1
|
Kawaguchi Y, Matsubayashi J, Kawakami Y, Nishida R, Kurihara Y, Takei K. LOTUS suppresses amyloid β-induced dendritic spine elimination through the blockade of amyloid β binding to PirB. Mol Med 2022; 28:154. [PMID: 36510132 PMCID: PMC9743548 DOI: 10.1186/s10020-022-00581-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/26/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide but has no effective treatment. Amyloid beta (Aβ) protein, a primary risk factor for AD, accumulates and aggregates in the brain of patients with AD. Paired immunoglobulin-like receptor B (PirB) has been identified as a receptor of Aβ and Aβ-PirB molecular interactions that cause synapse elimination and synaptic dysfunction. PirB deletion has been shown to suppress Aβ-induced synaptic dysfunction and behavioral deficits in AD model mice, implying that PirB mediates Aβ-induced AD pathology. Therefore, inhibiting the Aβ-PirB molecular interaction could be a successful approach for combating AD pathology. We previously showed that lateral olfactory tract usher substance (LOTUS) is an endogenous antagonist of type1 Nogo receptor and PirB and that LOTUS overexpression promotes neuronal regeneration following damage to the central nervous system, including spinal cord injury and ischemic stroke. Therefore, in this study, we investigated whether LOTUS inhibits Aβ-PirB interaction and Aβ-induced dendritic spine elimination. METHODS The inhibitory role of LOTUS against Aβ-PirB (or leukocyte immunoglobulin-like receptor subfamily B member 2: LilrB2) binding was assessed using a ligand-receptor binding assay in Cos7 cells overexpressing PirB and/or LOTUS. We assessed whether LOTUS inhibits Aβ-induced intracellular alterations and synaptotoxicity using immunoblots and spine imaging in a primary cultured hippocampal neuron. RESULTS We found that LOTUS inhibits the binding of Aβ to PirB overexpressed in Cos7 cells. In addition, we found that Aβ-induced dephosphorylation of cofilin and Aβ-induced decrease in post-synaptic density-95 expression were suppressed in cultured hippocampal neurons from LOTUS-overexpressing transgenic (LOTUS-tg) mice compared with that in wild-type mice. Moreover, primary cultured hippocampal neurons from LOTUS-tg mice improved the Aβ-induced decrease in dendritic spine density. Finally, we studied whether human LOTUS protein inhibits Aβ binding to LilrB2, a human homolog of PirB, and found that human LOTUS inhibited the binding of Aβ to LilrB2 in a similar manner. CONCLUSIONS This study implied that LOTUS improved Aβ-induced synapse elimination by suppressing Aβ-PirB interaction in rodents and inhibited Aβ-LilrB2 interaction in humans. Our findings revealed that LOTUS may be a promising therapeutic agent in counteracting Aβ-induced AD pathologies.
Collapse
Affiliation(s)
- Yuki Kawaguchi
- grid.268441.d0000 0001 1033 6139Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-Cho, Tsurumi Ward, Yokohama, 230-0045 Japan
| | - Junpei Matsubayashi
- grid.268441.d0000 0001 1033 6139Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-Cho, Tsurumi Ward, Yokohama, 230-0045 Japan
| | - Yutaka Kawakami
- grid.268441.d0000 0001 1033 6139Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-Cho, Tsurumi Ward, Yokohama, 230-0045 Japan ,grid.419280.60000 0004 1763 8916Department of Anesthesiology, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Ryohei Nishida
- grid.268441.d0000 0001 1033 6139Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-Cho, Tsurumi Ward, Yokohama, 230-0045 Japan
| | - Yuji Kurihara
- grid.268441.d0000 0001 1033 6139Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-Cho, Tsurumi Ward, Yokohama, 230-0045 Japan ,grid.260433.00000 0001 0728 1069Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Kohtaro Takei
- grid.268441.d0000 0001 1033 6139Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-Cho, Tsurumi Ward, Yokohama, 230-0045 Japan
| |
Collapse
|
2
|
Su W, Liang L, Zhou L, Cao Y, Zhou X, Liu S, Wang Q, Zhang H. Macrophage Paired Immunoglobulin-Like Receptor B Deficiency Promotes Peripheral Atherosclerosis in Apolipoprotein E–Deficient Mice. Front Cell Dev Biol 2022; 9:783954. [PMID: 35321392 PMCID: PMC8936951 DOI: 10.3389/fcell.2021.783954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/13/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Peripheral atherosclerotic disease (PAD) is the narrowing or blockage of arteries that supply blood to the lower limbs. Given its complex nature, bioinformatics can help identify crucial genes involved in the progression of peripheral atherosclerosis. Materials and Methods: Raw human gene expression data for 462 PAD arterial plaque and 23 normal arterial samples were obtained from the GEO database. The data was analyzed using an integrated, multi-layer approach involving differentially-expressed gene analysis, KEGG pathway analysis, GO term enrichment analysis, weighted gene correlation network analysis, and protein-protein interaction analysis. The monocyte/macrophage-expressed leukocyte immunoglobulin-like receptor B2 (LILRB2) was strongly associated with the human PAD phenotype. To explore the role of the murine LILRB2 homologue PirB in vivo, we created a myeloid-specific PirB-knockout Apoe−/− murine model of PAD (PirBMΦKO) to analyze femoral atherosclerotic burden, plaque features of vulnerability, and monocyte recruitment to femoral atherosclerotic lesions. The phenotypes of PirBMΦKO macrophages under various stimuli were also investigated in vitro. Results:PirBMΦKO mice displayed increased femoral atherogenesis, a more vulnerable plaque phenotype, and enhanced monocyte recruitment into lesions. PirBMΦKO macrophages showed enhanced pro-inflammatory responses and a shift toward M1 over M2 polarization under interferon-γ and oxidized LDL exposure. PirBMΦKO macrophages also displayed enhanced efferocytosis and reduced lipid efflux under lipid exposure. Conclusion: Macrophage PirB reduces peripheral atherosclerotic burden, stabilizes peripheral plaque composition, and suppresses macrophage accumulation in peripheral lesions. Macrophage PirB inhibits pro-inflammatory activation, inhibits efferocytosis, and promotes lipid efflux, characteristics critical to suppressing peripheral atherogenesis.
