1
|
Aborode AT, Olamilekan Adesola R, Idris I, Adio WS, Scott GY, Chakoma M, Oluwaseun AA, Onifade IA, Adeoye AF, Aluko BA, Abok JI. Troponin C gene mutations on cardiac muscle cell and skeletal Regulation: A comprehensive review. Gene 2024; 927:148651. [PMID: 38871035 DOI: 10.1016/j.gene.2024.148651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND The troponin complex plays a crucial role in regulating skeletal and cardiac contraction. Congenital myopathies can occur due to several mutations in genes that encode skeletal troponin. Moreover, there is limited information regarding the composition of skeletal troponin. This review specifically examines a comprehensive review of the TNNC gene mutations on cardiac and skeletal regulations. MAIN BODY Troponin C (TNNC) has been linked to a newly discovered inherited muscle disorder. Genetic variations in genes that encode skeletal troponin can impair the function of sarcomeres. Various treatment approaches have been employed to mitigate the impact of variations, including the use of troponin activators, the injection of wild-type protein via AAV gene therapy, and myosin modification to enhance muscle contraction. The processes responsible for the pathophysiological implications of the variations in genes that encode skeletal troponin are not fully understood. CONCLUSION This comprehensive review will contribute to the understanding of the relationship between human cardiomyopathy and TNNC mutations and will guide the development of therapy approaches.
Collapse
Affiliation(s)
| | - Ridwan Olamilekan Adesola
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Ibrahim Idris
- Faculty of Veterinary Medicine, Usmanu Danfodiyo University Sokoto, Nigeria.
| | - Waheed Sakariyau Adio
- Department of Chemistry and Biochemistry, College of Health and Natural Science, The University of Tulsa, Tulsa, USA.
| | - Godfred Yawson Scott
- Department of Medical Diagnostics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Mugove Chakoma
- Department of Primary Healthcare, Faculty of Medicine and Healthcare, University of Zimbabwe, Zimbabwe.
| | | | | | | | | | - Jeremiah I Abok
- Department of Chemistry & Chemical Biology University of New Mexico, USA.
| |
Collapse
|
2
|
Khokhlova A, Myachina T, Butova X, Kochurova A, Polyakova E, Galagudza M, Solovyova O, Kopylova G, Shchepkin D. The Acute Effects of Leptin on the Contractility of Isolated Rat Atrial and Ventricular Cardiomyocytes. Int J Mol Sci 2022; 23:ijms23158356. [PMID: 35955485 PMCID: PMC9369024 DOI: 10.3390/ijms23158356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 02/01/2023] Open
Abstract
Leptin is a pleiotropic peptide playing an important role in the regulation of cardiac functions. It is not clear whether leptin directly modulates the mechanical function of atrial cardiomyocytes. We compared the acute effects of leptin on the characteristics of mechanically non-loaded sarcomere shortening and cytosolic Ca2+ concentration ([Ca2+]i) transients in single rat atrial and ventricular cardiomyocytes. We also studied the functional properties of myosin obtained from cardiomyocytes using an in vitro motility assay and assessed the sarcomeric protein phosphorylation. Single cardiomyocytes were exposed to 5, 20, and 60 nM leptin for 60 min. In ventricular cardiomyocytes, 60 nM leptin depressed sarcomere shortening amplitude and decreased the rates of shortening and relaxation. These effects were accompanied by a decrease in the phosphorylation of cMyBP-C, an increase in Tpm phosphorylation, and a slowdown of the sliding velocity of thin filaments over myosin in the in vitro motility assay. In contrast, in atrial cardiomyocytes, the phosphorylation of cMyBP-C and TnI increased, and the characteristics of sarcomere shortening did not change. Leptin had no effect on the characteristics of [Ca2+]i transients in ventricular cardiomyocytes, while 5 nM leptin prolonged [Ca2+]i transients in atrial cardiomyocytes. Thus, leptin-induced changes in contractility of ventricular cardiomyocytes may be attributed to the direct effects of leptin on cross-bridge kinetics and sarcomeric protein properties rather than changes in [Ca2+]i. We also suggest that the observed differences between atrial and ventricular cardiomyocytes may be associated with the peculiarities of the expression of leptin receptors, as well as signaling pathways in the atrial and ventricular myocardium.
