1
|
Khan S, Molloy JE, Puhl H, Schulman H, Vogel SS. Real-time single-molecule imaging of CaMKII-calmodulin interactions. Biophys J 2024; 123:824-838. [PMID: 38414237 PMCID: PMC11630639 DOI: 10.1016/j.bpj.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/20/2023] [Accepted: 02/22/2024] [Indexed: 02/29/2024] Open
Abstract
The binding of calcium/calmodulin (CAM) to calcium/calmodulin-dependent protein kinase II (CaMKII) initiates an ATP-driven cascade that triggers CaMKII autophosphorylation. The autophosphorylation in turn increases the CaMKII affinity for CAM. Here, we studied the ATP dependence of CAM association with the actin-binding CaMKIIβ isoform using single-molecule total internal reflection fluorescence microscopy. Rhodamine-CAM associations/dissociations to surface-immobilized Venus-CaMKIIβ were resolved with 0.5 s resolution from video records, batch-processed with a custom algorithm. CAM occupancy was determined simultaneously with spot-photobleaching measurement of CaMKII holoenzyme stoichiometry. We show the ATP-dependent increase of the CAM association requires dimer formation for both the α and β isoforms. The study of mutant β holoenzymes revealed that the ATP-dependent increase in CAM affinity results in two distinct states. The phosphorylation-defective (T287.306-307A) holoenzyme resides only in the low-affinity state. CAM association is further reduced in the T287A holoenzyme relative to T287.306-307A. In the absence of ATP, the affinity of CAM for the T287.306-307A mutant and the wild-type monomer are comparable. The affinity of the ATP-binding impaired (K43R) mutant is even weaker. In ATP, the K43R holoenzyme resides in the low-affinity state. The phosphomimetic mutant (T287D) resides only in a 1000-fold higher-affinity state, with mean CAM occupancy of more than half of the 14-mer holoenzyme stoichiometry in picomolar CAM. ATP promotes T287D holoenzyme disassembly but does not elevate CAM occupancy. Single Poisson distributions characterized the ATP-dependent CAM occupancy of mutant holoenzymes. In contrast, the CAM occupancy of the wild-type population had a two-state distribution with both low- and high-affinity states represented. The low-affinity state was the dominant state, a result different from published in vitro assays. Differences in assay conditions can alter the balance between activating and inhibitory autophosphorylation. Bound ATP could be sufficient for CaMKII structural function, while antagonistic autophosphorylations may tune CaMKII kinase-regulated action-potential frequency decoding in vivo.
Collapse
Affiliation(s)
- Shahid Khan
- Molecular Biology Consortium at Lawrence Berkeley National Laboratory, Berkeley, California.
| | | | - Henry Puhl
- Laboratory of Biophotonics and Quantum Biology, National Institutes on Alcohol, Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Howard Schulman
- Panorama Research Institute, Sunnyvale, California; Stanford University School of Medicine, Stanford, California
| | - Steven S Vogel
- Laboratory of Biophotonics and Quantum Biology, National Institutes on Alcohol, Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| |
Collapse
|
2
|
Tran O, Hughes HJ, Carter T, Török K. Development and characterization of novel jGCaMP8f calcium sensor variants with improved kinetics and fluorescence response range. Front Cell Neurosci 2023; 17:1155406. [PMID: 37275778 PMCID: PMC10234427 DOI: 10.3389/fncel.2023.1155406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/28/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction Genetically encoded biosensors for monitoring intracellular calcium changes have advanced our understanding of cell signaling and neuronal activity patterns in health and disease. Successful application of GCaMP biosensors to a wide range of biological questions requires that sensor properties such as brightness and dynamic range, ligand affinity and response kinetics be tuned to the specific conditions or phenomena to be investigated. Random as well as rational targeted mutations of such sensor molecules have led to a number of important breakthroughs in this field, including the calcium sensors GCaMP6f and GCaMP6fu. jGCaMP8f of the most recently developed generation is promising a step-change in in vivo imaging with further increased fluorescence dynamic range. Here, we critically examine the biophysical properties of jGCaMP8f and report development by rational design of two novel variants of jGCaMP8f. Methods We determined the in vitro biophysical properties of jGCaMP8f and selected variants by fluorescence spectroscopies and compared their performance monitoring intracellular Ca2+ transients with previously developed fast and bright GCaMP sensors by live cell imaging. Results We demonstrate that the physiologically highly relevant Mg2+ not only majorly affects the kinetic responses of GCaMPs but also their brightness and fluorescence dynamic range. We developed novel variants jGCaMP8f L27A which has threefold faster off-kinetics and jGCaMP8f F366H which shows a ∼3-fold greater dynamic range than jGCaMP8f, in vitro as well as in HEK293T cells and endothelial cell line HUVEC in response to ATP stimulation. Discussion We discuss the importance of optimization of biosensors for studying neurobiology in the context of the novel variants of jGCaMP8f. The jGCaMP8f F366H variant with a large dynamic range has the potential to improve in vivo imaging outcomes with increased signal-to-noise ratio. The L27A variant with faster kinetics than jGCaMP8f has larger cellular responses than previous fast GCaMP variants. The jGCaMP8f generation and novel improved variants presented here will further increase the application potential of GECIs in health and disease.
