1
|
Donta MS, Srivastava Y, Di Mauro CM, Paulucci-Holthauzen A, Waxham MN, McCrea PD. p120-catenin subfamily members have distinct as well as shared effects on dendrite morphology during neuron development in vitro. Front Cell Neurosci 2023; 17:1151249. [PMID: 37082208 PMCID: PMC10112520 DOI: 10.3389/fncel.2023.1151249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/21/2023] [Indexed: 04/22/2023] Open
Abstract
Dendritic arborization is essential for proper neuronal connectivity and function. Conversely, abnormal dendrite morphology is associated with several neurological pathologies like Alzheimer's disease and schizophrenia. Among major intrinsic mechanisms that determine the extent of the dendritic arbor is cytoskeletal remodeling. Here, we characterize and compare the impact of the four proteins involved in cytoskeletal remodeling-vertebrate members of the p120-catenin subfamily-on neuronal dendrite morphology. In relation to each of their own distributions, we find that p120-catenin and delta-catenin are expressed at relatively higher proportions in growth cones compared to ARVCF-catenin and p0071-catenin; ARVCF-catenin is expressed at relatively high proportions in the nucleus; and all catenins are expressed in dendritic processes and the soma. Through altering the expression of each p120-subfamily catenin in neurons, we find that exogenous expression of either p120-catenin or delta-catenin correlates with increased dendritic length and branching, whereas their respective depletion decreases dendritic length and branching. While increasing ARVCF-catenin expression also increases dendritic length and branching, decreasing expression has no grossly observable morphological effect. Finally, increasing p0071-catenin expression increases dendritic branching, but not length, while decreasing expression decreases dendritic length and branching. These distinct localization patterns and morphological effects during neuron development suggest that these catenins have both shared and distinct roles in the context of dendrite morphogenesis.
Collapse
Affiliation(s)
- Maxsam S. Donta
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Program in Genetics and Epigenetics, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yogesh Srivastava
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Christina M. Di Mauro
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | | | - M. Neal Waxham
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Program in Neuroscience, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Pierre D. McCrea
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Program in Genetics and Epigenetics, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Program in Neuroscience, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
2
|
Donta MS, Srivastava Y, McCrea PD. Delta-Catenin as a Modulator of Rho GTPases in Neurons. Front Cell Neurosci 2022; 16:939143. [PMID: 35860313 PMCID: PMC9289679 DOI: 10.3389/fncel.2022.939143] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/09/2022] [Indexed: 12/03/2022] Open
Abstract
Small Rho GTPases are molecular switches that are involved in multiple processes including regulation of the actin cytoskeleton. These GTPases are activated (turned on) and inactivated (turned off) through various upstream effector molecules to carry out many cellular functions. One such upstream modulator of small Rho GTPase activity is delta-catenin, which is a protein in the p120-catenin subfamily that is enriched in the central nervous system. Delta-catenin affects small GTPase activity to assist in the developmental formation of dendrites and dendritic spines and to maintain them once they mature. As the dendritic arbor and spine density are crucial for synapse formation and plasticity, delta-catenin's ability to modulate small Rho GTPases is necessary for proper learning and memory. Accordingly, the misregulation of delta-catenin and small Rho GTPases has been implicated in several neurological and non-neurological pathologies. While links between delta-catenin and small Rho GTPases have yet to be studied in many contexts, known associations include some cancers, Alzheimer's disease (AD), Cri-du-chat syndrome, and autism spectrum disorder (ASD). Drawing from established studies and recent discoveries, this review explores how delta-catenin modulates small Rho GTPase activity. Future studies will likely elucidate how PDZ proteins that bind delta-catenin further influence small Rho GTPases, how delta-catenin may affect small GTPase activity at adherens junctions when bound to N-cadherin, mechanisms behind delta-catenin's ability to modulate Rac1 and Cdc42, and delta-catenin's ability to modulate small Rho GTPases in the context of diseases, such as cancer and AD.