Collapse
Affiliation(s)
- Anastasia Khokhlova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya Str. 106, 620049 Yekaterinburg, Russia; (T.M.); (X.B.); (A.K.); (O.S.); (G.K.); (D.S.)
- Correspondence:
| | - Tatiana Myachina
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya Str. 106, 620049 Yekaterinburg, Russia; (T.M.); (X.B.); (A.K.); (O.S.); (G.K.); (D.S.)
| | - Xenia Butova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya Str. 106, 620049 Yekaterinburg, Russia; (T.M.); (X.B.); (A.K.); (O.S.); (G.K.); (D.S.)
| | - Anastasia Kochurova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya Str. 106, 620049 Yekaterinburg, Russia; (T.M.); (X.B.); (A.K.); (O.S.); (G.K.); (D.S.)
| | - Ekaterina Polyakova
- Almazov National Medical Research Centre, Institute of Experimental Medicine, Akkuratova Str. 2, 197341 Saint-Petersburg, Russia; (E.P.); (M.G.)
| | - Michael Galagudza
- Almazov National Medical Research Centre, Institute of Experimental Medicine, Akkuratova Str. 2, 197341 Saint-Petersburg, Russia; (E.P.); (M.G.)
| | - Olga Solovyova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya Str. 106, 620049 Yekaterinburg, Russia; (T.M.); (X.B.); (A.K.); (O.S.); (G.K.); (D.S.)
| | - Galina Kopylova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya Str. 106, 620049 Yekaterinburg, Russia; (T.M.); (X.B.); (A.K.); (O.S.); (G.K.); (D.S.)
| | - Daniil Shchepkin
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya Str. 106, 620049 Yekaterinburg, Russia; (T.M.); (X.B.); (A.K.); (O.S.); (G.K.); (D.S.)
| |
Collapse
|
3
|
Smith QM, Inchingolo AV, Mihailescu MD, Dai H, Kad NM. Single-molecule imaging reveals the concerted release of myosin from regulated thin filaments. eLife 2021; 10:69184. [PMID: 34569933 PMCID: PMC8476120 DOI: 10.7554/elife.69184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/11/2021] [Indexed: 11/13/2022] Open
Abstract
Regulated thin filaments (RTFs) tightly control striated muscle contraction through calcium binding to troponin, which enables tropomyosin to expose myosin-binding sites on actin. Myosin binding holds tropomyosin in an open position, exposing more myosin-binding sites on actin, leading to cooperative activation. At lower calcium levels, troponin and tropomyosin turn off the thin filament; however, this is antagonised by the high local concentration of myosin, questioning how the thin filament relaxes. To provide molecular details of deactivation, we used single-molecule imaging of green fluorescent protein (GFP)-tagged myosin-S1 (S1-GFP) to follow the activation of RTF tightropes. In sub-maximal activation conditions, RTFs are not fully active, enabling direct observation of deactivation in real time. We observed that myosin binding occurs in a stochastic step-wise fashion; however, an unexpectedly large probability of multiple contemporaneous detachments is observed. This suggests that deactivation of the thin filament is a coordinated active process.
Collapse
Affiliation(s)
- Quentin M Smith
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | | | | | - Hongsheng Dai
- Department of Mathematical Sciences, University of Essex, Colchester, United Kingdom
| | - Neil M Kad
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
4
|
Risi C, Schäfer LU, Belknap B, Pepper I, White HD, Schröder GF, Galkin VE. High-Resolution Cryo-EM Structure of the Cardiac Actomyosin Complex. Structure 2021; 29:50-60.e4. [PMID: 33065066 PMCID: PMC7796959 DOI: 10.1016/j.str.2020.09.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/29/2020] [Accepted: 09/25/2020] [Indexed: 12/31/2022]
Abstract
Heart contraction depends on a complicated array of interactions between sarcomeric proteins required to convert chemical energy into mechanical force. Cyclic interactions between actin and myosin molecules, controlled by troponin and tropomyosin, generate the sliding force between the actin-based thin and myosin-based thick filaments. Alterations in this sophisticated system due to missense mutations can lead to cardiovascular diseases. Numerous structural studies proposed pathological mechanisms of missense mutations at the myosin-myosin, actin-tropomyosin, and tropomyosin-troponin interfaces. However, despite the central role of actomyosin interactions a detailed structural description of the cardiac actomyosin interface remained unknown. Here, we report a cryo-EM structure of a cardiac actomyosin complex at 3.8 Å resolution. The structure reveals the molecular basis of cardiac diseases caused by missense mutations in myosin and actin proteins.
