate evidence of epithelial-mesenchymal transition (EMT). However, reverting EMT fails to sensitize the resistant cells to JQ1 treatment. Importantly, the JQ1-resistant cells remain dependent on c-MYC that now becomes co-regulated by high levels of GLI2. Furthermore, downregulating GLI2 re-sensitizes the resistant cells to JQ1. Overall, these results identify a mechanism by which cancer cells develop resistance to BET inhibitors.
Collapse
|
5
|
Knockdown of Rho-associated protein kinase 1 suppresses proliferation and invasion of glioma cells. Tumour Biol 2014; 36:421-8. [PMID: 25266804 DOI: 10.1007/s13277-014-2673-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 09/23/2014] [Indexed: 10/25/2022] Open
Abstract
Rho-associated protein kinase 1 (ROCK1), a serine/threonine protein kinase, affects cell invasion and migration by changing the status of the cytoskeleton. In recent years, ROCK1 was found to be overexpressed in a variety of tumors. However, the information of ROCK1 in glioma still remains elusive. In our study, the expression of ROCK1 in glioma tissues was examined by real-time PCR and the relationship between ROCK1 expression and clinical characteristics of patients with glioma was also analyzed. With the inhibition of ROCK1 expression by RNAi, the effects of ROCK1 on biological behaviors of glioma cells including cell viability, cell cycle, and cell invasion were probed in the U251 cell line by methyl thiazolyl tetrazolium (MTT) assay, flow cytometer analysis, and Transwell invasion experiment. In addition, the effects of ROCK1 on the regulation of Ki67, cyclin D1, matrix metalloproteinases 9 (MMP9), and E-cadherin were also investigated. The results indicated that ROCK1 messenger RNA (mRNA) was increased significantly compared to that in the adjacent normal tissue (P < 0.05) and the expression level of ROCK1 mRNA in high-grade malignant glioma tissue was significantly higher than that in low-grade malignant glioma tissue (P < 0.05). MTT assay and flow cytometer analysis revealed that the cell viability and cell proliferation in the ROCK1 small interfering RNA (siRNA) transfection group were markedly lower than those in the blank or negative control group (P < 0.05), and no obvious differences were found between the blank group and negative control group. The Transwell invasion experiments showed that the invasive ability of U251 cells in the ROCK1 siRNA transfection group was obviously lower than that in the blank or negative control group (P < 0.05), and there were no visible differences between the blank group and negative control group. Western blot demonstrated that the protein levels of Ki67, cyclin D1, and MMP9 in the ROCK1 siRNA transfection group were distinctly lower than those in the blank or negative control group (P < 0.05) and that the protein level of E-cadherin displayed an opposite variation (P < 0.05). In summary, the expressions of ROCK1 in glioma tissue were visibly upregulated and the increase of ROCK1 had a positive correlation with the malignant grade of glioma. The results implied that the proliferation and metastasis of the glioma cell could be inhibited by suppressing the expression of ROCK1, and our findings would provide a new target for intervention and treatment of glioma.
Collapse
|
6
|
Dangi-Garimella S, Sahai V, Ebine K, Kumar K, Munshi HG. Three-dimensional collagen I promotes gemcitabine resistance in vitro in pancreatic cancer cells through HMGA2-dependent histone acetyltransferase expression. PLoS One 2013; 8:e64566. [PMID: 23696899 PMCID: PMC3655998 DOI: 10.1371/journal.pone.0064566] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 04/16/2013] [Indexed: 12/29/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with a pronounced collagen-rich stromal reaction that has been shown to contribute to chemo-resistance. We have previously shown that PDAC cells are resistant to gemcitabine chemotherapy in the collagen microenvironment because of increased expression of the chromatin remodeling protein high mobility group A2 (HMGA2). We have now found that human PDAC tumors display higher levels of histone H3K9 and H3K27 acetylation in fibrotic regions. We show that relative to cells grown on tissue culture plastic, PDAC cells grown in three-dimensional collagen gels demonstrate increased histone H3K9 and H3K27 acetylation, along with increased expression of p300, PCAF and GCN5 histone acetyltransferases (HATs). Knocking down HMGA2 attenuates the effect of collagen on histone H3K9 and H3K27 acetylation and on collagen-induced p300, PCAF and GCN5 expression. We also show that human PDAC tumors with HMGA2 demonstrate increased histone H3K9 and H3K27 acetylation. Additionally, we show that cells in three-dimensional collagen gels demonstrate increased protection against gemcitabine. Significantly, down-regulation of HMGA2 or p300, PCAF and GCN5 HATs sensitizes the cells to gemcitabine in three-dimensional collagen. Overall, our results increase our understanding of how the collagen microenvironment contributes to chemo-resistance in vitro and identify HATs as potential therapeutic targets against this deadly cancer.
