1
|
Jenkins TW, Fitzgerald JE, Park J, Wilson AM, Berry KL, Wong KS, Houry WA, Lee I, Maksimenko AV, Panizzi PR, Maxuitenko YY, Loop MS, Mitra AK, Kisselev AF. Highly specific Immunoproteasome inhibitor M3258 induces proteotoxic stress and apoptosis in KMT2A::AFF1 driven acute lymphoblastic leukemia. Sci Rep 2025; 15:17284. [PMID: 40389585 PMCID: PMC12089620 DOI: 10.1038/s41598-025-01657-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 05/07/2025] [Indexed: 05/21/2025] Open
Abstract
Proteasome inhibitors (PIs) bortezomib, carfilzomib and ixazomib are approved for the treatment of multiple myeloma and mantle cell lymphoma and have clinical activity in acute lymphoblastic leukemia (ALL). The predominant form of proteasome in these hematologic malignancies is the lymphoid tissue-specific immunoproteasome. FDA-approved PIs inhibit immunoproteasomes and ubiquitously expressed constitutive proteasomes causing on-target toxicities in non-hematological tissues. Replacing PIs with selective immunoproteasome inhibitors (IPIs) should reduce these toxicities. We have previously shown that IPI ONX-0914 causes apoptosis of ALL cells expressing the KMT2A::AFF1 (MLL-AF4) fusion protein but did not elucidate the mechanism. Here we show that a novel, highly specific IPI M3258 induces rapid apoptosis in ALL cells in vitro and is comparable to bortezomib in its ability to reduce tumor growth and to cause tumor regression when combined with chemotherapy in vivo. Treatment of KMT2A::AFF1 ALL cells with M3258, ONX-0914, and bortezomib induced proteotoxic stress that was prevented by the protein synthesis inhibitor cycloheximide, which dramatically desensitized cells to PI-induced apoptosis. Thus, similar to multiple myeloma, ALL cells are sensitive to PIs and IPIs due to increased proteotoxic stress caused by elevated rates of protein synthesis.
Collapse
Affiliation(s)
- Tyler W Jenkins
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jacquelyn Elise Fitzgerald
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jieun Park
- Division of Research, Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Addison M Wilson
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Kristy L Berry
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Keith S Wong
- Department of Biochemistry, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Toronto, ON, M5G 1M1, Canada
| | - Walid A Houry
- Department of Biochemistry, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Toronto, ON, M5G 1M1, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Irene Lee
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106-7078, USA
| | - Andrey V Maksimenko
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Peter R Panizzi
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Yulia Y Maxuitenko
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Matthew Shane Loop
- Department of Health Outcomes and Research Policy, Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Amit K Mitra
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Alexei F Kisselev
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA.
- Auburn University, 720 S. Donahue Dr., Auburn, 36849-5503, AL, USA.
| |
Collapse
|
2
|
Novel Class of Proteasome Inhibitors: In Silico and In Vitro Evaluation of Diverse Chloro(trifluoromethyl)aziridines. Int J Mol Sci 2022; 23:ijms232012363. [PMID: 36293216 PMCID: PMC9603864 DOI: 10.3390/ijms232012363] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 01/24/2023] Open
Abstract
The ubiquitin-proteasome pathway (UPP) is the major proteolytic system in the cytosol and nucleus of all eukaryotic cells. The role of proteasome inhibitors (PIs) as critical agents for regulating cancer cell death has been established. Aziridine derivatives are well-known alkylating agents employed against cancer. However, to the best of our knowledge, aziridine derivatives showing inhibitory activity towards proteasome have never been described before. Herein we report a new class of selective and nonPIs bearing an aziridine ring as a core structure. In vitro cell-based assays (two leukemia cell lines) also displayed anti-proliferative activity for some compounds. In silico studies indicated non-covalent binding mode and drug-likeness for these derivatives. Taken together, these results are promising for developing more potent PIs.
Collapse
|
3
|
Immunoproteasome Activity in Chronic Lymphocytic Leukemia as a Target of the Immunoproteasome-Selective Inhibitors. Cells 2022; 11:cells11050838. [PMID: 35269460 PMCID: PMC8909520 DOI: 10.3390/cells11050838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/21/2022] Open
Abstract
Targeting proteasome with proteasome inhibitors (PIs) is an approved treatment strategy in multiple myeloma that has also been explored pre-clinically and clinically in other hematological malignancies. The approved PIs target both the constitutive and the immunoproteasome, the latter being present predominantly in cells of lymphoid origin. Therapeutic targeting of the immunoproteasome in cells with sole immunoproteasome activity may be selectively cytotoxic in malignant cells, while sparing the non-lymphoid tissues from the on-target PIs toxicity. Using activity-based probes to assess the proteasome activity profile and correlating it with the cytotoxicity assays, we identified B-cell chronic lymphocytic leukemia (B-CLL) to express predominantly immunoproteasome activity, which is associated with high sensitivity to approved proteasome inhibitors and, more importantly, to the immunoproteasome selective inhibitors LU005i and LU035i, targeting all immunoproteasome active subunits or only the immunoproteasome β5i, respectively. At the same time, LU102, a proteasome β2 inhibitor, sensitized B-CLL or immunoproteasome inhibitor-inherently resistant primary cells of acute myeloid leukemia, B-cell acute lymphoblastic leukemia, multiple myeloma and plasma cell leukemia to low doses of LU035i. The immunoproteasome thus represents a novel therapeutic target, which warrants further testing with clinical stage immunoproteasome inhibitors in monotherapy or in combinations.
Collapse
|
4
|
Kisselev AF. Site-Specific Proteasome Inhibitors. Biomolecules 2021; 12:54. [PMID: 35053202 PMCID: PMC8773591 DOI: 10.3390/biom12010054] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 12/14/2022] Open
Abstract
Proteasome is a multi-subunit protein degradation machine, which plays a key role in the maintenance of protein homeostasis and, through degradation of regulatory proteins, in the regulation of numerous cell functions. Proteasome inhibitors are essential tools for biomedical research. Three proteasome inhibitors, bortezomib, carfilzomib, and ixazomib are approved by the FDA for the treatment of multiple myeloma; another inhibitor, marizomib, is undergoing clinical trials. The proteolytic core of the proteasome has three pairs of active sites, β5, β2, and β1. All clinical inhibitors and inhibitors that are widely used as research tools (e.g., epoxomicin, MG-132) inhibit multiple active sites and have been extensively reviewed in the past. In the past decade, highly specific inhibitors of individual active sites and the distinct active sites of the lymphoid tissue-specific immunoproteasome have been developed. Here, we provide a comprehensive review of these site-specific inhibitors of mammalian proteasomes and describe their utilization in the studies of the biology of the active sites and their roles as drug targets for the treatment of different diseases.
Collapse
Affiliation(s)
- Alexei F Kisselev
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
5
|
Pseudopeptides with aldehyde or vinylsulfone warheads: Synthesis and antiproteasomal activity. Bioorg Chem 2021; 115:105228. [PMID: 34371374 DOI: 10.1016/j.bioorg.2021.105228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 11/22/2022]
Abstract
The comparative study of new proteasome inhibitors based on salicylic acid-modified pseudo-tripeptides terminated with aldehyde or vinylsulfone is presented. We described the synthesis of 11 pairs of pseudopeptides and their properties related to the proteasome inhibition were determined. The effects of integrated amino acids (combinations of leucine, phenylalanine, tryptophan, proline, cyclohexylalanine or norleucine residues) on the activity of the proteasome were investigated. Compounds preferentially inhibited the chymotrypsin β5-subunit of the proteasome in cell-based assays compared with the β1- and β2-subunits, with IC50 values in mid-nanomolar ranges being obtained for the most active members. Our comparative study demonstrated that aldehydes were able to inhibit the proteasome in cells more effectively than vinylsulfones. These results were corroborated by the accumulation of polyubiquitinated proteins in treated cells, GFP accumulation in a reporter cell line and the ability of new compounds to induce apoptotic cell death.
Collapse
|
6
|
van der Zouwen AJ, Witte MD. Modular Approaches to Synthesize Activity- and Affinity-Based Chemical Probes. Front Chem 2021; 9:644811. [PMID: 33937194 PMCID: PMC8082414 DOI: 10.3389/fchem.2021.644811] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
Combinatorial and modular methods to synthesize small molecule modulators of protein activity have proven to be powerful tools in the development of new drug-like molecules. Over the past decade, these methodologies have been adapted toward utilization in the development of activity- and affinity-based chemical probes, as well as in chemoproteomic profiling. In this review, we will discuss how methods like multicomponent reactions, DNA-encoded libraries, phage displays, and others provide new ways to rapidly screen novel chemical probes against proteins of interest.