Collapse
Affiliation(s)
- Wenhua Su
- Department of Cardiology, First People’s Hospital of Yunnan Province, Kunming, China
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Kunming, China
| | - Liwen Liang
- Department of Cardiology, First People’s Hospital of Yunnan Province, Kunming, China
| | - Liang Zhou
- Department of Cardiology, First People’s Hospital of Yunnan Province, Kunming, China
| | - Yu Cao
- Department of Cardiology, First People’s Hospital of Yunnan Province, Kunming, China
- Department of Cardiovascular Surgery, First People’s Hospital of Yunnan Province, Kunming, China
| | - Xiuli Zhou
- Department of Cardiology, First People’s Hospital of Yunnan Province, Kunming, China
| | - Shiqi Liu
- Department of Cardiology, First People’s Hospital of Yunnan Province, Kunming, China
| | - Qian Wang
- Department of Cardiology, First People’s Hospital of Yunnan Province, Kunming, China
| | - Hong Zhang
- Department of Cardiology, First People’s Hospital of Yunnan Province, Kunming, China
- *Correspondence: Hong Zhang,
| |
Collapse
|
3
|
Kurihara Y, Takai T, Takei K. Nogo receptor antagonist LOTUS exerts suppression on axonal growth-inhibiting receptor PIR-B. J Neurochem 2020; 155:285-299. [PMID: 32201946 DOI: 10.1111/jnc.15013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/28/2020] [Accepted: 03/16/2020] [Indexed: 01/08/2023]
Abstract
Damaged axons in the adult mammalian central nervous system have a restricted regenerative capacity mainly because of Nogo protein, which is a major myelin-associated axonal growth inhibitor with binding to both receptors of Nogo receptor-1 (NgR1) and paired immunoglobulin-like receptor (PIR)-B. Lateral olfactory tract usher substance (LOTUS) exerts complete suppression of NgR1-mediated axonal growth inhibition by antagonizing NgR1. However, the regulation of PIR-B functions in neurons remains unknown. In this study, protein-protein interactions analyses found that LOTUS binds to PIR-B and abolishes Nogo-binding to PIR-B completely. Reverse transcription-polymerase chain reaction and immunocytochemistry revealed that PIR-B is expressed in dorsal root ganglions (DRGs) from wild-type and Ngr1-deficient mice (male and female). In these DRG neurons, Nogo induced growth cone collapse and neurite outgrowth inhibition, but treatment with the soluble form of LOTUS completely suppressed them. Moreover, Nogo-induced growth cone collapse and neurite outgrowth inhibition in Ngr1-deficient DRG neurons were neutralized by PIR-B function-blocking antibodies, indicating that these Nogo-induced phenomena were mediated by PIR-B. Our data show that LOTUS negatively regulates a PIR-B function. LOTUS thus exerts an antagonistic action on both receptors of NgR1 and PIR-B. This may lead to an improvement in the defective regeneration of axons following injury.
Collapse
Affiliation(s)
- Yuji Kurihara
- Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Yokohama, Japan
| | - Toshiyuki Takai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Kohtaro Takei
- Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Yokohama, Japan
| |
Collapse
|
4
|
Ong ML, Tuan TA, Poh J, Teh AL, Chen L, Pan H, MacIsaac JL, Kobor MS, Chong YS, Kwek K, Saw SM, Godfrey KM, Gluckman PD, Fortier MV, Karnani N, Meaney MJ, Qiu A, Holbrook JD. Neonatal amygdalae and hippocampi are influenced by genotype and prenatal environment, and reflected in the neonatal DNA methylome. GENES BRAIN AND BEHAVIOR 2019; 18:e12576. [PMID: 31020763 DOI: 10.1111/gbb.12576] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/01/2019] [Accepted: 04/13/2019] [Indexed: 12/28/2022]
Abstract
The amygdala and hippocampus undergo rapid development in early life. The relative contribution of genetic and environmental factors to the establishment of their developmental trajectories has yet to be examined. We performed imaging on neonates and examined how the observed variation in volume and microstructure of the amygdala and hippocampus varied by genotype, and compared with prenatal maternal mental health and socioeconomic status. Gene × Environment models outcompeted models containing genotype or environment only to best explain the majority of measures but some, especially of the amygdaloid microstructure, were best explained by genotype only. Models including DNA methylation measured in the neonate umbilical cords outcompeted the Gene and Gene × Environment models for the majority of amygdaloid measures and minority of hippocampal measures. This study identified brain region-specific gene networks associated with individual differences in fetal brain development. In particular, genetic and epigenetic variation within CUX1 was highlighted.
Collapse
Affiliation(s)
- Mei-Lyn Ong
- Singapore Institute of Clinical sciences (SICS), A*STAR, Brenner Centre for Molecular Medicine, Singapore
| | - Ta A Tuan
- Department of Biomedical Engineering, Clinical Imaging research Centre, National University of Singapore, Singapore
| | - Joann Poh
- Department of Biomedical Engineering, Clinical Imaging research Centre, National University of Singapore, Singapore
| | - Ai L Teh
- Singapore Institute of Clinical sciences (SICS), A*STAR, Brenner Centre for Molecular Medicine, Singapore
| | - Li Chen
- Singapore Institute of Clinical sciences (SICS), A*STAR, Brenner Centre for Molecular Medicine, Singapore
| | - Hong Pan
- Singapore Institute of Clinical sciences (SICS), A*STAR, Brenner Centre for Molecular Medicine, Singapore.,School of Computer Engineering, Nanyang Technological University (NTU), Singapore
| | - Julia L MacIsaac
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yap S Chong
- Singapore Institute of Clinical sciences (SICS), A*STAR, Brenner Centre for Molecular Medicine, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
| | - Kenneth Kwek
- KK Women's and Children's Hospital, Duke National University of Singapore, Singapore
| | - Seang M Saw
- Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
| | - Keith M Godfrey
- MRC Lifecourse Epidemiology Unit and NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Peter D Gluckman
- Singapore Institute of Clinical sciences (SICS), A*STAR, Brenner Centre for Molecular Medicine, Singapore.,Centre for Human Evolution, Adaptation and disease, Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Marielle V Fortier
- KK Women's and Children's Hospital, Duke National University of Singapore, Singapore
| | - Neerja Karnani
- Singapore Institute of Clinical sciences (SICS), A*STAR, Brenner Centre for Molecular Medicine, Singapore
| | - Michael J Meaney
- Singapore Institute of Clinical sciences (SICS), A*STAR, Brenner Centre for Molecular Medicine, Singapore.,Ludmer Centre for Neuroinformatics and Mental Health, Sackler Program for Epigenetics & Psychobiology at McGill University, Douglas University Mental Health Institute, McGill University, Montreal, Canada
| | - Anqi Qiu
- Department of Biomedical Engineering, Clinical Imaging research Centre, National University of Singapore, Singapore.,Singapore Institute of Clinical sciences (SICS), A*STAR, Brenner Centre for Molecular Medicine, Singapore
| | - Joanna D Holbrook
- Singapore Institute of Clinical sciences (SICS), A*STAR, Brenner Centre for Molecular Medicine, Singapore
| |
Collapse
|
5
|