Collapse
Affiliation(s)
- Surabhi Dangi-Garimella
- Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- * E-mail: (SD); (HGM)
| | - Vaibhav Sahai
- Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Kazumi Ebine
- Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Krishan Kumar
- Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Hidayatullah G. Munshi
- Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Jesse Brown VA Medical Center, Northwestern University, Chicago, Illinois, United States of America
- The Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Northwestern University, Chicago, Illinois, United States of America
- * E-mail: (SD); (HGM)
| |
Collapse
|
7
|
Biochemical role of the collagen-rich tumour microenvironment in pancreatic cancer progression. Biochem J 2012; 441:541-52. [PMID: 22187935 DOI: 10.1042/bj20111240] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PDAC (pancreatic ductal adenocarcinoma) is among the most deadly of human malignances. A hallmark of the disease is a pronounced collagen-rich fibrotic extracellular matrix known as the desmoplastic reaction. Intriguingly, it is precisely these areas of fibrosis in which human PDAC tumours demonstrate increased expression of a key collagenase, MT1-MMP [membrane-type 1 MMP (matrix metalloproteinase); also known as MMP-14]. Furthermore, a cytokine known to mediate fibrosis in vivo, TGF-β1 (transforming growth factor-β1), is up-regulated in human PDAC tumours and can promote MT1-MMP expression. In the present review, we examine the regulation of PDAC progression through the interplay between type I collagen (the most common extracellular matrix present in human PDAC tumours), MT1-MMP and TGF-β1. Specifically, we examine the way in which signalling events through these pathways mediates invasion, regulates microRNAs and contributes to chemoresistance.
Collapse
|
8
|
Shields MA, Krantz SB, Bentrem DJ, Dangi-Garimella S, Munshi HG. Interplay between β1-integrin and Rho signaling regulates differential scattering and motility of pancreatic cancer cells by snail and Slug proteins. J Biol Chem 2012; 287:6218-29. [PMID: 22232555 DOI: 10.1074/jbc.m111.308940] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Snail family of transcription factors has been implicated in pancreatic cancer progression. We recently showed that Snail (Snai1) promotes membrane-type 1 matrix metalloproteinase (MT1-MMP)- and ERK1/2-dependent scattering of pancreatic cancer cells in three-dimensional type I collagen. In this study, we examine the role of Slug (Snai2) in regulating pancreatic cancer cell scattering in three-dimensional type I collagen. Although Slug increased MT1-MMP expression and ERK1/2 activity, Slug-expressing cells failed to scatter in three-dimensional collagen. Moreover, in contrast to Snail-expressing cells, Slug-expressing cells did not demonstrate increased collagen I binding, collagen I-driven motility, or α2β1-integrin expression. Significantly, inhibiting β1-integrin function decreased migration and scattering of Snail-expressing cells in three-dimensional collagen. As Rho GTPases have been implicated in invasion and migration, we also analyzed the contribution of Rac1 and Rho signaling to the differential migration and scattering of pancreatic cancer cells. Snail-induced migration and scattering were attenuated by Rac1 inhibition. In contrast, inhibiting Rho-associated kinase ROCK1/2 increased migration and scattering of Slug-expressing cells in three-dimensional collagen and thus phenocopied the effects of Snail in pancreatic cancer cells. Additionally, the increased migration and scattering in three-dimensional collagen of Slug-expressing cells following ROCK1/2 inhibition was dependent on β1-integrin function. Overall, these results demonstrate differential effects of Snail and Slug in pancreatic cancer and identify the interplay between Rho signaling and β1-integrin that functions to regulate the differential scattering and migration of Snail- and Slug-expressing pancreatic cancer cells.