Collapse
Affiliation(s)
- Antonie J van der Zouwen
- Chemical Biology II, Stratingh Institute for Chemistry, University of Groningen, Groningen, Netherlands
| | - Martin D Witte
- Chemical Biology II, Stratingh Institute for Chemistry, University of Groningen, Groningen, Netherlands
| |
Collapse
|
7
|
Maresh ME, Salazar-Chaparro AF, Trader DJ. Methods for the discovery of small molecules to monitor and perturb the activity of the human proteasome. Future Med Chem 2021; 13:99-116. [PMID: 33275045 PMCID: PMC7857359 DOI: 10.4155/fmc-2020-0288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Regulating protein production and degradation is critical to maintaining cellular homeostasis. The proteasome is a key player in keeping proteins at the proper levels. However, proteasome activity can be altered in certain disease states, such as blood cancers and neurodegenerative diseases. Cancers often exhibit enhanced proteasomal activity, as protein synthesis is increased in these cells compared with normal cells. Conversely, neurodegenerative diseases are characterized by protein accumulation, leading to reduced proteasome activity. As a result, the proteasome has emerged as a target for therapeutic intervention. The potential of the proteasome as a therapeutic target has come from studies involving chemical stimulators and inhibitors, and the development of a suite of assays and probes that can be used to monitor proteasome activity with purified enzyme and in live cells.
Collapse
Affiliation(s)
- Marianne E Maresh
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, IN 47907, USA
| | - Andres F Salazar-Chaparro
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, IN 47907, USA
| | - Darci J Trader
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, IN 47907, USA
| |
Collapse
|
8
|
Shagufta, Ahmad I. Transition metal complexes as proteasome inhibitors for cancer treatment. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119521] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Wang X, Meul T, Meiners S. Exploring the proteasome system: A novel concept of proteasome inhibition and regulation. Pharmacol Ther 2020; 211:107526. [PMID: 32173559 DOI: 10.1016/j.pharmthera.2020.107526] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/08/2020] [Indexed: 12/13/2022]
Abstract
The proteasome is a well-identified therapeutic target for cancer treatment. It acts as the main protein degradation system in the cell and degrades key mediators of cell growth, survival and function. The term "proteasome" embraces a whole family of distinct complexes, which share a common proteolytic core, the 20S proteasome, but differ by their attached proteasome activators. Each of these proteasome complexes plays specific roles in the control of cellular function. In addition, distinct proteasome interacting proteins regulate proteasome activity in subcellular compartments and in response to cellular signals. Proteasome activators and regulators may thus serve as building blocks to fine-tune proteasome function in the cell according to cellular needs. Inhibitors of the proteasome, e.g. the FDA approved drugs Velcade™, Kyprolis™, Ninlaro™, inactivate the catalytic 20S core and effectively block protein degradation of all proteasome complexes in the cell resulting in inhibition of cell growth and induction of apoptosis. Efficacy of these inhibitors, however, is hampered by their pronounced cytotoxic side-effects as well as by the emerging development of resistance to catalytic proteasome inhibitors. Targeted inhibition of distinct buiding blocks of the proteasome system, i.e. proteasome activators or regulators, represents an alternative strategy to overcome these limitations. In this review, we stress the importance of the diversity of the proteasome complexes constituting an entire proteasome system. Our building block concept provides a rationale for the defined targeting of distinct proteasome super-complexes in disease. We thereby aim to stimulate the development of innovative therapeutic approaches beyond broad catalytic proteasome inhibition.
Collapse
Affiliation(s)
- Xinyuan Wang
- Comprehensive Pneumology Center (CPC), University Hospital of the Ludwig-Maximilians-University (LMU) and Helmholtz Zentrum München, German Center for Lung Research (DZL), 81377 Munich, Germany
| | - Thomas Meul
- Comprehensive Pneumology Center (CPC), University Hospital of the Ludwig-Maximilians-University (LMU) and Helmholtz Zentrum München, German Center for Lung Research (DZL), 81377 Munich, Germany
| | - Silke Meiners
- Comprehensive Pneumology Center (CPC), University Hospital of the Ludwig-Maximilians-University (LMU) and Helmholtz Zentrum München, German Center for Lung Research (DZL), 81377 Munich, Germany.
| |
Collapse
|
10
|
Coux O, Zieba BA, Meiners S. The Proteasome System in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:55-100. [DOI: 10.1007/978-3-030-38266-7_3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Xi J, Zhuang R, Kong L, He R, Zhu H, Zhang J. Immunoproteasome-selective inhibitors: An overview of recent developments as potential drugs for hematologic malignancies and autoimmune diseases. Eur J Med Chem 2019; 182:111646. [PMID: 31521028 DOI: 10.1016/j.ejmech.2019.111646] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/24/2019] [Accepted: 08/25/2019] [Indexed: 12/23/2022]
Abstract
The immunoproteasome, a specialized form of proteasome, is mainly expressed in lymphocytes and monocytes of jawed vertebrates and responsible for the generation of antigenic peptides for cell-mediated immunity. Overexpression of immunoproteasome have been detected in a wide range of diseases including malignancies, autoimmune and inflammatory diseases. Following the successful approval of constitutive proteasome inhibitors bortezomib, carfilzomib and Ixazomib, and with the clarification of immunoproteasome crystal structure and functions, a variety of immunoproteasome inhibitors were discovered or rationally developed. Not only the inhibitory activities, the selectivities for immunoproteasome over constitutive proteasome are essential for the clinical potential of these analogues, which has been validated by the clinical evaluation of immunoproteasome-selective inhibitor KZR-616 for the treatment of systemic lupus erythematosus. In this review, structure, function as well as the current developments of various inhibitors against immunoproteasome are going to be summarized, which help to fully understand the target for drug discovery.
Collapse
Affiliation(s)
- Jianjun Xi
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, Zhejiang Province, China
| | - Rangxiao Zhuang
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, Zhejiang Province, China
| | - Limin Kong
- Department of Pharmacy, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, Zhejiang Province, China
| | - Ruoyu He
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, Zhejiang Province, China
| | - Huajian Zhu
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, Zhejiang Province, China
| | - Jiankang Zhang
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, Zhejiang Province, China.
| |
Collapse
|
12
|
Abstract
The ubiquitin proteasome system (UPS) degrades individual proteins in a highly regulated fashion and is responsible for the degradation of misfolded, damaged, or unneeded cellular proteins. During the past 20 years, investigators have established a critical role for the UPS in essentially every cellular process, including cell cycle progression, transcriptional regulation, genome integrity, apoptosis, immune responses, and neuronal plasticity. At the center of the UPS is the proteasome, a large and complex molecular machine containing a multicatalytic protease complex. When the efficiency of this proteostasis system is perturbed, misfolded and damaged protein aggregates can accumulate to toxic levels and cause neuronal dysfunction, which may underlie many neurodegenerative diseases. In addition, many cancers rely on robust proteasome activity for degrading tumor suppressors and cell cycle checkpoint inhibitors necessary for rapid cell division. Thus, proteasome inhibitors have proven clinically useful to treat some types of cancer, especially multiple myeloma. Numerous cellular processes rely on finely tuned proteasome function, making it a crucial target for future therapeutic intervention in many diseases, including neurodegenerative diseases, cystic fibrosis, atherosclerosis, autoimmune diseases, diabetes, and cancer. In this review, we discuss the structure and function of the proteasome, the mechanisms of action of different proteasome inhibitors, various techniques to evaluate proteasome function in vitro and in vivo, proteasome inhibitors in preclinical and clinical development, and the feasibility for pharmacological activation of the proteasome to potentially treat neurodegenerative disease.
Collapse
Affiliation(s)
- Tiffany A Thibaudeau
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia
| | - David M Smith
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
13
|
Xin BT, Huber EM, de Bruin G, Heinemeyer W, Maurits E, Espinal C, Du Y, Janssens M, Weyburne ES, Kisselev AF, Florea BI, Driessen C, van der Marel GA, Groll M, Overkleeft HS. Structure-Based Design of Inhibitors Selective for Human Proteasome β2c or β2i Subunits. J Med Chem 2019; 62:1626-1642. [PMID: 30657666 PMCID: PMC6378654 DOI: 10.1021/acs.jmedchem.8b01884] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Subunit-selective
proteasome inhibitors are valuable tools to assess
the biological and medicinal relevance of individual proteasome active
sites. Whereas the inhibitors for the β1c, β1i, β5c,
and β5i subunits exploit the differences in the substrate-binding
channels identified by X-ray crystallography, compounds selectively
targeting β2c or β2i could not yet be rationally designed
because of the high structural similarity of these two subunits. Here,
we report the development, chemical synthesis, and biological screening
of a compound library that led to the identification of the β2c-
and β2i-selective compounds LU-002c (4; IC50 β2c: 8 nM, IC50 β2i/β2c: 40-fold)
and LU-002i (5; IC50 β2i: 220 nM, IC50 β2c/β2i: 45-fold), respectively. Co-crystal
structures with β2 humanized yeast proteasomes visualize protein–ligand
interactions crucial for subunit specificity. Altogether, organic
syntheses, activity-based protein profiling, yeast mutagenesis, and
structural biology allowed us to decipher significant differences
of β2 substrate-binding channels and to complete the set of
subunit-selective proteasome inhibitors.