Lu XM, Mao M, Xiao L, Yu Y, He M, Zhao GY, Tang JJ, Feng S, Li S, He CM, Wang YT. Nucleic Acid Vaccine Targeting Nogo-66 Receptor and Paired Immunoglobulin-Like Receptor B as an Immunotherapy Strategy for Spinal Cord Injury in Rats. Neurotherapeutics 2019; 16:381-393. [PMID: 30843154 PMCID: PMC6554366 DOI: 10.1007/s13311-019-00718-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Nogo-66 receptor (NgR) and paired immunoglobulin-like receptor B (PirB) are two common receptors of various myelin-associated inhibitors (MAIs) and, thus, play an important role in MAIs-induced inhibitory signalling of regeneration following spinal cord injury (SCI). Based on the concept of protective autoimmunity, vaccine approaches could induce the production of antibodies against inhibitors in myelin, such as using purified myelin, spinal cord homogenates, or MAIs receptor NgR, in order to block the inhibitory effects and promote functional recovery in SCI models. However, due to the complication of the molecules and the mechanisms involved in MAIs-mediated inhibitory signalling, these immunotherapy strategies have yielded inconsistent outcomes. Therefore, we hypothesized that the choice and modification of self-antigens, and co-regulating multiple targets, may be more effective in repairing the injured spinal cord and improving functional recovery. In this study, NgR and PirB were selected to construct a double-targeted granulocyte-macrophage colony stimulating factor-NgR-PirB (GMCSF-NgR-PirB) nucleic acid vaccine, and investigate the efficacy of this immunotherapy in a spinal cord injury model in rats. The results showed that this vaccination could stimulate the production of antibodies against NgR and PirB, block the inhibitory effects mediated by various MAIs, and promote nerve regeneration and functional recovery after spinal cord injury. These findings suggest that nucleic acid vaccination against NgR and PirB can be a promising therapeutic strategy for SCI and other central nervous system diseases and injuries.
Collapse
Affiliation(s)
- Xiu-Min Lu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Min Mao
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Lan Xiao
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Ying Yu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Mei He
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Guo-Yan Zhao
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jun-Jie Tang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Shuang Feng
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Sen Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Cheng-Ming He
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yong-Tang Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| |
Collapse
|
6
|
Vlieg HC, Huizinga EG, Janssen BJC. Structure and flexibility of the extracellular region of the PirB receptor. J Biol Chem 2019; 294:4634-4643. [PMID: 30674550 DOI: 10.1074/jbc.ra118.004396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 01/14/2019] [Indexed: 11/06/2022] Open
Abstract
Murine paired immunoglobulin receptor B (PirB) and its human ortholog leukocyte immunoglobulin-like receptor B2 (LILRB2) are widely expressed inhibitory receptors that interact with a diverse set of extracellular ligands and exert functions ranging from down-regulation of immune responses to inhibition of neuronal growth. However, structural information that could shed light on how PirB interacts with its ligands is lacking. Here, we report crystal structures of the PirB ectodomain; the first full ectodomain structure for a LILR family member, at 3.3-4.5 Å resolution. The structures reveal that PirB's six Ig-like domains are arranged at acute angles, similar to the structures of leukocyte immunoglobulin-like receptor (LILR) and killer-cell immunoglobulin-like receptor (KIR). We observe that this regular arrangement is followed throughout the ectodomain, resulting in an extended zigzag conformation. In two out of the five structures reported here, the repeating zigzag is broken by the first domain that can adopt two alternative orientations. Quantitative binding experiments revealed a 9 μm dissociation constant for PirB-myelin-associated glycoprotein (MAG) ectodomain interactions. Taken together, these structural findings and the observed PirB-MAG interactions are compatible with a model for intercellular signaling in which the PirB extracellular domains, which point away from the cell surface, enable interaction with ligands in trans.
Collapse
Affiliation(s)
- Hedwich C Vlieg
- From Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Eric G Huizinga
- From Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Bert J C Janssen
- From Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
7
|
Therapeutic application of human leukocyte antigen-G1 improves atopic dermatitis-like skin lesions in mice. Int Immunopharmacol 2017; 50:202-207. [PMID: 28675838 DOI: 10.1016/j.intimp.2017.06.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 11/23/2022]
Abstract
Human leukocyte antigen (HLA)-G is an immune checkpoint molecule that plays critical roles in immune response and in triggering inhibitory signaling to immune cells such as T cells, natural killer cells, and antigen-presenting cells. Thus, the application of HLA-G can be considered for treating immune response-related inflammatory disorders. We have previously reported that treatment with HLA-G1 and HLA-G2 ameliorates the joint swelling associated with collagen-induced arthritis of DBA/1 mice, an animal model for rheumatoid arthritis. In this study, we further investigated the effects of HLA-G1 on atopic dermatitis (AD), the most common inflammatory skin disorder. AD-like lesions were induced with the extract of the house dust mite Dermatophagoides farinae in NC/Nga mice. Continuous administration of HLA-G1 ameliorated the AD-like skin lesions in the mice. Furthermore, production of immunoglobulin E, interleukin (IL)-13, and IL-17A was significantly reduced in HLA-G1-treated mice, suggesting a Th2/Th17-mediated immune-inhibitory function of HLA-G1 in vivo. Our studies shed light on novel therapeutic strategies with recombinant HLA-G proteins for immune reaction-mediated chronic inflammatory disorders.
Collapse
|
8
|
Mi YJ, Chen H, Guo N, Sun MY, Zhao ZH, Gao XC, Wang XL, Zhang RS, Zhou JB, Gou XC. Inhibition of PirB Activity by TAT-PEP Improves Mouse Motor Ability and Cognitive Behavior. Front Aging Neurosci 2017; 9:199. [PMID: 28676756 PMCID: PMC5476690 DOI: 10.3389/fnagi.2017.00199] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/02/2017] [Indexed: 01/07/2023] Open
Abstract
Paired immunoglobulin-like receptor B (PirB), a functional receptor for myelin-associated inhibitory proteins, plays an important role in axon regeneration in injured brains. However, its role in normal brain function with age has not been previously investigated. Therefore in this study, we examined the expression level of PirB in the cerebral cortex, hippocampus and cerebellum of mice at 1 month, 3 months and 18 months of age. The results showed that the expression of PirB increased with age. We further demonstrated that overexpression of PirB inhibited neurite outgrowth in PC12 cells, and this inhibitory activity of PirB could be reversed by TAT-PEP, which is a recombinant soluble PirB ectodomain fused with TAT domain for blood-brain barrier penetration. In vivo study, intraperitoneal administration of TAT-PEP was capable of enhancing motor capacity and spatial learning and memory in mice, which appeared to be mediated through regulation of brain-derived neurotrophic factor (BDNF) secretion. Our study suggests that PirB is associated with aging and TAT-PEP may be a promising therapeutic agent for modulation of age-related motor and cognitive dysfunctions.