Collapse
|
3
|
Wang H, Feng M, Zhong X, Yu Q, Que Y, Xu L, Guo J. Identification of Saccharum CaM gene family and function characterization of ScCaM1 during cold and oxidant exposure in Pichia pastoris. Genes Genomics 2023; 45:103-122. [PMID: 35608775 DOI: 10.1007/s13258-022-01263-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/03/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Calmodulin (CaM) plays an essential role in binding calcium ions and mediating the interpretation of Ca2+ signals in plants under various stresses. However, the evolutionary relationship of CaM family proteins in Saccharum has not been elucidated. OBJECTIVE To deduce and explore the evolution and function of Saccharum CaM family. METHODS A total of 104 typical CaMs were obtained from Saccharum spontaneum and other 18 plant species. The molecular characteristics and evolution of those CaM proteins were analyzed. A typical CaM gene, ScCaM1, was subsequently cloned from sugarcane (Saccharum spp. hybrid). Its expression patterns in different tissues and under various abiotic stresses were assessed by quantitative real-time PCR. Then the green fluorescent protein was used to determine the subcellular localization of ScCaM1. Finally, the function of ScCaM1 was evaluated via heterologous yeast expression systems. RESULTS Three typical CaM members (SsCaM1, SsCaM2, and SsCaM3) were identified from the S. spontaneum genome database. CaMs were originated from the two last common ancestors before the origin of angiosperms. The number of CaM family members did not correlate to the genome size but correlated with allopolyploidization events. The ScCaM1 was more highly expressed in buds and roots than in other tissues. The expression patterns of ScCaM1 suggested that it was involved in responses to various abiotic stresses in sugarcane via different hormonal signaling pathways. Noteworthily, its expression levels appeared relatively stable during the cold exposure in the cold-tolerant variety but significantly suppressed in the cold-susceptible variety. Moreover, the recombinant yeast (Pichia pastoris) overexpressing ScCaM1 grew better than the wild-type yeast strain under cold and oxidative stresses. It was revealed that the ScCaM1 played a positive role in reactive oxygen species scavenging and conferred enhanced cold and oxidative stress tolerance to cells. CONCLUSION This study provided comprehensive information on the CaM gene family in Saccharum and would facilitate further investigation of their functional characterization.