Collapse
Affiliation(s)
- Bo-Tao Xin
- Gorlaeus Laboratories , Leiden Institute of Chemistry and Netherlands Proteomics Centre , Einsteinweg 55 , 2333 CC Leiden , Netherlands
| | - Eva M Huber
- Center for Integrated Protein Science at the Department Chemie, Lehrstuhl für Biochemie , Technische Universität München , 85748 Garching , Germany
| | - Gerjan de Bruin
- Gorlaeus Laboratories , Leiden Institute of Chemistry and Netherlands Proteomics Centre , Einsteinweg 55 , 2333 CC Leiden , Netherlands
| | - Wolfgang Heinemeyer
- Center for Integrated Protein Science at the Department Chemie, Lehrstuhl für Biochemie , Technische Universität München , 85748 Garching , Germany
| | - Elmer Maurits
- Gorlaeus Laboratories , Leiden Institute of Chemistry and Netherlands Proteomics Centre , Einsteinweg 55 , 2333 CC Leiden , Netherlands
| | - Christofer Espinal
- Gorlaeus Laboratories , Leiden Institute of Chemistry and Netherlands Proteomics Centre , Einsteinweg 55 , 2333 CC Leiden , Netherlands
| | - Yimeng Du
- Gorlaeus Laboratories , Leiden Institute of Chemistry and Netherlands Proteomics Centre , Einsteinweg 55 , 2333 CC Leiden , Netherlands
| | - Marissa Janssens
- Gorlaeus Laboratories , Leiden Institute of Chemistry and Netherlands Proteomics Centre , Einsteinweg 55 , 2333 CC Leiden , Netherlands
| | - Emily S Weyburne
- Department of Molecular and Systems Biology and Norris Cotton Cancer Center , Geisel School of Medicine at Dartmouth , 1 Medical Centre Drive HB7936 , Lebanon , New Hampshire 03756 , United States
| | - Alexei F Kisselev
- Department of Molecular and Systems Biology and Norris Cotton Cancer Center , Geisel School of Medicine at Dartmouth , 1 Medical Centre Drive HB7936 , Lebanon , New Hampshire 03756 , United States
| | - Bogdan I Florea
- Gorlaeus Laboratories , Leiden Institute of Chemistry and Netherlands Proteomics Centre , Einsteinweg 55 , 2333 CC Leiden , Netherlands
| | - Christoph Driessen
- Department of Hematology and Oncology , Kantonsspital St. Gallen , 9007 St. Gallen , Switzerland
| | - Gijsbert A van der Marel
- Gorlaeus Laboratories , Leiden Institute of Chemistry and Netherlands Proteomics Centre , Einsteinweg 55 , 2333 CC Leiden , Netherlands
| | - Michael Groll
- Center for Integrated Protein Science at the Department Chemie, Lehrstuhl für Biochemie , Technische Universität München , 85748 Garching , Germany
| | - Herman S Overkleeft
- Gorlaeus Laboratories , Leiden Institute of Chemistry and Netherlands Proteomics Centre , Einsteinweg 55 , 2333 CC Leiden , Netherlands
| |
Collapse
|
14
|
Design, synthesis, and evaluation of cystargolide-based β-lactones as potent proteasome inhibitors. Eur J Med Chem 2018; 157:962-977. [PMID: 30165344 DOI: 10.1016/j.ejmech.2018.08.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/15/2018] [Accepted: 08/18/2018] [Indexed: 11/20/2022]
Abstract
The peptidic β-lactone proteasome inhibitors (PIs) cystargolides A and B were used to conduct structure-activity relationship (SAR) studies in order to assess their anticancer potential. A total of 24 different analogs were designed, synthesized and evaluated for proteasome inhibition, for cytotoxicity towards several cancer cell lines, and for their ability to enter intact cells. X-ray crystallographic analysis and subunit selectivity was used to determine the specific subunit binding associated with the structural modification of the β-lactone (P1), peptidic core, (Px and Py), and end-cap (Pz) of our scaffold. The cystargolide derivative 5k, structurally unique at both Py and P1, exhibited the most promising inhibitory activity for the β5 subunit of human proteasomes (IC50 = 3.1 nM) and significant cytotoxicity towards MCF-7 (IC50 = 416 nM), MDA-MB-231 (IC50 = 74 nM) and RPMI 8226 (IC50 = 41 nM) cancer cell lines. Cellular infiltration assays revealed that minor structural modifications have significant effects on the ability of our PIs to inhibit intracellular proteasomes, and we identified 5k as a promising candidate for continued therapeutic studies. Our novel drug lead 5k is a more potent proteasome inhibitor than carfilzomib with mid-to-low nanomolar IC50 measurements and it is cytotoxic against multiple cancer cell lines at levels approaching those of carfilzomib.
Collapse
|
15
|
Zhang W, Bai H, Han L, Zhang H, Xu B, Cui J, Wang X, Ge Z, Li R. Synthesis and biological evaluation of curcumin derivatives modified with α-amino boronic acid as proteasome inhibitors. Bioorg Med Chem Lett 2018; 28:2459-2464. [DOI: 10.1016/j.bmcl.2018.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/25/2018] [Accepted: 06/01/2018] [Indexed: 01/28/2023]
|
16
|
Abstract
The activity of proteases is tightly regulated, and dysregulation is linked to a variety of human diseases. For this reason, ABPP is a well-suited method to study protease biology and the design of protease probes has pushed the boundaries of ABPP. The development of highly selective protease probes is still a challenging task. After an introduction, the first section of this chapter discusses several strategies to enable detection of a single active protease species. These range from the usage of non-natural amino acids, combination of probes with antibodies, and engineering of the target proteases. A next section describes the different types of detection tags that facilitate the read-out possibilities including various types of imaging methods and mass spectrometry-based target identification. The power of protease ABPP is illustrated by examples for a selected number of proteases. It is expected that some protease probes that have been evaluated in animal models of human disease will find translation into clinical application in the near future.
Collapse
|
17
|
Han L, Wen Y, Li R, Xu B, Ge Z, Wang X, Cheng T, Cui J, Li R. Synthesis and biological activity of peptide proline-boronic acids as proteasome inhibitors. Bioorg Med Chem 2017. [PMID: 28634039 DOI: 10.1016/j.bmc.2017.05.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
On the basis of the application of proline-boronic acid as pharmacophore in the kinase inhibitors and our previous research results, using proline-boronic acid as warhead, two series of peptide proline-boronic acids, dipeptide proline-boronic acids (I) and tripeptide proline-boronic acids (II), were designed and synthesized. All the synthesized compounds were first evaluated for their biological activity against MGC803 cell, and then, the best compound II-7 was selected to test its anti-tumor spectrum on six human tumor cell lines and proteasome inhibition against three subunits. The results indicated that series II have much better biological activities than series I. The compound II-7 exhibited not only excellent biological activities with IC50 values of nM level in both cell and proteasome models, but also much better subunit selectivity. Thus, proline-boronic acid as warhead is reasonable in the design of proteasome inhibitors.
Collapse
Affiliation(s)
- Liqiang Han
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Yanzhao Wen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Ridong Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Bo Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Zemei Ge
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Xin Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Tieming Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Jingrong Cui
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China.
| | - Runtao Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China.
| |
Collapse
|
18
|
Hewings DS, Flygare JA, Wertz IE, Bogyo M. Activity-based probes for the multicatalytic proteasome. FEBS J 2017; 284:1540-1554. [PMID: 28107776 DOI: 10.1111/febs.14016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/22/2016] [Accepted: 01/16/2017] [Indexed: 12/17/2022]
Abstract
Proteasomes are multisubunit protease complexes responsible for degrading most intracellular proteins. In addition to removing damaged proteins, they regulate many important cellular processes through the controlled degradation of transcription factors, cell cycle regulators, and enzymes. Eukaryotic proteasomes have three catalytic subunits, β1, β2, and β5, that each has different substrate specificities. Additionally, although we know that diverse cell types express proteasome variants with distinct activity and specificity profiles, the functions of these different pools of proteasomes are not fully understood. Covalent inhibitors of the protease activity of the proteasome have been developed as drugs for hematological malignancies and are currently under investigation for other diseases. Therefore, there is a need for tools that allow direct monitoring of proteasome activity in live cells and tissues. Activity-based probes have proven valuable for biochemical and cell biological studies of the role of individual proteasome subunits, and for evaluating the efficacy and selectivity of proteasome inhibitors. These probes react covalently with the protease active sites, and contain a reporter tag to identify the probe-labeled proteasome subunits. This review will describe the development of broad-spectrum and subunit-specific proteasome activity-based probes, and discuss how these probes have contributed to our understanding of proteasome biology, and to the development of proteasome inhibitors.