Collapse
Affiliation(s)
- Ya-Jing Mi
- Institute of Basic and Translational Medicine, and School of Basic Medical Sciences, and Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical UniversityXi'an, China
| | - Hai Chen
- Institute of Basic and Translational Medicine, and School of Basic Medical Sciences, and Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical UniversityXi'an, China.,Department of Anesthesiology, Tangdu Hospital, Fourth Military Medical UniversityXi'an, China
| | - Na Guo
- Institute of Basic and Translational Medicine, and School of Basic Medical Sciences, and Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical UniversityXi'an, China
| | - Meng-Yi Sun
- Department of Neurosurgery, School of Medicine, Yale UniversityNew Haven, CT, United States
| | - Zhao-Hua Zhao
- Institute of Basic and Translational Medicine, and School of Basic Medical Sciences, and Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical UniversityXi'an, China
| | - Xing-Chun Gao
- Institute of Basic and Translational Medicine, and School of Basic Medical Sciences, and Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical UniversityXi'an, China
| | - Xiao-Long Wang
- Institute of Basic and Translational Medicine, and School of Basic Medical Sciences, and Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical UniversityXi'an, China
| | - Rui-San Zhang
- Institute of Basic and Translational Medicine, and School of Basic Medical Sciences, and Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical UniversityXi'an, China
| | - Jiang-Bing Zhou
- Department of Neurosurgery, School of Medicine, Yale UniversityNew Haven, CT, United States
| | - Xing-Chun Gou
- Institute of Basic and Translational Medicine, and School of Basic Medical Sciences, and Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical UniversityXi'an, China.,Department of Neurosurgery, School of Medicine, Yale UniversityNew Haven, CT, United States
| |
Collapse
|
9
|
Ukai H, Kawahara A, Hirayama K, Case MJ, Aino S, Miyabe M, Wakita K, Oogi R, Kasayuki M, Kawashima S, Sugimoto S, Chikamatsu K, Nitta N, Koga T, Shigemoto R, Takai T, Ito I. PirB regulates asymmetries in hippocampal circuitry. PLoS One 2017; 12:e0179377. [PMID: 28594961 PMCID: PMC5464656 DOI: 10.1371/journal.pone.0179377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 05/30/2017] [Indexed: 11/19/2022] Open
Abstract
Left-right asymmetry is a fundamental feature of higher-order brain structure; however, the molecular basis of brain asymmetry remains unclear. We recently identified structural and functional asymmetries in mouse hippocampal circuitry that result from the asymmetrical distribution of two distinct populations of pyramidal cell synapses that differ in the density of the NMDA receptor subunit GluRε2 (also known as NR2B, GRIN2B or GluN2B). By examining the synaptic distribution of ε2 subunits, we previously found that β2-microglobulin-deficient mice, which lack cell surface expression of the vast majority of major histocompatibility complex class I (MHCI) proteins, do not exhibit circuit asymmetry. In the present study, we conducted electrophysiological and anatomical analyses on the hippocampal circuitry of mice with a knockout of the paired immunoglobulin-like receptor B (PirB), an MHCI receptor. As in β2-microglobulin-deficient mice, the PirB-deficient hippocampus lacked circuit asymmetries. This finding that MHCI loss-of-function mice and PirB knockout mice have identical phenotypes suggests that MHCI signals that produce hippocampal asymmetries are transduced through PirB. Our results provide evidence for a critical role of the MHCI/PirB signaling system in the generation of asymmetries in hippocampal circuitry.
Collapse
Affiliation(s)
- Hikari Ukai
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Aiko Kawahara
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Keiko Hirayama
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Matthew Julian Case
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Shotaro Aino
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Masahiro Miyabe
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Ken Wakita
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Ryohei Oogi
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Michiyo Kasayuki
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Shihomi Kawashima
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Shunichi Sugimoto
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Kanako Chikamatsu
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Noritaka Nitta
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Tsuneyuki Koga
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Ryuichi Shigemoto
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Toshiyuki Takai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Isao Ito
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
- * E-mail:
| |
Collapse
|
10
|
Yang G, Tang WY. Resistance of interleukin-6 to the extracellular inhibitory environment promotes axonal regeneration and functional recovery following spinal cord injury. Int J Mol Med 2017; 39:437-445. [DOI: 10.3892/ijmm.2017.2848] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 01/03/2017] [Indexed: 11/06/2022] Open
|
11
|
Deng B, Li L, Gou X, Xu H, Zhao Z, Wang Q, Xu L. TAT-PEP Enhanced Neurobehavioral Functional Recovery by Facilitating Axonal Regeneration and Corticospinal Tract Projection After Stroke. Mol Neurobiol 2016; 55:652-667. [PMID: 27987133 DOI: 10.1007/s12035-016-0301-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 11/16/2016] [Indexed: 12/11/2022]
Abstract
Paired immunoglobulin-like receptor B (PirB) has been identified as a new receptor for myelin-associated inhibitory (MAI) proteins, which may play important role in axonal regeneration and corticospinal tract (CST) projection associated with neurobehavioral function recovery after stroke. Here, we found that the expression of PirB was increased in the cortical penumbra from 1 to 28 days after transient focal cerebral ischemic reperfusion of rats. Then, transactivator of transcription-PirB extracellular peptide (TAT-PEP) was generated that might block the interactions between MAIs and PirB. The results showed that TAT-PEP displayed high affinity for MAIs and ameliorated their inhibitory effect on neurite growth. Furthermore, TAT-PEP can widely distribute in the penumbra after intraperitoneal injection. Then, we found that TAT-PEP enhanced neurite growth and alleviated growth cone collapse after oxygen glucose deprivation (OGD) injury. In addition, TAT-PEP promoted long-term neurobehavioral functional recovery through enhancing axonal regeneration and CST projection. Finally, the observations demonstrated that POSH/RhoA/growth-associated protein 43 (GAP43) as PirB-associated downstream signaling molecules played important role in neurobehavioral functional recovery after stroke. Moreover, the underlying mechanism associated with TAT-PEP-mediated promoting axonal regeneration and CST projection was by intervening in the expression of POSH, RhoA, and GAP43. These studies suggest that TAT-PEP may represent an attractive therapeutic strategy against stroke.