Collapse
Affiliation(s)
- Maxsam S. Donta
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center University of Texas Health Science Center Houston Graduate School of Biomedical Science, Houston, TX, United States
| | - Yogesh Srivastava
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Pierre D. McCrea
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center University of Texas Health Science Center Houston Graduate School of Biomedical Science, Houston, TX, United States
- Program in Neuroscience, The University of Texas MD Anderson Cancer Center University of Texas Health Science Center Houston Graduate School of Biomedical Science, Houston, TX, United States
| |
Collapse
|
3
|
Baumert R, Ji H, Paulucci-Holthauzen A, Wolfe A, Sagum C, Hodgson L, Arikkath J, Chen X, Bedford MT, Waxham MN, McCrea PD. Novel phospho-switch function of delta-catenin in dendrite development. J Cell Biol 2021; 219:152151. [PMID: 33007084 PMCID: PMC7534926 DOI: 10.1083/jcb.201909166] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/27/2019] [Accepted: 08/21/2020] [Indexed: 11/22/2022] Open
Abstract
In neurons, dendrites form the major sites of information receipt and integration. It is thus vital that, during development, the dendritic arbor is adequately formed to enable proper neural circuit formation and function. While several known processes shape the arbor, little is known of those that govern dendrite branching versus extension. Here, we report a new mechanism instructing dendrites to branch versus extend. In it, glutamate signaling activates mGluR5 receptors to promote Ckd5-mediated phosphorylation of the C-terminal PDZ-binding motif of delta-catenin. The phosphorylation state of this motif determines delta-catenin's ability to bind either Pdlim5 or Magi1. Whereas the delta:Pdlim5 complex enhances dendrite branching at the expense of elongation, the delta:Magi1 complex instead promotes lengthening. Our data suggest that these complexes affect dendrite development by differentially regulating the small-GTPase RhoA and actin-associated protein Cortactin. We thus reveal a "phospho-switch" within delta-catenin, subject to a glutamate-mediated signaling pathway, that assists in balancing the branching versus extension of dendrites during neural development.
Collapse
Affiliation(s)
- Ryan Baumert
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX.,Program in Neuroscience, The University of Texas Graduate School of Biomedical Science, Houston, TX
| | - Hong Ji
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Aaron Wolfe
- Computational Biology and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA
| | - Cari Sagum
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX
| | - Louis Hodgson
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY
| | | | - Xiaojiang Chen
- Computational Biology and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX.,Program in Genetics and Epigenetics, The University of Texas Graduate School of Biomedical Science, Houston, TX
| | - M Neal Waxham
- Program in Neuroscience, The University of Texas Graduate School of Biomedical Science, Houston, TX.,Department of Neurobiology and Anatomy, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX
| | - Pierre D McCrea
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX.,Program in Neuroscience, The University of Texas Graduate School of Biomedical Science, Houston, TX.,Program in Genetics and Epigenetics, The University of Texas Graduate School of Biomedical Science, Houston, TX
| |
Collapse
|
4
|
Dai W, Ryu T, Kim H, Jin YH, Cho YC, Kim K. Effects of δ-Catenin on APP by Its Interaction with Presenilin-1. Mol Cells 2019; 42:36-44. [PMID: 30622228 PMCID: PMC6354058 DOI: 10.14348/molcells.2018.0273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 11/27/2022] Open
Abstract
Alzheimer's disease (AD) is the most frequent age-related human neurological disorder. The characteristics of AD include senile plaques, neurofibrillary tangles, and loss of synapses and neurons in the brain. β-Amyloid (Aβ) peptide is the predominant proteinaceous component of senile plaques. The amyloid hypothesis states that Aβ initiates the cascade of events that result in AD. Amyloid precursor protein (APP) processing plays an important role in Aβ production, which initiates synaptic and neuronal damage. δ-Catenin is known to be bound to presenilin-1 (PS-1), which is the main component of the γ-secretase complex that regulates APP cleavage. Because PS-1 interacts with both APP and δ-catenin, it is worth studying their interactive mechanism and/or effects on each other. Our immunoprecipitation data showed that there was no physical association between δ-catenin and APP. However, we observed that δ-catenin could reduce the binding between PS-1 and APP, thus decreasing the PS-1 mediated APP processing activity. Furthermore, δ-catenin reduced PS-1-mediated stabilization of APP. The results suggest that δ-catenin can influence the APP processing and its level by interacting with PS-1, which may eventually play a protective role in the degeneration of an Alzheimer's disease patient.