Collapse
Affiliation(s)
- David S Hewings
- Discovery Chemistry, Genentech, South San Francisco, CA, USA.,Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA.,Discovery Oncology, Genentech, South San Francisco, CA, USA.,Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - John A Flygare
- Discovery Chemistry, Genentech, South San Francisco, CA, USA
| | - Ingrid E Wertz
- Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA.,Discovery Oncology, Genentech, South San Francisco, CA, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
19
|
Discovery of a potent and highly specific β 2 proteasome inhibitor from a library of copper complexes. Bioorg Med Chem Lett 2016; 26:5780-5784. [DOI: 10.1016/j.bmcl.2016.10.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/29/2016] [Accepted: 10/14/2016] [Indexed: 11/15/2022]
|
20
|
Foran E, Kwon DY, Nofziger JH, Arnold ES, Hall MD, Fischbeck KH, Burnett BG. CNS uptake of bortezomib is enhanced by P-glycoprotein inhibition: implications for spinal muscular atrophy. Neurobiol Dis 2016; 88:118-24. [PMID: 26792401 DOI: 10.1016/j.nbd.2016.01.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 12/11/2015] [Accepted: 01/09/2016] [Indexed: 12/12/2022] Open
Abstract
The development of therapeutics for neurological disorders is constrained by limited access to the central nervous system (CNS). ATP-binding cassette (ABC) transporters, particularly P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP), are expressed on the luminal surface of capillaries in the CNS and transport drugs out of the endothelium back into the blood against the concentration gradient. Survival motor neuron (SMN) protein, which is deficient in spinal muscular atrophy (SMA), is a target of the ubiquitin proteasome system. Inhibiting the proteasome in a rodent model of SMA with bortezomib increases SMN protein levels in peripheral tissues but not the CNS, because bortezomib has poor CNS penetrance. We sought to determine if we could inhibit SMN degradation in the CNS of SMA mice with a combination of bortezomib and the ABC transporter inhibitor tariquidar. In cultured cells we show that bortezomib is a substrate of P-gp. Mass spectrometry analysis demonstrated that intraperitoneal co-administration of tariquidar increased the CNS penetrance of bortezomib, and reduced proteasome activity in the brain and spinal cord. This correlated with increased SMN protein levels and improved survival and motor function of SMA mice. These findings show that CNS penetrance of treatment for this neurological disorder can be improved by inhibiting drug efflux at the blood-brain barrier.
Collapse
Affiliation(s)
- Emily Foran
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, United States.
| | - Deborah Y Kwon
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, United States; Department of Neuroscience, Brown University, United States
| | - Jonathan H Nofziger
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, United States
| | - Eveline S Arnold
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, United States
| | - Matthew D Hall
- CE Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, United States
| | - Kenneth H Fischbeck
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, United States
| | - Barrington G Burnett
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Services, United States
| |
Collapse
|
21
|
Śledź P, Baumeister W. Structure-Driven Developments of 26S Proteasome Inhibitors. Annu Rev Pharmacol Toxicol 2016; 56:191-209. [DOI: 10.1146/annurev-pharmtox-010814-124727] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Paweł Śledź
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany;
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany;
| |
Collapse
|
22
|
de Bruin G, Xin BT, Kraus M, van der Stelt M, van der Marel GA, Kisselev AF, Driessen C, Florea BI, Overkleeft HS. A Set of Activity-Based Probes to Visualize Human (Immuno)proteasome Activities. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201509092] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Gerjan de Bruin
- Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Bo Tao Xin
- Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Marianne Kraus
- Department of Hematology and Oncology; Kantonsspital St. Gallen; 9007 St. Gallen Switzerland
| | - Mario van der Stelt
- Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| | | | - Alexei F. Kisselev
- Department of Pharmacology and Toxicology; Norris Cotton Cancer Center; Dartmouth Medical School; One Medical Centre Drive Lebanon NH 03756 USA
| | - Christoph Driessen
- Department of Hematology and Oncology; Kantonsspital St. Gallen; 9007 St. Gallen Switzerland
| | - Bogdan I. Florea
- Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Herman S. Overkleeft
- Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| |
Collapse
|
23
|
de Bruin G, Xin BT, Kraus M, van der Stelt M, van der Marel GA, Kisselev AF, Driessen C, Florea BI, Overkleeft HS. A Set of Activity-Based Probes to Visualize Human (Immuno)proteasome Activities. Angew Chem Int Ed Engl 2015; 55:4199-203. [PMID: 26511210 DOI: 10.1002/anie.201509092] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Indexed: 11/08/2022]
Abstract
Proteasomes are therapeutic targets for various cancers and autoimmune diseases. Constitutively expressed proteasomes have three active sites, β1c, β2c, and β5c. Lymphoid tissues also express the immunoproteasome subunits β1i, β2i, and β5i. Rapid and simultaneous measurement of the activity of these catalytic subunits would assist in the discovery of new inhibitors, improve analysis of proteasome inhibitors in clinical trials, and simplify analysis of subunit expression. In this work, we present a cocktail of activity-based probes that enables simultaneous gel-based detection of all six catalytic human proteasome subunits. We used this cocktail to develop specific inhibitors for β1c, β2c, β5c, and β2i, to compare the active-site specificity of clinical proteasome inhibitors, and to demonstrate that many hematologic malignancies predominantly express immunoproteasomes. Furthermore, we show that selective and complete inhibition of β5i and β1i is cytotoxic to primary cells from acute lymphocytic leukemia (ALL) patients.
Collapse
Affiliation(s)
- Gerjan de Bruin
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Bo Tao Xin
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Marianne Kraus
- Department of Hematology and Oncology, Kantonsspital St. Gallen, 9007, St. Gallen, Switzerland
| | - Mario van der Stelt
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Gijsbert A van der Marel
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Alexei F Kisselev
- Department of Pharmacology and Toxicology, Norris Cotton Cancer Center, Dartmouth Medical School, One Medical Centre Drive, Lebanon, NH, 03756, USA
| | - Christoph Driessen
- Department of Hematology and Oncology, Kantonsspital St. Gallen, 9007, St. Gallen, Switzerland
| | - Bogdan I Florea
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| | - Herman S Overkleeft
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
24
|
Synthesis of C3/C1-Substituted Tetrahydroisoquinolines. Molecules 2015; 20:14902-14. [PMID: 26287146 PMCID: PMC6332194 DOI: 10.3390/molecules200814902] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 08/05/2015] [Accepted: 08/10/2015] [Indexed: 01/18/2023] Open
Abstract
A broad biological screening of the natural alkaloid N-methylisosalsoline (2) extracted from Hammadascoparia leaves against a panel of human and parasitic proteases revealed an interesting activity profile of 2 towards human 20S proteasome. This outcome suggests that the 1,2,3,4-tetrahydroisoquinoline skeleton may be exploited as a template for the development of novel anticancer agents. In this article, we report the synthesis and chemical characterization of a new series of isosalsoline-type alkaloids (10–11) with variations at N2 and C3 positions with respect to the natural Compound 2, obtained by a synthetic strategy that involves the Bischler-Napieralski cyclization. The substrate for the condensation to the tetrahydroisoquinoline system, i.e., a functionalized β-arylethyl amine, was obtained through an original double reduction of nitroalkene. The synthetic strategy can be directed to the construction of highly substituted and functionalized 1,2,3,4-tetrahydroisoquinolines.
Collapse
|
25
|
Crystal Structure of the Human 20S Proteasome in Complex with Carfilzomib. Structure 2015; 23:418-24. [DOI: 10.1016/j.str.2014.11.017] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/05/2014] [Accepted: 11/13/2014] [Indexed: 11/21/2022]
|
26
|
Abstract
This chapter presents two methods for assessment of proteasome function. The first is a modification of the standard fluorogenic peptide cleavage assay which takes into account the effect of ATP on proteasome activity. This method is described in both its macro and high throughput micro-assay forms. The second is the Proteasome Constitutive Immuno-Subunit (active site) ELISA or ProCISE method. ProCISE is a modification of active site directed probe analysis and allows for convenient differentiation between active constitutive and immuno-subunits. While the utility of measuring proteasome activity and its relationship to cytokine action and inflammation are clear, the assessment and interpretation is not always straightforward. Therefore, we also discuss the pitfalls of the standard fluorogenic assay, particularly in the interpretation of results obtained, and the advantages of the newer, ProCISE assay.