Collapse
Affiliation(s)
- Hengbo Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Meichang Feng
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoqiang Zhong
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qing Yu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jinlong Guo
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
4
|
Qin T, Sun C, Kazim A, Cui S, Wang Y, Richard D, Yao P, Bi Z, Liu Y, Bai J. Comparative Transcriptome Analysis of Deep-Rooting and Shallow-Rooting Potato ( Solanum tuberosum L.) Genotypes under Drought Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:2024. [PMID: 35956505 PMCID: PMC9370241 DOI: 10.3390/plants11152024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/26/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
The selection and breeding of deep rooting and drought-tolerant varieties has become a promising approach for improving the yield and adaptability of potato (Solanum tuberosum L.) in arid and semiarid areas. Therefore, the discovery of root-development-related genes and drought tolerance signaling pathways in potato is important. In this study, we used deep-rooting (C119) and shallow-rooting (C16) potato genotypes, with different levels of drought tolerance, to achieve this objective. Both genotypes were treated with 150 mM mannitol for 0 h (T0), 2 h (T2), 6 h (T6), 12 h (T12), and 24 h (T24), and their root tissues were subjected to comparative transcriptome analysis. A total of 531, 1571, 1247, and 3540 differentially expressed genes (DEGs) in C16 and 1531, 1108, 674, and 4850 DEGs in C119 were identified in T2 vs. T0, T6 vs. T2, T12 vs. T6, and T24 vs. T12 comparisons, respectively. Gene expression analysis indicated that a delay in the onset of drought-induced transcriptional changes in C16 compared with C119. Functional enrichment analysis revealed genotype-specific biological processes involved in drought stress tolerance. The metabolic pathways of plant hormone transduction and MAPK signaling were heavily involved in the resistance of C16 and C119 to drought, while abscisic acid (ABA), ethylene, and salicylic acid signal transduction pathways likely played more important roles in C119 stress responses. Furthermore, genes involved in root cell elongation and division showed differential expression between the two genotypes under drought stress. Overall, this study provides important information for the marker-assisted selection and breeding of drought-tolerant potato genotypes.
Collapse
Affiliation(s)
- Tianyuan Qin
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (T.Q.); (C.S.); (Y.W.); (D.R.); (P.Y.); (Z.B.); (Y.L.)
| | - Chao Sun
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (T.Q.); (C.S.); (Y.W.); (D.R.); (P.Y.); (Z.B.); (Y.L.)
| | - Ali Kazim
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre, Park Road, Islamabad 45500, Pakistan;
| | - Song Cui
- School of Agriculture, Middle Tennessee State University, Murfreesboro, TN 37132, USA;
| | - Yihao Wang
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (T.Q.); (C.S.); (Y.W.); (D.R.); (P.Y.); (Z.B.); (Y.L.)
| | - Dormatey Richard
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (T.Q.); (C.S.); (Y.W.); (D.R.); (P.Y.); (Z.B.); (Y.L.)
| | - Panfeng Yao
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (T.Q.); (C.S.); (Y.W.); (D.R.); (P.Y.); (Z.B.); (Y.L.)
| | - Zhenzhen Bi
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (T.Q.); (C.S.); (Y.W.); (D.R.); (P.Y.); (Z.B.); (Y.L.)
| | - Yuhui Liu
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (T.Q.); (C.S.); (Y.W.); (D.R.); (P.Y.); (Z.B.); (Y.L.)
| | - Jiangping Bai
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (T.Q.); (C.S.); (Y.W.); (D.R.); (P.Y.); (Z.B.); (Y.L.)
| |
Collapse
|
5
|
Wang S, Li J, Liu Y, Zhang J, Zheng X, Sun X, Lei S, Kang Z, Chen X, Lei M, Hu H, Zeng X, Hao L. Distinct roles of calmodulin and Ca 2+/calmodulin-dependent protein kinase II in isopreterenol-induced cardiac hypertrophy. Biochem Biophys Res Commun 2020; 526:960-966. [PMID: 32303334 DOI: 10.1016/j.bbrc.2020.03.188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 03/29/2020] [Indexed: 12/18/2022]
Abstract
Intracellular calcium is related to cardiac hypertrophy. The CaV1.2 channel and Ca2+/calmodulin-dependent protein kinase II (CaMKII) and CaM regulate the intracellular calcium content. However, the differences in CaMKII and CaM in cardiac hypertrophy are still conflicting and are worthy of studying as drug targets. Therefore, in this study, we aim to investigate the roles and mechanism of CaM and CaMKII on CaV1.2 in pathological myocardial hypertrophy. The results showed that ISO stimulation caused SD rat heart and cardiomyocyte hypertrophy. In vivo, the HW/BW, LVW/BW, cross-sectional area, fibrosis ratio and ANP expression were all increased. There were no differences in CaV1.2 channel expression in the in vivo model or the in vitro model, but the ISO stimulation induced channel activity, and the [Ca2+]i increased. The protein expression levels of CaMKII and p-CaMKII were all increased in the ISO group, but the CaM expression level decreased. AIP inhibited ANP, CaMKII and p-CaMKII expression, and ISO-induced [Ca2+]i increased. AIP also reduced HDAC4, p-HDAC and MEF2C expression. However, CMZ did not play a cardiac hypertrophy reversal role in vitro. In conclusion, we considered that compared with CaM, CaMKII may be a much more important drug target in cardiac hypertrophy reversal.