Collapse
Affiliation(s)
- Weiye Dai
- College of Pharmacy and Research Institute for Drug Development, Chonnam National University, Gwangju 61186,
Korea
| | - Taeyong Ryu
- College of Pharmacy and Research Institute for Drug Development, Chonnam National University, Gwangju 61186,
Korea
| | - Hangun Kim
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon 57922,
Korea
| | - Yun Hye Jin
- College of Pharmacy and Research Institute for Drug Development, Chonnam National University, Gwangju 61186,
Korea
| | - Young-Chang Cho
- College of Pharmacy and Research Institute for Drug Development, Chonnam National University, Gwangju 61186,
Korea
| | - Kwonseop Kim
- College of Pharmacy and Research Institute for Drug Development, Chonnam National University, Gwangju 61186,
Korea
| |
Collapse
|
5
|
Yuan L, Singh D, Buescher JL, Arikkath J. A role for proteolytic regulation of δ-catenin in remodeling a subpopulation of dendritic spines in the rodent brain. J Biol Chem 2018; 293:11625-11638. [PMID: 29875160 DOI: 10.1074/jbc.ra118.001966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/02/2018] [Indexed: 01/27/2023] Open
Abstract
Neural wiring and activity are essential for proper brain function and behavioral outputs and rely on mechanisms that guide the formation, elimination, and remodeling of synapses. During development, it is therefore vital that synaptic densities and architecture are tightly regulated to allow for appropriate neural circuit formation and function. δ-Catenin, a component of the cadherin-catenin cell adhesion complex, has been demonstrated to be a critical regulator of synaptic density and function in the developing central neurons. In this study, we identified forms of δ-catenin that include only the N-terminal (DcatNT) or the C-terminal (DcatCT) regions. We found that these δ-catenin forms are differentially expressed in different regions of the male mouse brain. Our results also indicated that in rat primary cortical culture, these forms are generated in an activity-dependent manner by Ca2+-dependent and calpain-mediated cleavage of δ-catenin or in an activity-independent but lysosome-dependent manner. Functionally, loss of the domain containing the calpain-cleavage sites allowing for generation of DcatCT and DcatNT perturbed the density of a subpopulation of dendritic protrusions in rat hippocampal neurons. This subpopulation likely included protrusions that are either in transition toward becoming mature mushroom spines or in the process of being eliminated. By influencing this subpopulation of spines, proteolytic processing of δ-catenin can likely regulate the balance between mature and immature dendritic protrusions in coordination with neural activity. We conclude that by undergoing cleavage, δ-catenin differentially regulates the densities of subpopulations of dendritic spines and contributes to proper neural circuit wiring in the developing brain.
Collapse
Affiliation(s)
- Li Yuan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198; Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Dipika Singh
- Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - James L Buescher
- Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Jyothi Arikkath
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198; Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198.
| |
Collapse
|
6
|
Yuan L, Arikkath J. Functional roles of p120ctn family of proteins in central neurons. Semin Cell Dev Biol 2017; 69:70-82. [PMID: 28603076 DOI: 10.1016/j.semcdb.2017.05.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/16/2017] [Accepted: 05/30/2017] [Indexed: 02/06/2023]
Abstract
The cadherin-catenin complex in central neurons is associated with a variety of cytosolic partners, collectively called catenins. The p120ctn members are a family of catenins that are distinct from the more ubiquitously expressed α- and β-catenins. It is becoming increasingly clear that the functional roles of the p120ctn family of catenins in central neurons extend well beyond their functional roles in non-neuronal cells in partnering with cadherin to regulate adhesion. In this review, we will provide an overview of the p120ctn family in neurons and their varied functional roles in central neurons. Finally, we will examine the emerging roles of this family of proteins in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Li Yuan
- Department of Pharmacology and Experimental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE 68198, United States; Developmental Neuroscience, Munroe-Meyer Institute, Durham Research Center II, Room 3031, University of Nebraska Medical Center, 985960 Nebraska Medical Center, Omaha, NE 68198-5960, United States.