Collapse
Affiliation(s)
- Christopher J Kirk
- Onyx Pharmaceuticals, 249 Grand Avenue South, San Francisco, CA, 94080, USA
| | | | | |
Collapse
|
27
|
Paniagua Soriano G, De Bruin G, Overkleeft HS, Florea BI. Toward understanding induction of oxidative stress and apoptosis by proteasome inhibitors. Antioxid Redox Signal 2014; 21:2419-43. [PMID: 24437477 DOI: 10.1089/ars.2013.5794] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Proteasome inhibitors (PIs) are used in the clinic for the treatment of hematopoietic malignancies. PI inhibitors induce endoplasmatic reticulum (ER) stress and oxidative stress, disruption of signaling pathways, mitochondrial dysfunction, and, eventually, cell death by apoptosis. PIs designated as clinical candidates include natural product derivatives and compounds developed by rational design and feature a wide diversity of structural elements. The vast amount of literature on this topic underscores PIs significance in driving basic research alongside therapeutic benefit. RECENT ADVANCES Research in recent years has brought an in-depth insight into the molecular mechanisms of PI-induced apoptosis. However, there are some paradoxes and controversies in the literature. In this review, the advances and uncertainties, in particular on the time course events that make cells commit to apoptosis, are discussed. In addition, some mechanisms of evolved PI resistance are presented, and speculations on the difference in sensitivity between cell or tumor types are brought forward. The review concludes by giving an outlook of recent methods that may be employed to describe the system biology of how PIs impact cell survival decisions. CRITICAL ISSUES The biology of ER stress, reactive oxygen species (ROS) production, and apoptosis as induced by PIs is not well understood. Absorbed by the strong focus on PIs, one might overlook the importance of proteasome activity activators or modulators and the study of enzymatic pathways that lie up- or downstream from the proteasome function. FUTURE DIRECTIONS An increased understanding of the systems biology at mRNA and protein levels and the kinetics behind the interaction between PIs and cells is imperative. The design and synthesis of subunit specific inhibitors for each of the seven known proteasome activities and for the enzymes associated to proteasomes will aid in unraveling biology of the ubiquitin-proteasome system in relation to ER stress, ROS production, and apoptosis and will generate leads for therapeutic intervention.
Collapse
Affiliation(s)
- Guillem Paniagua Soriano
- Gorlaeus Laboratories, Leiden Institute of Chemistry and Netherlands Proteomics Centre , Leiden, The Netherlands
| | | | | | | |
Collapse
|
28
|
Dubiella C, Cui H, Gersch M, Brouwer AJ, Sieber SA, Krüger A, Liskamp RMJ, Groll M. Selective Inhibition of the Immunoproteasome by Ligand-Induced Crosslinking of the Active Site. Angew Chem Int Ed Engl 2014; 53:11969-73. [DOI: 10.1002/anie.201406964] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Indexed: 12/27/2022]
|
29
|
Dubiella C, Cui H, Gersch M, Brouwer AJ, Sieber SA, Krüger A, Liskamp RMJ, Groll M. Selektive Inhibition des Immunoproteasoms durch ligandeninduzierte Vernetzung des katalytischen Zentrums. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201406964] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
30
|
Kisselev AF, Groettrup M. Subunit specific inhibitors of proteasomes and their potential for immunomodulation. Curr Opin Chem Biol 2014; 23:16-22. [PMID: 25217863 DOI: 10.1016/j.cbpa.2014.08.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/15/2014] [Accepted: 08/22/2014] [Indexed: 11/20/2022]
Abstract
Specialized variants of the constitutive 20S proteasome in the immune system like the immunoproteasomes and the thymoproteasome contain active site-bearing subunits which differ in their cleavage priorities and substrate binding pockets. The immunoproteasome plays a crucial role in antigen processing and for the differentiation of pro-inflammatory T helper cells which are involved in the pathogenesis of autoimmunity. Selective inhibitors of the immunoproteasome and constitutive proteasome have recently been generated which interfere with the development and progression of autoimmune diseases. Here we describe these inhibitors and their therapeutic potential as predicted from preclinical models.
Collapse
Affiliation(s)
- Alexei F Kisselev
- Department of Pharmacology & Toxicology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH 03756, USA.
| | - Marcus Groettrup
- Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany; Biotechnology Institute Thurgau (BITg) at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland.
| |
Collapse
|
31
|
Li H, van der Linden WA, Verdoes M, Florea BI, McAllister FE, Govindaswamy K, Elias JE, Bhanot P, Overkleeft HS, Bogyo M. Assessing subunit dependency of the Plasmodium proteasome using small molecule inhibitors and active site probes. ACS Chem Biol 2014; 9:1869-76. [PMID: 24918547 PMCID: PMC4136710 DOI: 10.1021/cb5001263] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
The ubiquitin-proteasome system (UPS)
is a potential pathway for
therapeutic intervention for pathogens such as Plasmodium, the causative agent of malaria. However, due to the essential nature
of this proteolytic pathway, proteasome inhibitors must avoid inhibition
of the host enzyme complex to prevent toxic side effects. The Plasmodium proteasome is poorly characterized, making rational
design of inhibitors that induce selective parasite killing difficult.
In this study, we developed a chemical probe that labels all catalytic
sites of the Plasmodium proteasome. Using this probe,
we identified several subunit selective small molecule inhibitors
of the parasite enzyme complex. Treatment with an inhibitor that is
specific for the β5 subunit during blood stage schizogony led
to a dramatic decrease in parasite replication while short-term inhibition
of the β2 subunit did not affect viability. Interestingly, coinhibition
of both the β2 and β5 catalytic subunits resulted in enhanced
parasite killing at all stages of the blood stage life cycle and reduced
parasite levels in vivo to barely detectable levels.
Parasite killing was achieved with overall low host toxicity, something
that has not been possible with existing proteasome inhibitors. Our
results highlight differences in the subunit dependency of the parasite
and human proteasome, thus providing a strategy for development of
potent antimalarial drugs with overall low host toxicity.
Collapse
Affiliation(s)
| | | | | | - Bogdan I. Florea
- Leiden Institute of Chemistry and Netherlands Proteomics Centre, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | | | - Kavitha Govindaswamy
- Microbiology
and Molecular Genetics, Rutgers—New Jersey Medical School, 225 Warren Street E340B, Newark, New Jersey 07103, United States
| | | | - Purnima Bhanot
- Microbiology
and Molecular Genetics, Rutgers—New Jersey Medical School, 225 Warren Street E340B, Newark, New Jersey 07103, United States
| | - Herman S. Overkleeft
- Leiden Institute of Chemistry and Netherlands Proteomics Centre, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | | |
Collapse
|
32
|
Micale N, Schirmeister T, Ettari R, Cinellu MA, Maiore L, Serratrice M, Gabbiani C, Massai L, Messori L. Selected cytotoxic gold compounds cause significant inhibition of 20S proteasome catalytic activities. J Inorg Biochem 2014; 141:79-82. [PMID: 25217719 DOI: 10.1016/j.jinorgbio.2014.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/31/2014] [Accepted: 08/01/2014] [Indexed: 01/01/2023]
Abstract
Six structurally diverse cytotoxic gold compounds are reported to cause profound and differential inhibition of the three main catalytic activities of purified 20S proteasome whilst auranofin, an established gold(I) drug in clinical use, is nearly ineffective. In particular, the gold(I) complex [(pbiH)Au(PPh3)]PF6, turns out to be the most potent inhibitor of all three enzyme activities with sub-micromolar IC50 values. The present results further support the view that proteasome inhibition may play a major--yet not exclusive--role in the cytotoxic actions of gold based anticancer agents.