Collapse
Affiliation(s)
- Siqi Wang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Jingyuan Li
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yan Liu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Jie Zhang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Xi Zheng
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Xuefei Sun
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Shuai Lei
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Ze Kang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Xiye Chen
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Ming Lei
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Huiyuan Hu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Xiaorong Zeng
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Liying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
6
|
Kerruth S, Coates C, Dürst CD, Oertner TG, Török K. The kinetic mechanisms of fast-decay red-fluorescent genetically encoded calcium indicators. J Biol Chem 2019; 294:3934-3946. [PMID: 30651353 PMCID: PMC6422079 DOI: 10.1074/jbc.ra118.004543] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 01/14/2019] [Indexed: 01/06/2023] Open
Abstract
Genetically encoded calcium indicators (GECIs) are useful reporters of cell-signaling, neuronal, and network activities. We have generated novel fast variants and investigated the kinetic mechanisms of two recently developed red-fluorescent GECIs (RGECIs), mApple-based jRGECO1a and mRuby-based jRCaMP1a. In the formation of fluorescent jRGECO1a and jRCaMP1a complexes, calcium binding is followed by rate-limiting isomerization. However, fluorescence decay of calcium-bound jRGECO1a follows a different pathway from its formation: dissociation of calcium occurs first, followed by the peptide, similarly to GCaMP-s. In contrast, fluorescence decay of calcium-bound jRCaMP1a occurs by the reversal of the on-pathway: peptide dissociation is followed by calcium. The mechanistic differences explain the generally slower off-kinetics of jRCaMP1a-type indicators compared with GCaMP-s and jRGECO1a-type GECI: the fluorescence decay rate of f-RCaMP1 was 21 s-1, compared with 109 s-1 for f-RGECO1 and f-RGECO2 (37 °C). Thus, the CaM-peptide interface is an important determinant of the kinetic responses of GECIs; however, the topology of the structural link to the fluorescent protein demonstrably affects the internal dynamics of the CaM-peptide complex. In the dendrites of hippocampal CA3 neurons, f-RGECO1 indicates calcium elevation in response to a 100 action potential train in a linear fashion, making the probe particularly useful for monitoring large-amplitude, fast signals, e.g. those in dendrites, muscle cells, and immune cells.
Collapse
Affiliation(s)
- Silke Kerruth
- From the Molecular and Clinical Sciences Research Institute, St. George's, University of London, London SW17 0RE, United Kingdom and
| | - Catherine Coates
- From the Molecular and Clinical Sciences Research Institute, St. George's, University of London, London SW17 0RE, United Kingdom and
| | - Céline D Dürst
- the Institute for Synaptic Physiology, Center for Molecular Neurobiology Hamburg, 20251 Hamburg, Germany
| | - Thomas G Oertner
- the Institute for Synaptic Physiology, Center for Molecular Neurobiology Hamburg, 20251 Hamburg, Germany
| | - Katalin Török
- From the Molecular and Clinical Sciences Research Institute, St. George's, University of London, London SW17 0RE, United Kingdom and
| |
Collapse
|
7
|
Fast-Response Calmodulin-Based Fluorescent Indicators Reveal Rapid Intracellular Calcium Dynamics. Sci Rep 2015; 5:15978. [PMID: 26527405 PMCID: PMC4630588 DOI: 10.1038/srep15978] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 10/01/2015] [Indexed: 01/16/2023] Open
Abstract
Faithful reporting of temporal patterns of intracellular Ca2+ dynamics requires the working range of indicators to match the signals. Current genetically encoded calmodulin-based fluorescent indicators are likely to distort fast Ca2+ signals by apparent saturation and integration due to their limiting fluorescence rise and decay kinetics. A series of probes was engineered with a range of Ca2+ affinities and accelerated kinetics by weakening the Ca2+-calmodulin-peptide interactions. At 37 °C, the GCaMP3-derived probe termed GCaMP3fast is 40-fold faster than GCaMP3 with Ca2+ decay and rise times, t1/2, of 3.3 ms and 0.9 ms, respectively, making it the fastest to-date. GCaMP3fast revealed discreet transients with significantly faster Ca2+ dynamics in neonatal cardiac myocytes than GCaMP6f. With 5-fold increased two-photon fluorescence cross-section for Ca2+ at 940 nm, GCaMP3fast is suitable for deep tissue studies. The green fluorescent protein serves as a reporter providing important novel insights into the kinetic mechanism of target recognition by calmodulin. Our strategy to match the probe to the signal by tuning the affinity and hence the Ca2+ kinetics of the indicator is applicable to the emerging new generations of calmodulin-based probes.