| | - Jyothi Arikkath
- Developmental Neuroscience, Munroe-Meyer Institute, Durham Research Center II, Room 3031, University of Nebraska Medical Center, 985960 Nebraska Medical Center, Omaha, NE 68198-5960, United States.
| |
Collapse
|
7
|
Abstract
β-catenin is widely regarded as the primary transducer of canonical WNT signals to the nucleus. In most vertebrates, there are eight additional catenins that are structurally related to β-catenin, and three α-catenin genes encoding actin-binding proteins that are structurally related to vinculin. Although these catenins were initially identified in association with cadherins at cell-cell junctions, more recent evidence suggests that the majority of catenins also localize to the nucleus and regulate gene expression. Moreover, the number of catenins reported to be responsive to canonical WNT signals is increasing. Here, we posit that multiple catenins form a functional network in the nucleus, possibly engaging in conserved protein-protein interactions that are currently better characterized in the context of actin-based cell junctions.
Collapse
|
8
|
He Y, Ki H, Kim H, Kim K. δ-Catenin interacts with LEF-1 and negatively regulates its transcriptional activity. Cell Biol Int 2015; 39:954-61. [PMID: 25808920 DOI: 10.1002/cbin.10465] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 03/14/2015] [Indexed: 12/14/2022]
Abstract
δ-Catenin and β-catenin belong to different subfamilies of armadillo proteins but share some common binding partners, such as E-cadherin. This is the first study that demonstrated a novel common binding partner for δ-catenin and β-catenin, lymphoid enhancer factor-1 (LEF-1). We found that the N-terminus of δ-catenin (amino acids 85-325) bound to the middle region of LEF-1 unlike β-catenin. Overexpressed δ-catenin entered the nucleus and inhibited LEF-1-mediated transcriptional activity in Bosc23 and DLD-1 cell lines. The current study provided novel insights that will provide a better understanding of the effects of δ-catenin on Wnt/LEF-1-mediated transcriptional activity.
Collapse
Affiliation(s)
- Yongfeng He
- College of Pharmacy and Research Institute for Drug Development, Chonnam National University, Gwangju, 500-757, Korea
| | - Hyunkyoung Ki
- College of Pharmacy and Research Institute for Drug Development, Chonnam National University, Gwangju, 500-757, Korea
| | - Hangun Kim
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, 540-950, Korea
| | - Kwonseop Kim
- College of Pharmacy and Research Institute for Drug Development, Chonnam National University, Gwangju, 500-757, Korea
| |
Collapse
|
9
|
Abstract
The arrival of multicellularity in evolution facilitated cell-cell signaling in conjunction with adhesion. As the ectodomains of cadherins interact with each other directly in trans (as well as in cis), spanning the plasma membrane and associating with multiple other entities, cadherins enable the transduction of "outside-in" or "inside-out" signals. We focus this review on signals that originate from the larger family of cadherins that are inwardly directed to the nucleus, and thus have roles in gene control or nuclear structure-function. The nature of cadherin complexes varies considerably depending on the type of cadherin and its context, and we will address some of these variables for classical cadherins versus other family members. Substantial but still fragmentary progress has been made in understanding the signaling mediators used by varied cadherin complexes to coordinate the state of cell-cell adhesion with gene expression. Evidence that cadherin intracellular binding partners also localize to the nucleus is a major point of interest. In some models, catenins show reduced binding to cadherin cytoplasmic tails favoring their engagement in gene control. When bound, cadherins may serve as stoichiometric competitors of nuclear signals. Cadherins also directly or indirectly affect numerous signaling pathways (e.g., Wnt, receptor tyrosine kinase, Hippo, NFκB, and JAK/STAT), enabling cell-cell contacts to touch upon multiple biological outcomes in embryonic development and tissue homeostasis.