Collapse
Affiliation(s)
- Nicola Micale
- Department of Drug Sciences and Health Products, University of Messina, Viale Annunziata, 98168 Messina, Italy.
| | - Tanja Schirmeister
- Institute of Pharmacy and Biochemistry, University of Mainz, Staudinger Weg 5, D-55099 Mainz, Germany
| | - Roberta Ettari
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20122 Milan, Italy
| | - Maria A Cinellu
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Laura Maiore
- Department of Chemical and Geological Sciences, University of Cagliari, S.S. 554, 09042 Monserrato, CA, Italy
| | - Maria Serratrice
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Chiara Gabbiani
- Department of Chemistry and Industrial Chemistry, via Risorgimento 35, 56126 Pisa, Italy
| | - Lara Massai
- Laboratory of "Metals in Medicine" (METMED), Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| | - Luigi Messori
- Laboratory of "Metals in Medicine" (METMED), Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy.
| |
Collapse
|
33
|
de Bruin G, Huber EM, Xin BT, van Rooden EJ, Al-Ayed K, Kim KB, Kisselev AF, Driessen C, van der Stelt M, van der Marel GA, Groll M, Overkleeft HS. Structure-Based Design of β1i or β5i Specific Inhibitors of Human Immunoproteasomes. J Med Chem 2014; 57:6197-209. [DOI: 10.1021/jm500716s] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Gerjan de Bruin
- Gorlaeus
Laboratories, Leiden Institute of Chemistry and Netherlands Proteomics Centre, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Eva M. Huber
- Center
for Integrated Protein Science at the Department Chemie, Lehrstuhl
für Biochemie, Technische Unversität München, 85748 Garching, Germany
| | - Bo-Tao Xin
- Gorlaeus
Laboratories, Leiden Institute of Chemistry and Netherlands Proteomics Centre, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Eva J. van Rooden
- Gorlaeus
Laboratories, Leiden Institute of Chemistry and Netherlands Proteomics Centre, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Karol Al-Ayed
- Gorlaeus
Laboratories, Leiden Institute of Chemistry and Netherlands Proteomics Centre, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Kyung-Bo Kim
- Department
of Pharmaceutical Science, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Alexei F. Kisselev
- Department
of Pharmacology and Toxicology and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, 1 Medical Centre Drive HB7936, Lebanon, New Hampshire 03756, United States
| | - Christoph Driessen
- Department
of Hematology and Oncology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - Mario van der Stelt
- Gorlaeus
Laboratories, Leiden Institute of Chemistry and Netherlands Proteomics Centre, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Gijsbert A. van der Marel
- Gorlaeus
Laboratories, Leiden Institute of Chemistry and Netherlands Proteomics Centre, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Michael Groll
- Center
for Integrated Protein Science at the Department Chemie, Lehrstuhl
für Biochemie, Technische Unversität München, 85748 Garching, Germany
| | - Herman S. Overkleeft
- Gorlaeus
Laboratories, Leiden Institute of Chemistry and Netherlands Proteomics Centre, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
34
|
Pautasso C, Troia R, Genuardi M, Palumbo A. Pharmacophore modeling technique applied for the discovery of proteasome inhibitors. Expert Opin Drug Discov 2014; 9:931-43. [PMID: 24877566 DOI: 10.1517/17460441.2014.923838] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION The 26S proteasome has many important roles in the biological functions of the cells, and proteasome inhibitors have multiple and complex activities on cells. These compounds can be natural or synthesized. Most synthetic derivatives have been rationally designed, synthesized and optimized to obtain the best selectivity and increase the activity. The design of chemical entities with desired molecular identification, which plays an important role in biological systems, is provided by pharmacophore modeling. Indeed, pharmacophore models can be established either in a ligand-based manner or in a receptor-based manner. AREAS COVERED The authors discuss the application of pharmacophore modeling techniques to proteasome inhibitors development. Furthermore, the article reviews the classification of the currently discovered proteasome inhibitors where the principal mechanism of action and clinical application are represented. EXPERT OPINION In the era of new drug development, database of compounds should be thoroughly evaluated with a combination of methods that consider both pharmacophore- and ligand-based virtual screening. The concept of pharmacophore helps to discover new active compounds and to evaluate their activity. The nature of proteasome inhibitor pharmacophore affects the secondary active-site specificity; indeed, increasing specificity decreases the cytotoxicity of the proteasome inhibitors. It is hypothesized that the balanced simultaneous modulation of a few druggable targets may have superior efficacy and fewer side effects than single-target or combination therapies for the treatment of human cancers. The discovery of new compounds should aim to find more active compounds that improve the compliance of patients.
Collapse
Affiliation(s)
- Chiara Pautasso
- University of Torino, Myeloma Unit, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Division of Hematology , Torino , Italy ;
| | | | | | | |
Collapse
|
35
|
Miller Z, Ao L, Kim KB, Lee W. Inhibitors of the immunoproteasome: current status and future directions. Curr Pharm Des 2014. [PMID: 23181576 DOI: 10.2174/1381612811319220018] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ubiquitin-proteasome system (UPS) plays a vital role in maintaining protein homeostasis and regulating numerous cellular processes. The proteasome, a multi-protease complex, is the key component of the UPS and has been validated as a therapeutic target by the FDA's approval of bortezomib and carfilzomib. These proteasome inhibitor drugs have substantially improved outcomes in patients with hematological malignancies and are currently being investigated for other types of cancer as well as several other diseases. These approved proteasome inhibitors target the catalytic activity of both the constitutive proteasome and the immunoproteasome indiscriminately, and their inhibitory effects on the constitutive proteasome in normal cells are believed to contribute to unwanted side effects. In addition, selective immunoproteasome inhibition has been proposed to have unique effects on other diseases, including those involving aberrant immune function. Initially recognized for its role in the adaptive immune response, the immunoproteasome is often upregulated in disease states such as inflammatory diseases and cancer, suggesting functions beyond antigen presentation. In an effort to explore the immunoproteasome as a potential therapeutic target in these diseases, the development of immunoproteasome-specific inhibitors has become the focus of recent studies. Owing to considerable efforts by both academic and industry groups, immunoproteasome-selective inhibitors have now been identified and tested against several disease models. These inhibitors also provide a valuable set of chemical tools for investigating the biological function of the immunoproteasome. In this review, we will focus on the recent efforts towards the development of immunoproteasome-selective inhibitors.
Collapse
Affiliation(s)
- Zachary Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone, Lexington, Kentucky 40536-0596, USA
| | | | | | | |
Collapse
|
36
|
Cell-line-specific high background in the Proteasome-Glo assay of proteasome trypsin-like activity. Anal Biochem 2014; 451:1-3. [DOI: 10.1016/j.ab.2014.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/14/2014] [Accepted: 01/19/2014] [Indexed: 10/25/2022]
|
37
|
Abstract
Over the years, the proteasome has been extensively investigated due to its crucial roles in many important signaling pathways and its implications in diseases. Two proteasome inhibitors--bortezomib and carfilzomib--have received FDA approval for the treatment of multiple myeloma, thereby validating the proteasome as a chemotherapeutic target. As a result, further research efforts have been focused on dissecting the complex biology of the proteasome to gain the insight required for developing next-generation proteasome inhibitors. It is clear that chemical probes have made significant contributions to these efforts, mostly by functioning as inhibitors that selectively block the catalytic activity of proteasomes. Analogues of these inhibitors are now providing additional tools for visualization of catalytically active proteasome subunits, several of which allow real-time monitoring of proteasome activity in living cells as well as in in vivo settings. These imaging probes will provide powerful tools for assessing the efficacy of proteasome inhibitors in clinical settings. In this review, we will focus on the recent efforts towards developing imaging probes of proteasomes, including the latest developments in immunoproteasome-selective imaging probes.