Collapse
Affiliation(s)
- Cristina Risi
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Luisa U Schäfer
- Institute of Biological Information Processing (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Betty Belknap
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Ian Pepper
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Howard D White
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Gunnar F Schröder
- Institute of Biological Information Processing (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; Physics Department, Heinrich-Heine Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Vitold E Galkin
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| |
Collapse
|
5
|
Rajan S, Jagatheesan G, Petrashevskaya N, Biesiadecki BJ, Warren CM, Riddle T, Liggett S, Wolska BM, Solaro RJ, Wieczorek DF. Tropomyosin pseudo-phosphorylation results in dilated cardiomyopathy. J Biol Chem 2018; 294:2913-2923. [PMID: 30567734 DOI: 10.1074/jbc.ra118.004879] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/10/2018] [Indexed: 12/18/2022] Open
Abstract
Phosphorylation of cardiac sarcomeric proteins plays a major role in the regulation of the physiological performance of the heart. Phosphorylation of thin filament proteins, such as troponin I and T, dramatically affects calcium sensitivity of the myofiber and systolic and diastolic functions. Phosphorylation of the regulatory protein tropomyosin (Tpm) results in altered biochemical properties of contraction; however, little is known about the physiological effect of Tpm phosphorylation on cardiac function. To address the in vivo significance of Tpm phosphorylation, here we generated transgenic mouse lines having a phosphomimetic substitution in the phosphorylation site of α-Tpm (S283D). High expression of Tpm S283D variant in one transgenic mouse line resulted in an increased heart:body weight ratio, coupled with a severe dilated cardiomyopathic phenotype resulting in death within 1 month of birth. Moderate Tpm S283D mice expression in other lines caused mild myocyte hypertrophy and fibrosis, did not affect lifespan, and was coupled with decreased expression of extracellular signal-regulated kinase 1/2 kinase signaling. Physiological analysis revealed that the transgenic mice exhibit impaired diastolic function, without changes in systolic performance. Surprisingly, we observed no alterations in calcium sensitivity of the myofibers, cooperativity, or calcium-ATPase activity in the myofibers. Our experiments also disclosed that casein kinase 2 plays an integral role in Tpm phosphorylation. In summary, increased expression of pseudo-phosphorylated Tpm impairs diastolic function in the intact heart, without altering calcium sensitivity or cooperativity of myofibers. Our findings provide the first extensive in vivo assessment of Tpm phosphorylation in the heart and its functional role in cardiac performance.
Collapse
Affiliation(s)
- Sudarsan Rajan
- From the Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Ganapathy Jagatheesan
- From the Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | | | - Brandon J Biesiadecki
- the Department of Physiology and Biophysics, University of Illinois, Chicago College of Medicine, Chicago, Illinois 60612.,the Department of Physiology and Cell Biology and the Davis Heart and Lung Research Institute, Ohio State University, Columbus, Ohio 43210, and
| | - Chad M Warren
- the Department of Physiology and Biophysics, University of Illinois, Chicago College of Medicine, Chicago, Illinois 60612
| | - Tara Riddle
- From the Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Stephen Liggett
- the Department of Medicine, University of Maryland, Baltimore, Maryland 21201
| | - Beata M Wolska
- the Department of Physiology and Biophysics, University of Illinois, Chicago College of Medicine, Chicago, Illinois 60612.,the Division of Cardiology, Department of Medicine, University of Illinois, Chicago, Illinois 60612
| | - R John Solaro