Collapse
Affiliation(s)
- Pierre D McCrea
- Department of Genetics, University of Texas MD Anderson Cancer Center; Program in Genes & Development, Graduate School in Biomedical Sciences, Houston, Texas, USA.
| | - Meghan T Maher
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Cara J Gottardi
- Cellular and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
10
|
Zhang D, Zhang JY, Wang EH. δ-catenin promotes the malignant phenotype in breast cancer. Tumour Biol 2014; 36:569-75. [PMID: 25273174 DOI: 10.1007/s13277-014-2680-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/24/2014] [Indexed: 12/31/2022] Open
Abstract
δ-Catenin is a member of the p120 catenin family. Similar to p120ctn, δ-catenin contains nine central Armadillo repeats and binds to the juxtamembrane domain (JMD) of E-cadherin. We used immunohistochemistry to detect δ-catenin expression in breast carcinoma (128 cases), and δ-catenin mRNA and protein expression was detected by reverse transcription-polymerase chain reaction and Western blotting (45 cases). The effects of δ-catenin on the activity of small GTPases and the biological behavior of breast cancer cells were explored by pulldown, flow cytometry, methyl thiazolyl tetrazolium, and Matrigel invasion assays. The results showed that δ-catenin expression increased in breast cancer tissues and was associated with a higher degree of malignancy (invasive lobular breast cancer, high tumor-node-metastasis stage, lymph node metastasis, and C-erbB-2+) and poor prognosis. Postoperative survival was shorter in patients with δ-catenin-positive expression than in patients with negative expression. δ-Catenin may regulate Cdc42/Rac1 activity, promote proliferation and invasion of breast cancer cells, and alter cell cycle progression. We conclude that δ-catenin tends to overexpress in breast carcinoma and promotes the malignant phenotype.
Collapse
Affiliation(s)
- Di Zhang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, 110001, China
| | | | | |
Collapse
|
11
|
Lee M, Ji H, Furuta Y, Park JI, McCrea PD. p120-catenin regulates REST and CoREST, and modulates mouse embryonic stem cell differentiation. J Cell Sci 2014; 127:4037-51. [PMID: 25074806 DOI: 10.1242/jcs.151944] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Although the canonical Wnt pathway and β-catenin have been extensively studied, less is known about the role of p120-catenin (also known as δ1-catenin) in the nuclear compartment. Here, we report that p120-catenin binds and negatively regulates REST and CoREST (also known as Rcor1), a repressive transcriptional complex that has diverse developmental and pathological roles. Using mouse embryonic stem cells (mESCs), mammalian cell lines, Xenopus embryos and in vitro systems, we find that p120-catenin directly binds the REST-CoREST complex, displacing it from established gene targets to permit their transcriptional activation. Importantly, p120-catenin levels further modulate the mRNA and protein levels of Oct4 (also known as POU5F1), Nanog and Sox2, and have an impact upon the differentiation of mESCs towards neural fates. In assessing potential upstream inputs to this new p120-catenin-REST-CoREST pathway, REST gene targets were found to respond to the level of E-cadherin, with evidence suggesting that p120-catenin transduces signals between E-cadherin and the nucleus. In summary, we provide the first evidence for a direct upstream modulator and/or pathway regulating REST-CoREST, and reveal a substantial role for p120-catenin in the modulation of stem cell differentiation.