Collapse
Affiliation(s)
- Bin Deng
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Oral Diseases, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, China.,Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Liya Li
- Department of Emergency, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, China
| | - Xingchun Gou
- The Laboratory of Cell Biology and Translational Medicine, Xi'an Medical University, Xi'an, 710021, China
| | - Hao Xu
- The Laboratory of Cell Biology and Translational Medicine, Xi'an Medical University, Xi'an, 710021, China
| | - Zhaohua Zhao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Oral Diseases, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, China
| | - Qiang Wang
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China.
| | - Lixian Xu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Oral Diseases, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, China.
| |
Collapse
|
12
|
Takahashi A, Kuroki K, Okabe Y, Kasai Y, Matsumoto N, Yamada C, Takai T, Ose T, Kon S, Matsuda T, Maenaka K. The immunosuppressive effect of domain-deleted dimer of HLA-G2 isoform in collagen-induced arthritis mice. Hum Immunol 2016; 77:754-9. [DOI: 10.1016/j.humimm.2016.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/11/2016] [Indexed: 11/26/2022]
|
13
|
Favier B. Regulation of neutrophil functions through inhibitory receptors: an emerging paradigm in health and disease. Immunol Rev 2016; 273:140-55. [DOI: 10.1111/imr.12457] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Benoit Favier
- CEA, DRF, IMETI, IMVA, UMR 1184, INSERM; Université Paris-Sud; IDMIT Infrastructure; Fontenay-aux-Roses France
| |
Collapse
|
14
|
Hudson LE, Allen RL. Leukocyte Ig-Like Receptors - A Model for MHC Class I Disease Associations. Front Immunol 2016; 7:281. [PMID: 27504110 PMCID: PMC4959025 DOI: 10.3389/fimmu.2016.00281] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/12/2016] [Indexed: 01/27/2023] Open
Abstract
MHC class I (MHC-I) polymorphisms are associated with the outcome of some viral infections and autoimmune diseases. MHC-I proteins present antigenic peptides and are recognized by receptors on natural killer cells and cytotoxic T lymphocytes, thus enabling the immune system to detect self-antigens and eliminate targets lacking self or expressing foreign antigens. Recognition of MHC-I, however, extends beyond receptors on cytotoxic leukocytes. Members of the leukocyte Ig-like receptor (LILR) family are expressed on monocytic cells and can recognize both classical and non-classical MHC-I alleles. Despite their relatively broad specificity when compared to the T cell receptor or killer Ig-like receptors, variations in the strength of LILR binding between different MHC-I alleles have recently been shown to correlate with control of HIV infection. We suggest that LILR recognition may mediate MHC-I disease association in a manner that does not depend on a binary discrimination of self/non-self by cytotoxic cells. Instead, the effects of LILR activity following engagement by MHC-I may represent a “degrees of self” model, whereby strength of binding to different alleles determines the degree of influence exerted by these receptors on immune cell functions. LILRs are expressed by myelomonocytic cells and lymphocytes, extending their influence across antigen-presenting cell subsets including dendritic cells, macrophages, and B cells. They have been identified as important players in the response to infection, inflammatory diseases, and cancer, with recent literature to indicate that MHC-I recognition by these receptors and consequent allelic effects could extend an influence beyond the immune system.
Collapse
Affiliation(s)
- Laura Emily Hudson
- Institute for Infection and Immunity, St George's, University of London , London , UK
| | - Rachel Louise Allen
- Institute for Infection and Immunity, St George's, University of London , London , UK
| |
Collapse
|
15
|
Burshtyn DN, Morcos C. The Expanding Spectrum of Ligands for Leukocyte Ig-like Receptors. THE JOURNAL OF IMMUNOLOGY 2016; 196:947-55. [PMID: 26802060 DOI: 10.4049/jimmunol.1501937] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The human leukocyte Ig-like receptor family is part of the paired receptor system. The receptors are widely expressed by various immune cells, and new functions continue to emerge. Understanding the range of functions of the receptors is of general interest because several types of pathogens exploit the receptors and genetic diversity of the receptors has been linked to various autoimmune diseases. Class I major histocompatibility molecules were the first ligands appreciated for these receptors, but the types of ligands identified over the last several years are quite diverse, including intact pathogens, immune-modulatory proteins, and molecules normally found within the CNS. This review focuses on the types of ligands described to date, how the individual receptors bind to several distinct types of ligands, and the known functional consequences of those interactions.
Collapse
Affiliation(s)
- Deborah N Burshtyn
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada; and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Chris Morcos
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada; and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
16
|
Trowsdale J, Jones DC, Barrow AD, Traherne JA. Surveillance of cell and tissue perturbation by receptors in the LRC. Immunol Rev 2016; 267:117-36. [PMID: 26284474 DOI: 10.1111/imr.12314] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The human leukocyte receptor complex (LRC) encompasses several sets of genes with a common evolutionary origin and which form a branch of the immunoglobulin superfamily (IgSF). Comparisons of LRC genes both within and between species calls for a high degree of plasticity. The drive for this unprecedented level of variation is not known, but it relates in part to interaction of several LRC products with polymorphic human leukocyte antigen (HLA) class I molecules. However, the range of other proposed ligands for LRC products indicates a dynamic set of receptors that have adapted to detect target molecules relating to numerous cellular pathways. Several receptors in the complex bind a molecular signature in collagenous ligands. Others detect a variety of motifs relating to pathogens in addition to cellular stress, attesting to the opportunistic versatility of LRC receptors.