Collapse
|
38
|
Micale N, Scarbaci K, Troiano V, Ettari R, Grasso S, Zappalà M. Peptide-Based Proteasome Inhibitors in Anticancer Drug Design. Med Res Rev 2014; 34:1001-69. [DOI: 10.1002/med.21312] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Nicola Micale
- Dipartimento di Scienze del Farmaco e dei Prodotti per la Salute; Università degli Studi di Messina; Viale Annunziata 98168 Messina Italy
| | - Kety Scarbaci
- Dipartimento di Scienze del Farmaco e dei Prodotti per la Salute; Università degli Studi di Messina; Viale Annunziata 98168 Messina Italy
| | - Valeria Troiano
- Dipartimento di Scienze del Farmaco e dei Prodotti per la Salute; Università degli Studi di Messina; Viale Annunziata 98168 Messina Italy
| | - Roberta Ettari
- Dipartimento di Scienze Farmaceutiche; Università degli Studi di Milano; Via Mangiagalli 25 20133 Milano Italy
| | - Silvana Grasso
- Dipartimento di Scienze del Farmaco e dei Prodotti per la Salute; Università degli Studi di Messina; Viale Annunziata 98168 Messina Italy
| | - Maria Zappalà
- Dipartimento di Scienze del Farmaco e dei Prodotti per la Salute; Università degli Studi di Messina; Viale Annunziata 98168 Messina Italy
| |
Collapse
|
39
|
Desvergne A, Genin E, Maréchal X, Gallastegui N, Dufau L, Richy N, Groll M, Vidal J, Reboud-Ravaux M. Dimerized Linear Mimics of a Natural Cyclopeptide (TMC-95A) Are Potent Noncovalent Inhibitors of the Eukaryotic 20S Proteasome. J Med Chem 2013; 56:3367-78. [DOI: 10.1021/jm4002007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Audrey Desvergne
- Enzymologie
Moléculaire
et Fonctionnelle, UR4, University Paris 6, Pierre et Marie Curie, UPMC-Sorbonne Universités, Case 256, 7 Quai
Saint Bernard, 75252 Paris Cedex 05, France
| | - Emilie Genin
- Chimie et Photonique Moléculaires, Université de Rennes 1, CNRS-UMR 6510, Bâtiment
10A, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Xavier Maréchal
- Enzymologie
Moléculaire
et Fonctionnelle, UR4, University Paris 6, Pierre et Marie Curie, UPMC-Sorbonne Universités, Case 256, 7 Quai
Saint Bernard, 75252 Paris Cedex 05, France
| | - Nerea Gallastegui
- Center for Integrated Protein
Science, Department Chemie Lehrstuhl für Biochemie, Technische Universität München, Lichetenbergstrasse
4, 85747 Garching, Germany
| | - Laure Dufau
- Enzymologie
Moléculaire
et Fonctionnelle, UR4, University Paris 6, Pierre et Marie Curie, UPMC-Sorbonne Universités, Case 256, 7 Quai
Saint Bernard, 75252 Paris Cedex 05, France
| | - Nicolas Richy
- Chimie et Photonique Moléculaires, Université de Rennes 1, CNRS-UMR 6510, Bâtiment
10A, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Michael Groll
- Center for Integrated Protein
Science, Department Chemie Lehrstuhl für Biochemie, Technische Universität München, Lichetenbergstrasse
4, 85747 Garching, Germany
| | - Joëlle Vidal
- Chimie et Photonique Moléculaires, Université de Rennes 1, CNRS-UMR 6510, Bâtiment
10A, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Michèle Reboud-Ravaux
- Enzymologie
Moléculaire
et Fonctionnelle, UR4, University Paris 6, Pierre et Marie Curie, UPMC-Sorbonne Universités, Case 256, 7 Quai
Saint Bernard, 75252 Paris Cedex 05, France
| |
Collapse
|
40
|
Pevzner Y, Metcalf R, Kantor M, Sagaro D, Daniel K. Recent advances in proteasome inhibitor discovery. Expert Opin Drug Discov 2013; 8:537-68. [DOI: 10.1517/17460441.2013.780020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
41
|
Shabaneh TB, Downey SL, Goddard AL, Screen M, Lucas MM, Eastman A, Kisselev AF. Molecular basis of differential sensitivity of myeloma cells to clinically relevant bolus treatment with bortezomib. PLoS One 2013; 8:e56132. [PMID: 23460792 PMCID: PMC3584083 DOI: 10.1371/journal.pone.0056132] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 01/05/2013] [Indexed: 01/07/2023] Open
Abstract
The proteasome inhibitor bortezomib (Velcade) is prescribed for the treatment of multiple myeloma. Clinically achievable concentrations of bortezomib cause less than 85% inhibition of the chymotrypsin-like activity of the proteasome, but little attention has been paid as to whether in vitro studies are representative of this level of inhibition. Patients receive bortezomib as an intravenous or subcutaneous bolus injection, resulting in maximum proteasome inhibition within one hour followed by a gradual recovery of activity. In contrast, most in vitro studies use continuous treatment so that activity never recovers. Replacing continuous treatment with 1 h-pulse treatment increases differences in sensitivity in a panel of 7 multiple myeloma cell lines from 5.3-fold to 18-fold, and reveals that the more sensitive cell lines undergo apoptosis at faster rates. Clinically achievable inhibition of active sites was sufficient to induce cytotoxicity only in one cell line. At concentrations of bortezomib that produced similar inhibition of peptidase activities a different extent of inhibition of protein degradation was observed, providing an explanation for the differential sensitivity. The amount of protein degraded per number of active proteasomes correlated with sensitivity to bortezomib. Thus, (i) in vitro studies of proteasome inhibitors should be conducted at pharmacologically achievable concentrations and duration of treatment; (ii) a similar level of inhibition of active sites results in a different extent of inhibition of protein breakdown in different cell lines, and hence a difference in sensitivity.
Collapse
Affiliation(s)
- Tamer B. Shabaneh
- Norris Cotton Cancer Center, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
- Department of Pharmacology and Toxicology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Sondra L. Downey
- Norris Cotton Cancer Center, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
- Department of Pharmacology and Toxicology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Ayrton L. Goddard
- Norris Cotton Cancer Center, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
- Department of Pharmacology and Toxicology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
- Department of Biology & Biochemistry, University of Bath, Bath, United Kingdom
| | - Michael Screen
- Norris Cotton Cancer Center, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
- Department of Pharmacology and Toxicology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
- Department of Biology & Biochemistry, University of Bath, Bath, United Kingdom
| | - Marcella M. Lucas
- Norris Cotton Cancer Center, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
- Department of Pharmacology and Toxicology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
- Department of Biology & Biochemistry, University of Bath, Bath, United Kingdom
| | - Alan Eastman
- Norris Cotton Cancer Center, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
- Department of Pharmacology and Toxicology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Alexei F. Kisselev
- Norris Cotton Cancer Center, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
- Department of Pharmacology and Toxicology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
42
|
Neilsen PM, Pehere AD, Pishas KI, Callen DF, Abell AD. New 26S proteasome inhibitors with high selectivity for chymotrypsin-like activity and p53-dependent cytotoxicity. ACS Chem Biol 2013. [PMID: 23190346 DOI: 10.1021/cb300549d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The 26S proteasome has emerged over the past decade as an attractive therapeutic target in the treatment of cancers. Here, we report new tripeptide aldehydes that are highly specific for the chymotrypsin-like catalytic activity of the proteasome. These new specific proteasome inhibitors demonstrated high potency and specificity for sarcoma cells, with therapeutic windows superior to those observed for benchmark proteasome inhibitors, MG132 and Bortezomib. Constraining the peptide backbone into the β-strand geometry, known to favor binding to a protease, resulted in decreased activity in vitro and reduced anticancer activity. Using these new proteasome inhibitors, we show that the presence of an intact p53 pathway significantly enhances cytotoxic activity, thus suggesting that this tumor suppressor is a critical downstream mediator of cell death following proteasomal inhibition.
Collapse
Affiliation(s)
- Paul M. Neilsen
- Centre
for Personalised Cancer Medicine, Discipline of Medicine,
and ‡School of Chemistry
and Physics, The University of Adelaide, North Terrace,
Adelaide SA 5005, Australia
| | - Ashok D. Pehere
- Centre
for Personalised Cancer Medicine, Discipline of Medicine,
and ‡School of Chemistry
and Physics, The University of Adelaide, North Terrace,
Adelaide SA 5005, Australia
| | - Kathleen I. Pishas
- Centre
for Personalised Cancer Medicine, Discipline of Medicine,
and ‡School of Chemistry
and Physics, The University of Adelaide, North Terrace,
Adelaide SA 5005, Australia
| | - David F. Callen
- Centre
for Personalised Cancer Medicine, Discipline of Medicine,
and ‡School of Chemistry
and Physics, The University of Adelaide, North Terrace,
Adelaide SA 5005, Australia
| | - Andrew D. Abell
- Centre
for Personalised Cancer Medicine, Discipline of Medicine,
and ‡School of Chemistry
and Physics, The University of Adelaide, North Terrace,
Adelaide SA 5005, Australia
| |
Collapse
|
43
|
Geurink PP, van der Linden WA, Mirabella AC, Gallastegui N, de Bruin G, Blom AEM, Voges MJ, Mock ED, Florea BI, van der Marel GA, Driessen C, van der Stelt M, Groll M, Overkleeft HS, Kisselev AF. Incorporation of non-natural amino acids improves cell permeability and potency of specific inhibitors of proteasome trypsin-like sites. J Med Chem 2013; 56:1262-75. [PMID: 23320547 DOI: 10.1021/jm3016987] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proteasomes degrade the majority of proteins in mammalian cells by a concerted action of three distinct pairs of active sites. The chymotrypsin-like sites are targets of antimyeloma agents bortezomib and carfilzomib. Inhibitors of the trypsin-like site sensitize multiple myeloma cells to these agents. Here we describe systematic effort to develop inhibitors with improved potency and cell permeability, yielding azido-Phe-Leu-Leu-4-aminomethyl-Phe-methyl vinyl sulfone (4a, LU-102), and a fluorescent activity-based probe for this site. X-ray structures of 4a and related inhibitors complexed with yeast proteasomes revealed the structural basis for specificity. Nontoxic to myeloma cells when used as a single agent, 4a sensitized them to bortezomib and carfilzomib. This sensitizing effect was much stronger than the synergistic effects of histone acetylase inhibitors or additive effects of doxorubicin and dexamethasone, raising the possibility that combinations of inhibitors of the trypsin-like site with bortezomib or carfilzomib would have stronger antineoplastic activity than combinations currently used clinically.