- the Department of Physiology and Biophysics, University of Illinois, Chicago College of Medicine, Chicago, Illinois 60612
| | - David F Wieczorek
- From the Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267,
| |
Collapse
|
6
|
Abstract
Vascular smooth muscle (VSM; see Table 1 for a list of abbreviations) is a heterogeneous biomaterial comprised of cells and extracellular matrix. By surrounding tubes of endothelial cells, VSM forms a regulated network, the vasculature, through which oxygenated blood supplies specialized organs, permitting the development of large multicellular organisms. VSM cells, the engine of the vasculature, house a set of regulated nanomotors that permit rapid stress-development, sustained stress-maintenance and vessel constriction. Viscoelastic materials within, surrounding and attached to VSM cells, comprised largely of polymeric proteins with complex mechanical characteristics, assist the engine with countering loads imposed by the heart pump, and with control of relengthening after constriction. The complexity of this smart material can be reduced by classical mechanical studies combined with circuit modeling using spring and dashpot elements. Evaluation of the mechanical characteristics of VSM requires a more complete understanding of the mechanics and regulation of its biochemical parts, and ultimately, an understanding of how these parts work together to form the machinery of the vascular tree. Current molecular studies provide detailed mechanical data about single polymeric molecules, revealing viscoelasticity and plasticity at the protein domain level, the unique biological slip-catch bond, and a regulated two-step actomyosin power stroke. At the tissue level, new insight into acutely dynamic stress-strain behavior reveals smooth muscle to exhibit adaptive plasticity. At its core, physiology aims to describe the complex interactions of molecular systems, clarifying structure-function relationships and regulation of biological machines. The intent of this review is to provide a comprehensive presentation of one biomachine, VSM.
Collapse
Affiliation(s)
- Paul H Ratz
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
7
|
Gupte TM, Haque F, Gangadharan B, Sunitha MS, Mukherjee S, Anandhan S, Rani DS, Mukundan N, Jambekar A, Thangaraj K, Sowdhamini R, Sommese RF, Nag S, Spudich JA, Mercer JA. Mechanistic heterogeneity in contractile properties of α-tropomyosin (TPM1) mutants associated with inherited cardiomyopathies. J Biol Chem 2014; 290:7003-15. [PMID: 25548289 DOI: 10.1074/jbc.m114.596676] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The most frequent known causes of primary cardiomyopathies are mutations in the genes encoding sarcomeric proteins. Among those are 30 single-residue mutations in TPM1, the gene encoding α-tropomyosin. We examined seven mutant tropomyosins, E62Q, D84N, I172T, L185R, S215L, D230N, and M281T, that were chosen based on their clinical severity and locations along the molecule. The goal of our study was to determine how the biochemical characteristics of each of these mutant proteins are altered, which in turn could provide a structural rationale for treatment of the cardiomyopathies they produce. Measurements of Ca(2+) sensitivity of human β-cardiac myosin ATPase activity are consistent with the hypothesis that hypertrophic cardiomyopathies are hypersensitive to Ca(2+) activation, and dilated cardiomyopathies are hyposensitive. We also report correlations between ATPase activity at maximum Ca(2+) concentrations and conformational changes in TnC measured using a fluorescent probe, which provide evidence that different substitutions perturb the structure of the regulatory complex in different ways. Moreover, we observed changes in protein stability and protein-protein interactions in these mutants. Our results suggest multiple mechanistic pathways to hypertrophic and dilated cardiomyopathies. Finally, we examined a computationally designed mutant, E181K, that is hypersensitive, confirming predictions derived from in silico structural analysis.