Collapse
Affiliation(s)
- John Trowsdale
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Des C Jones
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Alexander D Barrow
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | |
Collapse
|
17
|
An H, Brettle M, Lee T, Heng B, Lim CK, Guillemin GJ, Lord MS, Klotzsch E, Geczy CL, Bryant K, Fath T, Tedla N. Soluble LILRA3 promotes neurite outgrowth and synapses formation through high affinity interaction with Nogo 66. J Cell Sci 2016; 129:1198-209. [DOI: 10.1242/jcs.182006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/26/2016] [Indexed: 01/24/2023] Open
Abstract
Inhibitory proteins, particularly Nogo 66, a highly conserved 66 amino acid loop of Nogo A, play key roles in limiting the intrinsic capacity of the central nervous system to regenerate after injury. Ligation of surface Nogo receptors (NgRs) and/or leukocyte immunoglobulin like receptor B2 (LILRB2) and its mouse orthologue the paired-immunoglobulin-like receptor B (PIRB) by Nogo 66 transduces inhibitory signals that potently inhibit neurite outgrowth. Here we show that soluble leukocyte immunoglobulin-like receptor A3 (LILRA3) is a high affinity receptor for Nogo 66, suggesting that LILRA3 might be a competitive antagonist to these cell surface inhibitory receptors. Consistent with this, LILRA3 significantly reversed Nogo 66-mediated inhibition of neurite outgrowth and promoted synapse formation in primary cortical neurons via regulation of the MEK/ERK pathway. LILRA3 represents a new antagonist to Nogo 66-mediated inhibition of neurite outgrowth in the CNS, a function distinct from its immune-regulatory role in leukocytes. This report is also the first to demonstrate that a member of LILR family normally not expressed in rodents exerts functions on mouse neurons through the highly homologous Nogo 66 ligand.
Collapse
Affiliation(s)
- Hongyan An
- Inflammation and Infection Research Centre, School of Medical Sciences, Department of Pathology, UNSW, Sydney, Australia
| | - Merryn Brettle
- Neurodegeneration and Repair Unit, School of Medical Sciences, Department of Anatomy, UNSW, Sydney, Australia
| | - Terry Lee
- Inflammation and Infection Research Centre, School of Medical Sciences, Department of Pathology, UNSW, Sydney, Australia
| | - Benjamin Heng
- Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Macquarie University, Australia
| | - Chai K. Lim
- Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Macquarie University, Australia
| | - Gilles J. Guillemin
- Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Macquarie University, Australia
| | - Megan S. Lord
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Enrico Klotzsch
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, ARC Centre of Excellence in Advanced Molecular Imaging, The University of New South Wales, Sydney, NSW, Australia
| | - Carolyn L. Geczy
- Inflammation and Infection Research Centre, School of Medical Sciences, Department of Pathology, UNSW, Sydney, Australia
| | - Katherine Bryant
- Inflammation and Infection Research Centre, School of Medical Sciences, Department of Pathology, UNSW, Sydney, Australia
| | - Thomas Fath
- Neurodegeneration and Repair Unit, School of Medical Sciences, Department of Anatomy, UNSW, Sydney, Australia
| | - Nicodemus Tedla
- Inflammation and Infection Research Centre, School of Medical Sciences, Department of Pathology, UNSW, Sydney, Australia
| |
Collapse
|
18
|
Liu J, Wang Y, Fu W. Axon regeneration impediment: the role of paired immunoglobulin-like receptor B. Neural Regen Res 2015; 10:1338-1342. [PMID: 26487866 PMCID: PMC4590251 DOI: 10.4103/1673-5374.162771] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2015] [Indexed: 02/05/2023] Open
Abstract
Regenerative capacity is weak after central nervous system injury because of the absence of an enhancing microenvironment and presence of an inhibitory microenvironment for neuronal and axonal repair. In addition to the Nogo receptor (NgR), the paired immunoglobulin-like receptor B (PirB) is a recently discovered coreceptor of Nogo, myelin-associated glycoprotein, and myelin oligodendrocyte glycoprotein. Concurrent blocking of NgR and PirB almost completely eliminates the inhibitory effect of myelin-associated inhibitory molecules on axonal regeneration. PirB participates in a key pathological process of the nervous system, specifically axonal regeneration inhibition. PirB is an inhibitory receptor similar to NgR, but their effects are not identical. This study summarizes the structure, distribution, relationship with common nervous system diseases, and known mechanisms of PirB, and concludes that PirB is also distributed in cells of the immune and hematopoietic systems. Further investigations are needed to determine if immunomodulation and blood cell migration involve inhibition of axonal regeneration.
Collapse
Affiliation(s)
- Jing Liu
- Neonatal Intensive Care Center, BAYI Children's Hospital, Beijing Military General Hospital of Chinese PLA, Beijing, China
| | - Yan Wang
- Neonatal Intensive Care Center, BAYI Children's Hospital, Beijing Military General Hospital of Chinese PLA, Beijing, China
- Graduate School, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Wei Fu
- Neonatal Intensive Care Center, BAYI Children's Hospital, Beijing Military General Hospital of Chinese PLA, Beijing, China
- Graduate School, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
19
|
Bochner DN, Sapp RW, Adelson JD, Zhang S, Lee H, Djurisic M, Syken J, Dan Y, Shatz CJ. Blocking PirB up-regulates spines and functional synapses to unlock visual cortical plasticity and facilitate recovery from amblyopia. Sci Transl Med 2015; 6:258ra140. [PMID: 25320232 DOI: 10.1126/scitranslmed.3010157] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
During critical periods of development, the brain easily changes in response to environmental stimuli, but this neural plasticity declines by adulthood. By acutely disrupting paired immunoglobulin-like receptor B (PirB) function at specific ages, we show that PirB actively represses neural plasticity throughout life. We disrupted PirB function either by genetically introducing a conditional PirB allele into mice or by minipump infusion of a soluble PirB ectodomain (sPirB) into mouse visual cortex. We found that neural plasticity, as measured by depriving mice of vision in one eye and testing ocular dominance, was enhanced by this treatment both during the critical period and when PirB function was disrupted in adulthood. Acute blockade of PirB triggered the formation of new functional synapses, as indicated by increases in miniature excitatory postsynaptic current (mEPSC) frequency and spine density on dendrites of layer 5 pyramidal neurons. In addition, recovery from amblyopia--the decline in visual acuity and spine density resulting from long-term monocular deprivation--was possible after a 1-week infusion of sPirB after the deprivation period. Thus, neural plasticity in adult visual cortex is actively repressed and can be enhanced by blocking PirB function.