Collapse
Affiliation(s)
- Moonsup Lee
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA Program in Genes and Development, The University of Texas Graduate School of Biomedical Science-Houston, Houston, TX 77030, USA
| | - Hong Ji
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yasuhide Furuta
- Laboratory for Animal Resources and Genetic Engineering, Riken Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Jae-il Park
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas M D Anderson Cancer Center, Houston, TX 77030, USA
| | - Pierre D McCrea
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA Program in Genes and Development, The University of Texas Graduate School of Biomedical Science-Houston, Houston, TX 77030, USA
| |
Collapse
|
12
|
Dragoi AM, Swiss R, Gao B, Agaisse H. Novel strategies to enforce an epithelial phenotype in mesenchymal cells. Cancer Res 2014; 74:3659-72. [PMID: 24845104 DOI: 10.1158/0008-5472.can-13-3231] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
E-cadherin downregulation in cancer cells is associated with epithelial-to-mesenchymal transition (EMT) and metastatic prowess, but the underlying mechanisms are incompletely characterized. In this study, we probed E-cadherin expression at the plasma membrane as a functional assay to identify genes involved in E-cadherin downregulation. The assay was based on the E-cadherin-dependent invasion properties of the intracellular pathogen Listeria monocytogenes. On the basis of a functional readout, automated microscopy and computer-assisted image analysis were used to screen siRNAs targeting 7,000 human genes. The validity of the screen was supported by its definition of several known regulators of E-cadherin expression, including ZEB1, HDAC1, and MMP14. We identified three new regulators (FLASH, CASP7, and PCGF1), the silencing of which was sufficient to restore high levels of E-cadherin transcription. In addition, we identified two new regulators (FBXL5 and CAV2), the silencing of which was sufficient to increase E-cadherin expression at a posttranscriptional level. FLASH silencing regulated the expression of E-cadherin and other ZEB1-dependent genes, through posttranscriptional regulation of ZEB1, but it also regulated the expression of numerous ZEB1-independent genes with functions predicted to contribute to a restoration of the epithelial phenotype. Finally, we also report the identification of siRNA duplexes that potently restored the epithelial phenotype by mimicking the activity of known and putative microRNAs. Our findings suggest new ways to enforce epithelial phenotypes as a general strategy to treat cancer by blocking invasive and metastatic phenotypes associated with EMT.
Collapse
Affiliation(s)
- Ana-Maria Dragoi
- Authors' Affiliation: Department of Microbial Pathogenesis, Yale School of Medicine, Boyer Center for Molecular Medicine, New Haven, Connecticut
| | - Rachel Swiss
- Authors' Affiliation: Department of Microbial Pathogenesis, Yale School of Medicine, Boyer Center for Molecular Medicine, New Haven, Connecticut
| | - Beile Gao
- Authors' Affiliation: Department of Microbial Pathogenesis, Yale School of Medicine, Boyer Center for Molecular Medicine, New Haven, Connecticut
| | - Hervé Agaisse
- Authors' Affiliation: Department of Microbial Pathogenesis, Yale School of Medicine, Boyer Center for Molecular Medicine, New Haven, Connecticut
| |
Collapse
|
13
|
Miller RK, Hong JY, Muñoz WA, McCrea PD. Beta-catenin versus the other armadillo catenins: assessing our current view of canonical Wnt signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 116:387-407. [PMID: 23481204 DOI: 10.1016/b978-0-12-394311-8.00017-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The prevailing view of canonical Wnt signaling emphasizes the role of beta-catenin acting downstream of Wnt activation to regulate transcriptional activity. However, emerging evidence indicates that other armadillo catenins in vertebrates, such as members of the p120 subfamily, convey parallel signals to the nucleus downstream of canonical Wnt pathway activation. Their study is thus needed to appreciate the networked mechanisms of canonical Wnt pathway transduction, especially as they may assist in generating the diversity of Wnt effects observed in development and disease. In this chapter, we outline evidence of direct canonical Wnt effects on p120 subfamily members in vertebrates and speculate upon these catenins' roles in conjunction with or aside from beta-catenin.
Collapse
Affiliation(s)
- Rachel K Miller
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | | |
Collapse
|
14
|
He Y, Kim H, Ryu T, Kang Y, Kim JA, Kim BH, Lee JH, Kang K, Lu Q, Kim K. δ-Catenin overexpression promotes angiogenic potential of CWR22Rv-1 prostate cancer cells via HIF-1α and VEGF. FEBS Lett 2012; 587:193-9. [PMID: 23220088 DOI: 10.1016/j.febslet.2012.11.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 11/03/2012] [Accepted: 11/26/2012] [Indexed: 12/11/2022]
Abstract
This study revealed that CWR22Rv-1 cells overexpressing δ-catenin display bigger tumor formation and higher angiogenic potentials than their matched control cells in the CAM assay. In addition, δ-catenin overexpression in CWR22Rv-1 cells results in increased hypoxia-inducible factor 1-alpha (HIF-1α and vascular endothelial growth factor (VEGF) expression. Furthermore, δ-catenin overexpression was found to enhance nuclear distribution of both β-catenin and HIF-1α in hypoxic condition, which is diminished by knockdown of δ-catenin. Our current study adds novel evidence regarding contribution of δ-catenin to the progression of prostate cancer.