Collapse
|
8
|
Alaimo A, Alberdi A, Gomis-Perez C, Fernández-Orth J, Bernardo-Seisdedos G, Malo C, Millet O, Areso P, Villarroel A. Pivoting between calmodulin lobes triggered by calcium in the Kv7.2/calmodulin complex. PLoS One 2014; 9:e86711. [PMID: 24489773 PMCID: PMC3904923 DOI: 10.1371/journal.pone.0086711] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/12/2013] [Indexed: 11/25/2022] Open
Abstract
Kv7.2 (KCNQ2) is the principal molecular component of the slow voltage gated M-channel, which strongly influences neuronal excitability. Calmodulin (CaM) binds to two intracellular C-terminal segments of Kv7.2 channels, helices A and B, and it is required for exit from the endoplasmic reticulum. However, the molecular mechanisms by which CaM controls channel trafficking are currently unknown. Here we used two complementary approaches to explore the molecular events underlying the association between CaM and Kv7.2 and their regulation by Ca2+. First, we performed a fluorometric assay using dansylated calmodulin (D-CaM) to characterize the interaction of its individual lobes to the Kv7.2 CaM binding site (Q2AB). Second, we explored the association of Q2AB with CaM by NMR spectroscopy, using 15N-labeled CaM as a reporter. The combined data highlight the interdependency of the N- and C-lobes of CaM in the interaction with Q2AB, suggesting that when CaM binds Ca2+ the binding interface pivots between the N-lobe whose interactions are dominated by helix B and the C-lobe where the predominant interaction is with helix A. In addition, Ca2+ makes CaM binding to Q2AB more difficult and, reciprocally, the channel weakens the association of CaM with Ca2+.
Collapse
Affiliation(s)
- Alessandro Alaimo
- Unidad de Biofísica, CSIC, UPV/EHU, Universidad del País Vasco, Leioa, Spain
| | - Araitz Alberdi
- Unidad de Biofísica, CSIC, UPV/EHU, Universidad del País Vasco, Leioa, Spain
| | | | | | | | - Covadonga Malo
- Unidad de Biofísica, CSIC, UPV/EHU, Universidad del País Vasco, Leioa, Spain
| | - Oscar Millet
- Structural Biology Unit, CICbioGUNE, Bizkaia Technology Park, Derio, Spain
| | - Pilar Areso
- Departamento de Farmacología, UPV/EHU, Universidad del País Vasco, Leioa, Spain
| | - Alvaro Villarroel
- Unidad de Biofísica, CSIC, UPV/EHU, Universidad del País Vasco, Leioa, Spain
- * E-mail:
| |
Collapse
|
9
|
Ferrari LF, Bogen O, Levine JD. Second messengers mediating the expression of neuroplasticity in a model of chronic pain in the rat. THE JOURNAL OF PAIN 2014; 15:312-20. [PMID: 24407022 DOI: 10.1016/j.jpain.2013.12.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 12/30/2013] [Accepted: 12/31/2013] [Indexed: 12/28/2022]
Abstract
UNLABELLED Hyperalgesic priming is a model of the transition from acute to chronic pain, in which previous activation of cell surface receptors or direct activation of protein kinase C epsilon markedly prolongs mechanical hyperalgesia induced by pronociceptive cytokines. We recently demonstrated a role of peripheral protein translation, alpha-calmodulin-dependent protein kinase II (αCaMKII) activation, and the ryanodine receptor in the induction of hyperalgesic priming. In the present study, we tested if they also mediate the prolonged phase of prostaglandin E2-induced hyperalgesia. We found that inhibition of αCaMKII and local protein translation eliminates the prolonged phase of prostaglandin E2 hyperalgesia. Although priming induced by receptor agonists or direct activation of protein kinase C epsilon occurs in male but not female rats, activation of αCaMKII and the ryanodine receptor also produces priming in females. As in males, the prolonged phase of prostaglandin E2-induced hyperalgesia in female rats is also protein kinase C epsilon-, αCaMKII-, and protein translation-dependent. In addition, in both male and female primed rats, the prolonged prostaglandin E2-induced hyperalgesia was significantly attenuated by inhibition of MEK/ERK. On the basis of these data, we suggest that the mechanisms previously shown to be involved in the induction of the neuroplastic state of hyperalgesic priming also mediate the prolongation of hyperalgesia. PERSPECTIVES The data provided by this study suggest that direct intervention on specific targets may help to alleviate the expression of chronic hyperalgesic conditions.