Collapse
Affiliation(s)
- David N Bochner
- Department of Biology and Bio-X, James H. Clark Center, Stanford University, Stanford, CA 94305, USA
| | - Richard W Sapp
- Department of Biology and Bio-X, James H. Clark Center, Stanford University, Stanford, CA 94305, USA
| | - Jaimie D Adelson
- Department of Biology and Bio-X, James H. Clark Center, Stanford University, Stanford, CA 94305, USA
| | - Siyu Zhang
- Division of Neurobiology, Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hanmi Lee
- Department of Biology and Bio-X, James H. Clark Center, Stanford University, Stanford, CA 94305, USA
| | - Maja Djurisic
- Department of Biology and Bio-X, James H. Clark Center, Stanford University, Stanford, CA 94305, USA
| | - Josh Syken
- Vertex Pharmaceuticals Inc., Cambridge, MA 02139, USA
| | - Yang Dan
- Division of Neurobiology, Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Carla J Shatz
- Department of Biology and Bio-X, James H. Clark Center, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
20
|
Kimura T, Endo S, Inui M, Saitoh SI, Miyake K, Takai T. Endoplasmic Protein Nogo-B (RTN4-B) Interacts with GRAMD4 and Regulates TLR9-Mediated Innate Immune Responses. THE JOURNAL OF IMMUNOLOGY 2015; 194:5426-36. [PMID: 25917084 DOI: 10.4049/jimmunol.1402006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 03/05/2015] [Indexed: 12/18/2022]
Abstract
TLRs are distributed in their characteristic cellular or subcellular compartments to efficiently recognize specific ligands and to initiate intracellular signaling. Whereas TLRs recognizing pathogen-associated lipids or proteins are localized to the cell surface, nucleic acid-sensing TLRs are expressed in endosomes and lysosomes. Several endoplasmic reticulum (ER)-resident proteins are known to regulate the trafficking of TLRs to the specific cellular compartments, thus playing important roles in the initiation of innate immune responses. In this study, we show that an ER-resident protein, Nogo-B (or RTN4-B), is necessary for immune responses triggered by nucleic acid-sensing TLRs, and that a newly identified Nogo-B-binding protein (glucosyltransferases, Rab-like GTPase activators and myotubularins [GRAM] domain containing 4 [GRAMD4]) negatively regulates the responses. Production of inflammatory cytokines in vitro by macrophages stimulated with CpG-B oligonucleotides or polyinosinic:polycytidylic acid was attenuated in the absence of Nogo-B, which was also confirmed in serum samples from Nogo-deficient mice injected with polyinosinic:polycytidylic acid. Although a deficiency of Nogo-B did not change the incorporation or delivery of CpG to endosomes, the localization of TLR9 to endolysosomes was found to be impaired. We identified GRAMD4 as a downmodulator for TLR9 response with a Nogo-B binding ability in ER, because our knockdown and overexpression experiments indicated that GRAMD4 suppresses the TLR9 response and knockdown of Gramd4 strongly enhanced the response in the absence of Nogo-B. Our findings indicate a critical role of Nogo-B and GRAMD4 in trafficking of TLR9.
Collapse
Affiliation(s)
- Toshifumi Kimura
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan; and
| | - Shota Endo
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan; and
| | - Masanori Inui
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan; and
| | - Shin-Ichiroh Saitoh
- Division of Innate Immunity, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Kensuke Miyake
- Division of Innate Immunity, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Toshiyuki Takai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan; and
| |
Collapse
|
21
|
Ameliorative Effects of p75NTR-ED-Fc on Axonal Regeneration and Functional Recovery in Spinal Cord-Injured Rats. Mol Neurobiol 2014; 52:1821-1834. [DOI: 10.1007/s12035-014-8972-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 10/29/2014] [Indexed: 11/25/2022]
|
22
|
Zhang H, Liu Y, Bian Z, Huang S, Han X, You Z, Wang Q, Qiu D, Miao Q, Peng Y, Li X, Invernizzi P, Ma X. The critical role of myeloid-derived suppressor cells and FXR activation in immune-mediated liver injury. J Autoimmun 2014; 53:55-66. [DOI: 10.1016/j.jaut.2014.02.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 02/23/2014] [Indexed: 10/24/2022]
|
23
|
Gou Z, Mi Y, Jiang F, Deng B, Yang J, Gou X. PirB is a novel potential therapeutic target for enhancing axonal regeneration and synaptic plasticity following CNS injury in mammals. J Drug Target 2014; 22:365-71. [PMID: 24405091 DOI: 10.3109/1061186x.2013.878939] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A major barrier to axonal regeneration in mammals is the unfavorable extracellular environment that develops following injury to the central nervous system (CNS). In particular, three myelin-associated inhibitory proteins (MAIs) - Nogo, myelin-associated glycoprotein (MAG) and oligodendrocyte myelin glycoprotein (OMgp) - are known to inhibit axonal regeneration and functional recovery. These MAIs share a common receptor, glycosylphosphatidylinositol-anchored Nogo receptor (NgR). However, paired immunoglobulin-like receptor B (PirB) - which was originally identified as a receptor for class I major histocompatibility complex (MHCI) in the immune system - is also expressed in neurones and plays a similarly inhibitory role in axonal regeneration and synaptic plasticity following CNS injury through its association with MAIs. Importantly, suppression of PirB activity through antibody antagonism or genetic means can partially relieve the inhibition of neurite outgrowth in vitro and in vivo. In this review, we present the molecular features, expression patterns and known signaling pathways of PirB, and we specifically focus on putative roles for PirB in the CNS and its potential as a target of molecular therapies for enhancing axonal regeneration and synaptic plasticity following CNS injury.
Collapse
Affiliation(s)
- Zhaoyu Gou
- College of Life Science, China West Normal University , Nanchong , China and
| | | | | | | | | | | |
Collapse
|
24
|
Paired immunoglobulin-like receptor A is an intrinsic, self-limiting suppressor of IL-5-induced eosinophil development. Nat Immunol 2013; 15:36-44. [PMID: 24212998 PMCID: PMC3869881 DOI: 10.1038/ni.2757] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 09/24/2013] [Indexed: 12/16/2022]
Abstract
Eosinophilia is a hallmark characteristic of T helper type 2 (TH2) cell-associated diseases and is critically regulated by the central eosinophil growth factor interleukin 5 (IL-5). Here we demonstrate that IL-5 activity in eosinophils was regulated by paired immunoglobulin-like receptors PIR-A and PIR-B. Upon self-recognition of β₂-microglobulin (β₂M) molecules, PIR-B served as a permissive checkpoint for IL-5-induced development of eosinophils by suppressing the proapoptotic activities of PIR-A, which were mediated by the Grb2-Erk-Bim pathway. PIR-B-deficient bone marrow eosinophils underwent compartmentalized apoptosis, resulting in decreased blood eosinophilia in naive mice and in mice challenged with IL-5. Subsequently, Pirb(-/-) mice displayed impaired aeroallergen-induced lung eosinophilia and induction of lung TH2 cell responses. Collectively, these data uncover an intrinsic, self-limiting pathway regulating IL-5-induced expansion of eosinophils, which has broad implications for eosinophil-associated diseases.