Collapse
Affiliation(s)
- Mario A Shields
- Division of Hematology/Oncology, Department of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
9
|
Hsu SH, Huang GS, Lin SYF, Feng F, Ho TT, Liao YC. Enhanced Chondrogenic Differentiation Potential of Human Gingival Fibroblasts by Spheroid Formation on Chitosan Membranes. Tissue Eng Part A 2012; 18:67-79. [DOI: 10.1089/ten.tea.2011.0157] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Shan-hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
- Rehabilitation Engineering Research Center, National Taiwan University, Taipei, Taiwan
- Institute of Biomedical Engineering, National Chung Hsing University, Taichung, Taiwan
| | - Guo-Shiang Huang
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Susan Yun Fan Lin
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Fuh Feng
- Forward Dental Group, Taichung, Taiwan
| | - Tung-Tso Ho
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
- Institute of Biomedical Engineering, National Chung Hsing University, Taichung, Taiwan
| | - Yuan-Ching Liao
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
10
|
Krantz SB, Shields MA, Dangi-Garimella S, Cheon EC, Barron MR, Hwang RF, Rao MS, Grippo PJ, Bentrem DJ, Munshi HG. MT1-MMP cooperates with Kras(G12D) to promote pancreatic fibrosis through increased TGF-β signaling. Mol Cancer Res 2011; 9:1294-304. [PMID: 21856775 DOI: 10.1158/1541-7786.mcr-11-0023] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Pancreatic cancer is associated with a pronounced fibrotic reaction that was recently shown to limit delivery of chemotherapy. To identify potential therapeutic targets to overcome this fibrosis, we examined the interplay between fibrosis and the key proteinase membrane type 1-matrix metalloproteinase (MT1-MMP, MMP-14), which is required for growth and invasion in the collagen-rich microenvironment. In this article, we show that compared with control mice (Kras(+)/MT1-MMP(-)) that express an activating Kras(G12D) mutation necessary for pancreatic cancer development, littermate mice that express both MT1-MMP and Kras(G12D) (Kras(+)/MT1-MMP(+)) developed a greater number of large, dysplastic mucin-containing papillary lesions. These lesions were associated with a significant amount of surrounding fibrosis, increased α-smooth muscle actin (+) cells in the stroma, indicative of activated myofibroblasts, and increased Smad2 phosphorylation. To further understand how MT1-MMP promotes fibrosis, we established an in vitro model to examine the effect of expressing MT1-MMP in pancreatic ductal adenocarcinoma (PDAC) cells on stellate cell collagen deposition. Conditioned media from MT1-MMP-expressing PDAC cells grown in three-dimensional collagen enhanced Smad2 nuclear translocation, promoted Smad2 phosphorylation, and increased collagen production by stellate cells. Inhibiting the activity or expression of the TGF-β type I receptor in stellate cells attenuated MT1-MMP conditioned medium-induced collagen expression by stellate cells. In addition, a function-blocking anti-TGF-β antibody also inhibited MT1-MMP conditioned medium-induced collagen expression in stellate cells. Overall, we show that the bona fide collagenase MT1-MMP paradoxically contributes to fibrosis by increasing TGF-β signaling and that targeting MT1-MMP may thus help to mitigate fibrosis.
Collapse
Affiliation(s)
- Seth B Krantz
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sounni NE, Paye A, Host L, Noël A. MT-MMPS as Regulators of Vessel Stability Associated with Angiogenesis. Front Pharmacol 2011; 2:111. [PMID: 21687519 PMCID: PMC3108474 DOI: 10.3389/fphar.2011.00111] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 04/27/2011] [Indexed: 12/14/2022] Open
Abstract
The development of vascular system depends on the coordinated activity of a number of distinct families of molecules including growth factors and their receptors, cell adhesion molecules, extracellular matrix (ECM) molecules, and proteolytic enzymes. Matrix metalloproteases (MMPs) are a family of ECM degrading enzymes required for both physiological and pathological angiogenesis. Increasing evidence, point to a direct role of membrane type-MMPs (MT-MMPs) in vascular system stabilization, maturation, and leakage. Our understanding of the nature of MT-MMP interaction with extracellular and cell surface molecules and their multiple roles in vessel walls and perivascular stroma may provide new insights into mechanisms underlying vascular cell–ECM interactions and cell fate decisions in pathological conditions. Regulation of vascular leakage by MT-MMP interactions with the ECM could also lead to novel targeting opportunities for drug delivery in tumor. This review will shed lights on the emerging roles of MT1-MMP and MT4-MMP in vascular system alterations associated with cancer progression.
Collapse
Affiliation(s)
- Nor Eddine Sounni
- Laboratory of Tumor and Developmental Biology, Groupe Interdisciplinaire de Génoprotéomique Appliquée-Cancer, University of Liege Liège, Belgium
| | | | | | | |
Collapse
|
12
|
Dangi-Garimella S, Krantz SB, Barron MR, Shields MA, Heiferman MJ, Grippo PJ, Bentrem DJ, Munshi HG. Three-dimensional collagen I promotes gemcitabine resistance in pancreatic cancer through MT1-MMP-mediated expression of HMGA2. Cancer Res 2010; 71:1019-28. [PMID: 21148071 DOI: 10.1158/0008-5472.can-10-1855] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
One of the hallmarks of human pancreatic ductal adenocarcinoma (PDAC) is its pronounced type I collagen-rich fibrotic reaction. Although recent reports have shown that the fibrotic reaction can limit the efficacy of gemcitabine chemotherapy, the underlying mechanisms remain poorly understood. In this article, we show that the type I collagen allows PDAC cells to override checkpoint arrest induced by gemcitabine. Relative to cells grown on tissue culture plastic, PDAC cells grown in 3-dimensional collagen microenvironment have minimal Chk1 phosphorylation and continue to proliferate in the presence of gemcitabine. Collagen increases membrane type 1 matrix metalloproteinase (MT1-MMP)-dependent ERK1/2 phosphorylation to limit the effect of gemcitabine. Collagen also increases MT1-MMP-dependent high mobility group A2 (HMGA2) expression, a nonhistone DNA-binding nuclear protein involved in chromatin remodeling and gene transcription, to attenuate the effect of gemcitabine. Overexpression of MT1-MMP in the collagen microenvironment increases ERK1/2 phosphorylation and HMGA2 expression, and thereby further attenuates gemcitabine-induced checkpoint arrest. MT1-MMP also allows PDAC cells to continue to proliferate in the presence of gemcitabine in a xenograft mouse model. Clinically, human tumors with increased MT1-MMP show increased HMGA2 expression. Overall, our data show that collagen upregulation of MT1-MMP contributes to gemcitabine resistance in vitro and in a xenograft mouse model, and suggest that targeting MT1-MMP could be a novel approach to sensitize pancreatic tumors to gemcitabine.