Collapse
Affiliation(s)
- Luiz F Ferrari
- Division of Neuroscience, Departments of Medicine and Oral Surgery, University of California at San Francisco, 521 Parnassus Avenue, San Francisco, California
| | - Oliver Bogen
- Division of Neuroscience, Departments of Medicine and Oral Surgery, University of California at San Francisco, 521 Parnassus Avenue, San Francisco, California
| | - Jon D Levine
- Division of Neuroscience, Departments of Medicine and Oral Surgery, University of California at San Francisco, 521 Parnassus Avenue, San Francisco, California..
| |
Collapse
|
10
|
Role of nociceptor αCaMKII in transition from acute to chronic pain (hyperalgesic priming) in male and female rats. J Neurosci 2013; 33:11002-11. [PMID: 23825405 DOI: 10.1523/jneurosci.1785-13.2013] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have previously shown that activation of protein kinase Cε (PKCε) in male rats induces a chronic, long-lasting change in nociceptors such that a subsequent exposure to proinflammatory mediators produces markedly prolonged mechanical hyperalgesia. This neuroplastic change, hyperalgesic priming, is dependent on activation of cytoplasmic polyadenylation element-binding protein (CPEB), downstream of PKCε, and consequent translation of mRNAs in the peripheral terminal of the nociceptor. Since α calmodulin-dependent protein kinase II (αCaMKII), a molecule implicated in neuroplasticity, is a target of CPEB and can also affect CPEB function, we investigated its role in the transition from acute to chronic pain. Priming induced by direct activation of PKCε can be prevented by inhibition of αCaMKII. In addition, direct activation of αCaMKII induces priming, which was not prevented by pretreatment with PKCε antisense, suggesting that αCaMKII is downstream of PKCε in the induction of priming. Activation of ryanodine receptors (RyRs), which can lead to activation of αCaMKII, also induced priming, in a calcium- and αCaMKII-dependent manner. Similarly, inhibition of the RyR and a calcium buffer prevented induction of priming by PKCε. Unlike activation of PKCε, ryanodine and αCaMKII induced priming in female as well as male rats. Our results demonstrate a contribution of αCaMKII to induction of hyperalgesic priming, a phenomenon implicated in the transition from acute to chronic pain.