Collapse
|
25
|
Abstract
Over the past decade, there has been substantial interest in the role of the integral myelin protein, Nogo-A, from fundamental neurobiological to clinical perspectives. It is now a well-known inhibitor of neurite outgrowth through its cognate receptor, Nogo receptor 1 (NgR1). Nogo-A can only signal through NgR1 upon heteromeric collaboration with p75(NTR), TROY, and LINGO-1 to induce axonal retraction. Both Nogo-A and NgR1 are expressed in multiple sclerosis (MS) lesions, suggesting that Nogo signaling may play a pivotal role in disease progression. There are several approaches targeting Nogo signaling in animal models of MS, and these therapeutic effects are currently in debate. One of the points of contention arises from the localization of the aforementioned signaling molecules, considering that MS and its animal models of disease are governed by inflammatory infiltration of the central nervous system. Furthermore, an impressive list of ligands for NgR1 continues to be compiled, possibly leading to disparities in the results obtained from the various animal models. In this review, we systematically dissect the complexities of Nogo signaling, which may be relevant in the future directions of neuroprotective therapies for MS.
Collapse
Affiliation(s)
- Jae Young Lee
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
| | | |
Collapse
|
26
|
Nogo and Nogo receptor: relevance to schizophrenia? Neurobiol Dis 2013; 54:150-7. [PMID: 23369871 DOI: 10.1016/j.nbd.2013.01.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/14/2013] [Accepted: 01/17/2013] [Indexed: 12/14/2022] Open
Abstract
The membrane protein Nogo-A and its receptor NgR have been extensively characterized for their role in restricting axonal growth, regeneration, and plasticity in the central nervous system. Recent evidence suggests that Nogo and NgR might constitute candidate genes for schizophrenia susceptibility. In this article, we critically review the possibility that dysfunctions related to Nogo-A and NgR might contribute to increased risk for schizophrenia. To this end, we consider the most important insights that have emerged from human genetic and pathological studies and from experimental animal work. Furthermore, we discuss potential mechanisms of Nogo/NgR involvement in neural circuit development and stability, and how mutations or changes in expression levels of these proteins could be developmental risk factors contributing to schizophrenia.
Collapse
|
27
|
Kuroki K, Hirose K, Okabe Y, Fukunaga Y, Takahashi A, Shiroishi M, Kajikawa M, Tabata S, Nakamura S, Takai T, Koyanagi S, Ohdo S, Maenaka K. The long-term immunosuppressive effects of disulfide-linked HLA-G dimer in mice with collagen-induced arthritis. Hum Immunol 2012; 74:433-8. [PMID: 23276819 DOI: 10.1016/j.humimm.2012.11.060] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 10/13/2012] [Accepted: 11/28/2012] [Indexed: 11/18/2022]
Abstract
HLA-G, a natural immunosuppressant present in the human placenta during pregnancy, prevents fetal destruction by the maternal immune system. The immunosuppressive effect of HLA-G is mediated by the immune cell inhibitory receptors, LILRB1 and LILRB2. HLA-G forms disulfide-linked dimers by natural oxidation, and the dimer associates with LILRB1/B2 much more strongly than the monomer. Furthermore, the dimer formation remarkably enhanced the LILRB-mediated signaling. In this report, we studied the in vivo immunosuppressive effect of the HLA-G dimer, using the collagen-induced arthritis model mouse. Mice were treated with the HLA-G monomer or dimer intracutaneously at the left foot joint, once or for 5 days, and the clinical severity was evaluated daily in a double-blind study. The HLA-G monomer and dimer both produced excellent anti-inflammatory effects with a single, local administration. Notably, as compared to the monomer, the dimer exhibited significant immunosuppressive effects at lower concentrations, which persisted for about two months. In accordance with this result, a binding study revealed that the HLA-G dimer binds PIR-B, the mouse homolog of the LILRBs, with higher affinity and avidity than the monomer. The HLA-G dimer is expected to be quite useful as an anti-rheumatoid arthritis agent, in small amounts with minimal side effects.
Collapse
MESH Headings
- Animals
- Arthritis, Experimental/chemically induced
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/immunology
- Arthritis, Experimental/pathology
- Arthritis, Rheumatoid/chemically induced
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/pathology
- Collagen Type II
- Disulfides/chemistry
- HLA-G Antigens/administration & dosage
- HLA-G Antigens/chemistry
- HLA-G Antigens/immunology
- Immune Tolerance/drug effects
- Immunosuppressive Agents/administration & dosage
- Immunosuppressive Agents/chemistry
- Immunosuppressive Agents/immunology
- Injections
- Joints/drug effects
- Joints/immunology
- Joints/pathology
- Male
- Mice
- Mice, Inbred DBA
- Protein Binding
- Protein Multimerization
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/immunology
- Severity of Illness Index
Collapse
Affiliation(s)
- Kimiko Kuroki
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Adelson JD, Barreto GE, Xu L, Kim T, Brott BK, Ouyang YB, Naserke T, Djurisic M, Xiong X, Shatz CJ, Giffard RG. Neuroprotection from stroke in the absence of MHCI or PirB. Neuron 2012; 73:1100-7. [PMID: 22445338 DOI: 10.1016/j.neuron.2012.01.020] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2012] [Indexed: 10/28/2022]
Abstract
Recovery from stroke engages mechanisms of neural plasticity. Here we examine a role for MHC class I (MHCI) H2-Kb and H2-Db, as well as PirB receptor. These molecules restrict synaptic plasticity and motor learning in the healthy brain. Stroke elevates neuronal expression not only of H2-Kb and H2-Db, but also of PirB and downstream signaling. KbDb knockout (KO) or PirB KO mice have smaller infarcts and enhanced motor recovery. KO hippocampal organotypic slices, which lack an intact peripheral immune response, have less cell death after in vitro ischemia. In PirB KO mice, corticospinal projections from the motor cortex are enhanced, and the reactive astrocytic response is dampened after MCAO. Thus, molecules that function in the immune system act not only to limit synaptic plasticity in healthy neurons, but also to exacerbate brain injury after ischemia. These results suggest therapies for stroke by targeting MHCI and PirB.
Collapse
Affiliation(s)
- Jaimie D Adelson
- Department of Biology and Neurobiology, Stanford University, Stanford, CA 94305-5437, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|