Collapse
Affiliation(s)
- Paul P Geurink
- Gorlaeus Laboratories, Leiden Institute of Chemistry and Netherlands Proteomics Centre, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Stein ML, Groll M. Applied techniques for mining natural proteasome inhibitors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:26-38. [PMID: 23360979 DOI: 10.1016/j.bbamcr.2013.01.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 01/14/2013] [Indexed: 11/17/2022]
Abstract
In eukaryotic cells, the ubiquitin-proteasome-system (UPS) is responsible for the non-lysosomal degradation of proteins and plays a pivotal role in such vital processes as protein homeostasis, antigen processing or cell proliferation. Therefore, it is an attractive drug target with various applications in cancer and immunosuppressive therapies. Being an evolutionary well conserved pathway, many pathogenic bacteria have developed small molecules, which modulate the activity of their hosts' UPS components. Such natural products are, due to their stepwise optimization over the millennia, highly potent in terms of their binding mechanisms, their bioavailability and selectivity. Generally, this makes bioactive natural products an ideal starting point for the development of novel drugs. Since four out of the ten best seller drugs are natural product derivatives, research in this field is still of unfathomable value for the pharmaceutical industry. The currently most prominent example for the successful exploitation of a natural compound in the UPS field is carfilzomib (Kyprolis®), which represents the second FDA approved drug targeting the proteasome after the admission of the blockbuster bortezomib (Velcade®) in 2003. On the other hand side of the spectrum, ONX 0914, which is derived from the same natural product as carfilzomib, has been shown to selectively inhibit the immune response related branch of the pathway. To date, there exists a huge potential of UPS inhibitors with regard to many diseases. Both approved drugs against the proteasome show severe side effects, adaptive resistances and limited applicability, thus the development of novel compounds with enhanced properties is a main objective of active research. In this review, we describe the techniques, which can be utilized for the discovery of novel natural inhibitors, which in particular block the 20S proteasomal activity. In addition, we will illustrate the successful implementation of a recently published methodology with the example of a highly potent but so far unexploited group of proteasome inhibitors, the syrbactins, and their biological functions. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.
Collapse
Affiliation(s)
- Martin L Stein
- Center for Integrated Protein Science at the Department Chemie, Lehrstuhl für Biochemie, Technische Unversität München, Lichtenbergstraße 4, 85748 Garching, Germany.
| | | |
Collapse
|
45
|
One-shot NMR analysis of microbial secretions identifies highly potent proteasome inhibitor. Proc Natl Acad Sci U S A 2012; 109:18367-71. [PMID: 23091006 DOI: 10.1073/pnas.1211423109] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Natural products represent valuable lead structures for drug discovery. However, for most bioactive compounds no cellular target is yet identified and many substances predicted from genome analysis are inaccessible due to their life stage-dependent biosynthesis, which is not reflected in common isolation procedures. In response to these issues, an NMR-based and target-directed protease assay for inhibitor detection of the proteasome was developed. The methodology is suitable for one-shot identification of inhibitors in conglomerates and crude culture broths. The technique was applied for analysis of the different life stages of the bacterium Photorhabdus luminescens, which resulted in the isolation and characterization of cepafungin I (CepI), the strongest proteasome inhibitor described to date. Its biosynthesis is strictly regulated and solely induced by the specific environmental conditions determined by our methodology. The transferability of the developed technique to other drug targets may disclose an abundance of novel compounds applicable for drug development.
Collapse
|
46
|
Huber EM, Groll M. Inhibitors for the immuno- and constitutive proteasome: current and future trends in drug development. Angew Chem Int Ed Engl 2012; 51:8708-20. [PMID: 22711561 DOI: 10.1002/anie.201201616] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Indexed: 01/30/2023]
Abstract
Proteolytic degradation is an essential cellular process which is primarily carried out by the 20S proteasome core particle (CP), a protease of 720 kDa and 28 individual subunits. As a result of its central functional role, the proteasome represents an attractive drug target that has been extensively investigated during the last decade and validated by the approval of bortezomib by the US Food and Drug Administration (FDA). Currently, several optimized second-generation proteasome inhibitors are being explored as anticancer drugs in clinical trials, and most of them target both constitutive proteasomes (cCPs) and immunoproteasomes (iCPs). However, selective inhibition of the iCPs, a distinct class of proteasomes predominantly expressed in immune cells, appears to be a promising therapeutic rationale for the treatment of autoimmune disorders. Although a few selective agents have already been identified, the recently determined crystal structure of the iCP will further promote the development and optimization of iCP-selective compounds.
Collapse
Affiliation(s)
- Eva Maria Huber
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany.
| | | |
Collapse
|
47
|
Huber EM, Groll M. Inhibitoren für das konstitutive Proteasom und das Immunoproteasom: aktuelle und zukünftige Tendenzen in der Medikamentenentwicklung. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201201616] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
48
|
Kisselev AF, van der Linden WA, Overkleeft HS. Proteasome inhibitors: an expanding army attacking a unique target. ACTA ACUST UNITED AC 2012; 19:99-115. [PMID: 22284358 DOI: 10.1016/j.chembiol.2012.01.003] [Citation(s) in RCA: 427] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/09/2012] [Accepted: 01/09/2012] [Indexed: 12/30/2022]
Abstract
Proteasomes are large, multisubunit proteolytic complexes presenting multiple targets for therapeutic intervention. The 26S proteasome consists of a 20S proteolytic core and one or two 19S regulatory particles. The 20S core contains three types of active sites. Many structurally diverse inhibitors of these active sites, both natural product and synthetic, have been discovered in the last two decades. One, bortezomib, is used clinically for treatment of multiple myeloma, mantle cell lymphoma, and acute allograft rejection. Five more recently developed proteasome inhibitors are in trials for treatment of myeloma and other cancers. Proteasome inhibitors also have activity in animal models of autoimmune and inflammatory diseases, reperfusion injury, promote bone and hair growth, and can potentially be used as anti-infectives. In addition, inhibitors of ATPases and deubiquitinases of 19S regulatory particles have been discovered in the last decade.
Collapse
Affiliation(s)
- Alexei F Kisselev
- Department of Pharmacology and Toxicology, Norris Cotton Cancer Center, Dartmouth Medical School, Lebanon, NH 03756, USA.
| | | | | |
Collapse
|
49
|
van der Linden WA, Willems LI, Shabaneh TB, Li N, Ruben M, Florea BI, van der Marel GA, Kaiser M, Kisselev AF, Overkleeft HS. Discovery of a potent and highly β1 specific proteasome inhibitor from a focused library of urea-containing peptide vinyl sulfones and peptide epoxyketones. Org Biomol Chem 2011; 10:181-94. [PMID: 22105930 DOI: 10.1039/c1ob06554h] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Syringolins, a class of natural products, potently and selectively inhibit the proteasome and show promising antitumour activity. To gain insight in the mode of action of syringolins, the ureido structural element present in syringolins is incorporated in oligopeptide vinyl sulfones and peptide epoxyketones yielding a focused library of potent new proteasome inhibitors. The distance of the ureido linkage with respect to the electrophilic trap strongly influences subunit selectivity within the proteasome. Compounds 13 and 15 are β5 selective and their potency exceeds that of syringolin A. In contrast, 5 may well be the most potent β1 selective compound active in living cells reported to date.
Collapse
|
50
|
Gräwert MA, Groll M. Exploiting nature's rich source of proteasome inhibitors as starting points in drug development. Chem Commun (Camb) 2011; 48:1364-78. [PMID: 22039589 DOI: 10.1039/c1cc15273d] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cancer is the No. 2 cause of death in the Western world and one of the most expensive diseases to treat. Thus, it is not surprising, that every major pharmaceutical and biotechnology company has a blockbuster oncology product. In 2003, Millennium Pharmaceuticals entered the race with Velcade®, a first-in-class proteasome inhibitor that has been approved by the FDA for treatment of multiple myeloma and its sales have passed the billion dollar mark. Velcade®'s extremely toxic boronic acid pharmacophore, however, contributes to a number of severe side effects. Nevertheless, the launching of this product has validated the proteasome as a target in fighting cancer and further proteasome inhibitors have entered the market as anti-cancer drugs. Additionally, proteasome inhibitors have found application as crop protection agents, anti-parasitics, immunosuppressives, as well as in new therapies for muscular dystrophies and inflammation. Many of these compounds are based on microbial metabolites. In this review, we emphasize the important role of the structural elucidation of the various unique binding mechanisms of these compounds that have been optimized throughout evolution to target the proteasome. Based on this knowledge, medicinal chemists have further optimized these natural products, resulting in potential drugs with reduced off-target activities.
Collapse
Affiliation(s)
- Melissa Ann Gräwert
- Center for Integrated Protein Science at the Department Chemie, Lehrstuhl für Biochemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany.
| | | |
Collapse
|