Collapse
|
11
|
Plattner H. Calcium regulation in the protozoan model, Paramecium tetraurelia. J Eukaryot Microbiol 2013; 61:95-114. [PMID: 24001309 DOI: 10.1111/jeu.12070] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/21/2013] [Accepted: 06/28/2013] [Indexed: 01/24/2023]
Abstract
Early in eukaryotic evolution, the cell has evolved a considerable inventory of proteins engaged in the regulation of intracellular Ca(2+) concentrations, not only to avoid toxic effects but beyond that to exploit the signaling capacity of Ca(2+) by small changes in local concentration. Among protozoa, the ciliate Paramecium may now be one of the best analyzed models. Ciliary activity and exo-/endocytosis are governed by Ca(2+) , the latter by Ca(2+) mobilization from alveolar sacs and a superimposed store-operated Ca(2+) -influx. Paramecium cells possess plasma membrane- and endoplasmic reticulum-resident Ca(2+) -ATPases/pumps (PMCA, SERCA), a variety of Ca(2+) influx channels, including mechanosensitive and voltage-dependent channels in the plasma membrane, furthermore a plethora of Ca(2+) -release channels (CRC) of the inositol 1,4,5-trisphosphate and ryanodine receptor type in different compartments, notably the contractile vacuole complex and the alveolar sacs, as well as in vesicles participating in vesicular trafficking. Additional types of CRC probably also occur but they have not been identified at a molecular level as yet, as is the equivalent of synaptotagmin as a Ca(2+) sensor for exocytosis. Among established targets and sensors of Ca(2+) in Paramecium are calmodulin, calcineurin, as well as Ca(2+) /calmodulin-dependent protein kinases, all with multiple functions. Thus, basic elements of Ca(2+) signaling are available for Paramecium.
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, P.O. Box 5544, 78457, Konstanz, Germany
| |
Collapse
|
12
|
Ferrari LF, Bogen O, Chu C, Levine JD. Peripheral administration of translation inhibitors reverses increased hyperalgesia in a model of chronic pain in the rat. THE JOURNAL OF PAIN 2013; 14:731-8. [PMID: 23664545 DOI: 10.1016/j.jpain.2013.01.779] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 01/30/2013] [Accepted: 01/31/2013] [Indexed: 10/26/2022]
Abstract
UNLABELLED Chronic pain is extremely difficult to manage, in part due to lack of progress in reversing the underlying pathophysiology. Since translation of messenger ribonucleic acids (mRNAs) in the peripheral terminal of the nociceptor plays a role in the transition from acute to chronic pain, we tested the hypothesis that transient inhibition of translation in the peripheral terminal of the nociceptor could reverse hyperalgesic priming, a model of transition from acute to chronic pain. We report that injection of translation inhibitors rapamycin and cordycepin, which inhibit translation by different mechanisms, at the peripheral terminal of the primed nociceptor produces reversal of priming in the rat that outlasted the duration of action of these drugs to prevent the development of priming. These data support the suggestion that interruption of translation in the nociceptor can reverse a preclinical model of at least 1 form of chronic pain. PERSPECTIVE This study provides evidence that ongoing protein translation in the sensory neuron terminals is involved in pain chronification, and local treatment that transiently interrupts this translation may be a useful therapy to chronic pain.
Collapse
Affiliation(s)
- Luiz F Ferrari
- Division of Neuroscience, Departments of Medicine and Oral Surgery, University of California at San Francisco, San Francisco, California, USA
| | | | | | | |
Collapse
|
13
|
Masada N, Schaks S, Jackson SE, Sinz A, Cooper DMF. Distinct mechanisms of calmodulin binding and regulation of adenylyl cyclases 1 and 8. Biochemistry 2012; 51:7917-29. [PMID: 22971080 PMCID: PMC3466776 DOI: 10.1021/bi300646y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Calmodulin (CaM), by mediating the stimulation of the activity of two adenylyl cyclases (ACs), plays a key role in integrating the cAMP and Ca(2+) signaling systems. These ACs, AC1 and AC8, by decoding discrete Ca(2+) signals can contribute to fine-tuning intracellular cAMP dynamics, particularly in neurons where they predominate. CaM comprises an α-helical linker separating two globular regions at the N-terminus and the C-terminus that each bind two Ca(2+) ions. These two lobes have differing affinities for Ca(2+), and they can interact with target proteins independently. This study explores previous indications that the two lobes of CaM can regulate AC1 and AC8 differently and thereby yield different responses to cellular transitions in [Ca(2+)](i). We first compared by glutathione S-transferase pull-down assays and offline nanoelectrospray ionization mass spectrometry the interaction of CaM and Ca(2+)-binding deficient mutants of CaM with the internal CaM binding domain (CaMBD) of AC1 and the two terminal CaMBDs of AC8. We then examined the influence of these three CaMBDs on Ca(2+) binding by native and mutated CaM in stopped-flow experiments to quantify their interactions. The three CaMBDs show quite distinct interactions with the two lobes of CaM. These findings establish the critical kinetic differences between the mechanisms of Ca(2+)-CaM activation of AC1 and AC8, which may underpin their different physiological roles.