Collapse
Affiliation(s)
- Surabhi Dangi-Garimella
- Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Dangi-Garimella S, Strouch MJ, Grippo PJ, Bentrem DJ, Munshi HG. Collagen regulation of let-7 in pancreatic cancer involves TGF-β1-mediated membrane type 1-matrix metalloproteinase expression. Oncogene 2010; 30:1002-8. [PMID: 21057545 DOI: 10.1038/onc.2010.485] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with a pronounced collagen-rich fibrosis known as desmoplastic reaction; however, the role of fibrosis in PDAC is poorly understood. In this report we show that collagen can regulate the tumor suppressive let-7 family of microRNAs in pancreatic cancer cells. PDAC cells growing in 3D collagen gels repress mature let-7 without affecting the precursor form of let-7 in part through increased expression of membrane type 1-matrix metalloproteinase (MT1-MMP, MMP-14) and ERK1/2 activation. PDAC cells in collagen also demonstrate increased TGF-β1 signaling, and blocking TGF-β1 signaling attenuated collagen-induced MT1-MMP expression, ERK1/2 activation and repression of let-7 levels. Although MT1-MMP overexpression was not sufficient to inhibit let-7 on 2D tissue culture plastic, overexpression of MT1-MMP in PDAC cells embedded in 3D collagen gels or grown in vivo repressed let-7 levels. Importantly, MT1-MMP expression significantly correlated with decreased levels of let-7 in human PDAC tumor specimens. Overall, our study emphasizes the interplay between the key proteinase MT1-MMP and its substrate type I collagen in modulating microRNA expression, and identifies an additional mechanism by which fibrosis may contribute to PDAC progression.
Collapse
Affiliation(s)
- S Dangi-Garimella
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Medical School, Chicago, IL, USA.
| | | | | | | | | |
Collapse
|
14
|
Golubkov VS, Chekanov AV, Cieplak P, Aleshin AE, Chernov AV, Zhu W, Radichev IA, Zhang D, Dong PD, Strongin AY. The Wnt/planar cell polarity protein-tyrosine kinase-7 (PTK7) is a highly efficient proteolytic target of membrane type-1 matrix metalloproteinase: implications in cancer and embryogenesis. J Biol Chem 2010; 285:35740-9. [PMID: 20837484 DOI: 10.1074/jbc.m110.165159] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PTK7 is an essential component of the Wnt/planar cell polarity (PCP) pathway. We provide evidence that the Wnt/PCP pathway converges with pericellular proteolysis in both normal development and cancer. Here, we demonstrate that membrane type-1 matrix metalloproteinase (MT1-MMP), a key proinvasive proteinase, functions as a principal sheddase of PTK7. MT1-MMP directly cleaves the exposed PKP(621)↓LI sequence of the seventh Ig-like domain of the full-length membrane PTK7 and generates, as a result, an N-terminal, soluble PTK7 fragment (sPTK7). The enforced expression of membrane PTK7 in cancer cells leads to the actin cytoskeleton reorganization and the inhibition of cell invasion. MT1-MMP silencing and the analysis of the uncleavable L622D PTK7 mutant confirm the significance of MT1-MMP proteolysis of PTK7 in cell functions. Our data also demonstrate that a fine balance between the metalloproteinase activity and PTK7 levels is required for normal development of zebrafish (Danio rerio). Aberration of this balance by the proteinase inhibition or PTK7 silencing results in the PCP-dependent convergent extension defects in the zebrafish. Overall, our data suggest that the MT1-MMP-PTK7 axis plays an important role in both cancer cell invasion and normal embryogenesis in vertebrates. Further insight into these novel mechanisms may promote understanding of directional cell motility and lead to the identification of therapeutics to treat PCP-related developmental disorders and malignancy.
Collapse
Affiliation(s)
- Vladislav S Golubkov
- Cancer Research Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|