Collapse
Affiliation(s)
- Yongfeng He
- College of Pharmacy and Research Institute for Drug Development, Chonnam National University, Gwangju, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Begnini KR, Rizzi C, Campos VF, Borsuk S, Schultze E, Yurgel VC, Nedel F, Dellagostin OA, Collares T, Seixas FK. Auxotrophic recombinant Mycobacterium bovis BCG overexpressing Ag85B enhances cytotoxicity on superficial bladder cancer cells in vitro. Appl Microbiol Biotechnol 2012; 97:1543-52. [DOI: 10.1007/s00253-012-4416-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 08/31/2012] [Accepted: 09/04/2012] [Indexed: 01/22/2023]
|
16
|
Munoz WA, Kloc M, Cho K, Lee M, Hofmann I, Sater A, Vleminckx K, McCrea PD. Plakophilin-3 is required for late embryonic amphibian development, exhibiting roles in ectodermal and neural tissues. PLoS One 2012; 7:e34342. [PMID: 22496792 PMCID: PMC3320641 DOI: 10.1371/journal.pone.0034342] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 02/27/2012] [Indexed: 12/31/2022] Open
Abstract
The p120-catenin family has undergone a significant expansion during the evolution of vertebrates, resulting in varied functions that have yet to be discerned or fully characterized. Likewise, members of the plakophilins, a related catenin subfamily, are found throughout the cell with little known about their functions outside the desmosomal plaque. While the plakophilin-3 (Pkp3) knockout mouse resulted in skin defects, we find larger, including lethal effects following its depletion in Xenopus. Pkp3, unlike some other characterized catenins in amphibians, does not have significant maternal deposits of mRNA. However, during embryogenesis, two Pkp3 protein products whose temporal expression is partially complimentary become expressed. Only the smaller of these products is found in adult Xenopus tissues, with an expression pattern exhibiting distinctions as well as overlaps with those observed in mammalian studies. We determined that Xenopus Pkp3 depletion causes a skin fragility phenotype in keeping with the mouse knockout, but more novel, Xenopus tailbud embryos are hyposensitive to touch even in embryos lacking outward discernable phenotypes, and we additionally resolved disruptions in certain peripheral neural structures, altered establishment and migration of neural crest, and defects in ectodermal multiciliated cells. The use of two distinct morpholinos, as well as rescue approaches, indicated the specificity of these effects. Our results point to the requirement of Pkp3 in amphibian embryogenesis, with functional roles in a number of tissue types.
Collapse
Affiliation(s)
- William A. Munoz
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Program in Genes and Development, University of Texas Graduate School of Biomedical Science, Houston, Texas, United States of America
| | - Malgorzata Kloc
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Department of Surgery, The Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Kyucheol Cho
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Program in Genes and Development, University of Texas Graduate School of Biomedical Science, Houston, Texas, United States of America
| | - Moonsup Lee
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Program in Genes and Development, University of Texas Graduate School of Biomedical Science, Houston, Texas, United States of America
| | - Ilse Hofmann
- Joint Research Division Vascular Biology of the Medical Faculty Mannheim, University of Heidelberg- DKFZ, Mannheim, Germany
| | - Amy Sater
- Biology and Biochemistry Department, University of Houston, Houston, Texas, United States of America
| | - Kris Vleminckx
- Department for Molecular Biomedical Research, Flanders Institute for Biotechnology VIB, Ghent, Belgium
| | - Pierre D. McCrea
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Program in Genes and Development, University of Texas Graduate School of Biomedical Science, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|