Collapse
Affiliation(s)
- Nanako Masada
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | | | | | | | | |
Collapse
|
14
|
Jalan-Sakrikar N, Bartlett RK, Baucum AJ, Colbran RJ. Substrate-selective and calcium-independent activation of CaMKII by α-actinin. J Biol Chem 2012; 287:15275-83. [PMID: 22427672 PMCID: PMC3346149 DOI: 10.1074/jbc.m112.351817] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 03/14/2012] [Indexed: 11/06/2022] Open
Abstract
Protein-protein interactions are thought to modulate the efficiency and specificity of Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) signaling in specific subcellular compartments. Here we show that the F-actin-binding protein α-actinin targets CaMKIIα to F-actin in cells by binding to the CaMKII regulatory domain, mimicking CaM. The interaction with α-actinin is blocked by CaMKII autophosphorylation at Thr-306, but not by autophosphorylation at Thr-305, whereas autophosphorylation at either site blocks Ca(2+)/CaM binding. The binding of α-actinin to CaMKII is Ca(2+)-independent and activates the phosphorylation of a subset of substrates in vitro. In intact cells, α-actinin selectively stabilizes CaMKII association with GluN2B-containing glutamate receptors and enhances phosphorylation of Ser-1303 in GluN2B, but inhibits CaMKII phosphorylation of Ser-831 in glutamate receptor GluA1 subunits by competing for activation by Ca(2+)/CaM. These data show that Ca(2+)-independent binding of α-actinin to CaMKII differentially modulates the phosphorylation of physiological targets that play key roles in long-term synaptic plasticity.
Collapse
Affiliation(s)
| | | | | | - Roger J. Colbran
- From the Department of Molecular Physiology and Biophysics
- Vanderbilt Brain Institute, and
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| |
Collapse
|
15
|
Plattner H, Sehring IM, Mohamed IK, Miranda K, De Souza W, Billington R, Genazzani A, Ladenburger EM. Calcium signaling in closely related protozoan groups (Alveolata): non-parasitic ciliates (Paramecium, Tetrahymena) vs. parasitic Apicomplexa (Plasmodium, Toxoplasma). Cell Calcium 2012; 51:351-82. [PMID: 22387010 DOI: 10.1016/j.ceca.2012.01.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 01/10/2012] [Accepted: 01/12/2012] [Indexed: 12/20/2022]
Abstract
The importance of Ca2+-signaling for many subcellular processes is well established in higher eukaryotes, whereas information about protozoa is restricted. Recent genome analyses have stimulated such work also with Alveolates, such as ciliates (Paramecium, Tetrahymena) and their pathogenic close relatives, the Apicomplexa (Plasmodium, Toxoplasma). Here we compare Ca2+ signaling in the two closely related groups. Acidic Ca2+ stores have been characterized in detail in Apicomplexa, but hardly in ciliates. Two-pore channels engaged in Ca2+-release from acidic stores in higher eukaryotes have not been stingently characterized in either group. Both groups are endowed with plasma membrane- and endoplasmic reticulum-type Ca2+-ATPases (PMCA, SERCA), respectively. Only recently was it possible to identify in Paramecium a number of homologs of ryanodine and inositol 1,3,4-trisphosphate receptors (RyR, IP3R) and to localize them to widely different organelles participating in vesicle trafficking. For Apicomplexa, physiological experiments suggest the presence of related channels although their identity remains elusive. In Paramecium, IP3Rs are constitutively active in the contractile vacuole complex; RyR-related channels in alveolar sacs are activated during exocytosis stimulation, whereas in the parasites the homologous structure (inner membrane complex) may no longer function as a Ca2+ store. Scrutinized comparison of the two closely related protozoan phyla may stimulate further work and elucidate adaptation to parasitic life. See also "Conclusions" section.
Collapse
Affiliation(s)
- H Plattner
- Department of Biology, University of Konstanz, P.O. Box 5560, 78457 Konstanz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|