Collapse
Affiliation(s)
- Tejas M Gupte
- From the Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India
| | - Farah Haque
- From the Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India, the National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Binnu Gangadharan
- From the Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India, the Manipal University, Madhav Nagar, Manipal 576104, India
| | - Margaret S Sunitha
- From the Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India, the National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Souhrid Mukherjee
- From the Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India
| | - Swetha Anandhan
- From the Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India
| | - Deepa Selvi Rani
- the Council for Scientific and Industrial Research-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Namita Mukundan
- the National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Amruta Jambekar
- From the Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India
| | - Kumarasamy Thangaraj
- the Council for Scientific and Industrial Research-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Ramanathan Sowdhamini
- the National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Ruth F Sommese
- the Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, and
| | - Suman Nag
- the Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, and
| | - James A Spudich
- From the Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India, the Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, and
| | - John A Mercer
- From the Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India, the McLaughlin Research Institute, Great Falls, Montana 59405
| |
Collapse
|
8
|
Loop 2 of myosin is a force-dependent inhibitor of the rigor bond. J Muscle Res Cell Motil 2014; 35:143-52. [PMID: 24500136 DOI: 10.1007/s10974-014-9375-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 01/21/2014] [Indexed: 10/25/2022]
Abstract
Myosin's actin-binding loop (loop 2) carries a charge opposite to that of its binding site on actin and is thought to play an important role in ionic interactions between the two molecules during the initial binding step. However, no subsequent role has been identified for loop 2 in actin-myosin binding. We used an optical trap to measure bond formation and bond rupture between actin and rigor heavy meromyosin when loaded perpendicular to the filament axis. We studied HMM with intact or proteolytically cleaved loop 2 at low and physiologic ionic strength. Here we show that the presence of intact loop 2 allows actomyosin bonds to form quickly and that they do so in a short-lived bound state. Increasing tensile load causes the transition to a long-lived state-the distinguishing behavior of a catch bond. When loop 2 was cleaved catch bond behavior was abrogated leaving only a long-lived state. These data suggest that in addition to its role in locating binding sites on actin, loop 2 is also a force-dependent inhibitor of the long-lived actomyosin complex. This may be important for reducing the duty ratio and increasing the shortening velocity of actomyosin at low forces.
Collapse
|
9
|
Tropomyosin Ser-283 pseudo-phosphorylation slows myofibril relaxation. Arch Biochem Biophys 2012; 535:30-8. [PMID: 23232082 DOI: 10.1016/j.abb.2012.11.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/21/2012] [Accepted: 11/22/2012] [Indexed: 12/15/2022]
Abstract
Tropomyosin (Tm) is a central protein in the Ca(2+) regulation of striated muscle. The αTm isoform undergoes phosphorylation at serine residue 283. While the biochemical and steady-state muscle function of muscle purified Tm phosphorylation have been explored, the effects of Tm phosphorylation on the dynamic properties of muscle contraction and relaxation are unknown. To investigate the kinetic regulatory role of αTm phosphorylation we expressed and purified native N-terminal acetylated Ser-283 wild-type, S283A phosphorylation null and S283D pseudo-phosphorylation Tm mutants in insect cells. Purified Tm's regulate thin filaments similar to that reported for muscle purified Tm. Steady-state Ca(2+) binding to troponin C (TnC) in reconstituted thin filaments did not differ between the 3 Tm's, however disassociation of Ca(2+) from filaments containing pseudo-phosphorylated Tm was slowed compared to wild-type Tm. Replacement of pseudo-phosphorylated Tm into myofibrils similarly prolonged the slow phase of relaxation and decreased the rate of the fast phase without altering activation kinetics. These data demonstrate that Tm pseudo-phosphorylation slows deactivation of the thin filament and muscle force relaxation dynamics in the absence of dynamic and steady-state effects on muscle activation. This supports a role for Tm as a key protein in the regulation of muscle relaxation dynamics.
Collapse
|
10
|
Snook JH, Guilford WH. A High-Throughput Technique Reveals the Load- and Site Density-Dependent Kinetics of E-Selectin. Cell Mol Bioeng 2012; 5:493-503. [PMID: 24511329 PMCID: PMC3915287 DOI: 10.1007/s12195-012-0247-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The kinetics of bond rupture between receptors and ligand are critically dependent on applied mechanical force. Force spectroscopy of single receptor-ligand pairs to measure kinetics is a laborious and time-consuming process that is generally performed using individual force probes and making one measurement at a time when typically hundreds of measurements are needed. A high-throughput approach is thus desirable. We report here a magnetic bond puller that provides high-throughput measurements of single receptor-ligand bond kinetics. Electromagnets are used to apply pN tensile and compressive forces to receptor-coated magnetic microspheres while monitoring their contact with a ligand-coated surface. Bond lifetimes and the probability of forming a bond are measured via videomicroscopy, and the data are used to determine the load dependent rates of bond rupture and bond formation. The approach is simple, customizable, relatively inexpensive, and can make dozens of kinetic measurements simultaneously. We used the device to investigate how compressive and tensile forces affect the rates of formation and rupture, respectively, of bonds between E-selectin and sialyl Lewisa (sLea), a sugar on P-selectin glycoprotein ligand-1 to which selectins bind. We confirmed earlier findings of a load-dependent rate of bond formation between these two molecules, and that they form a catch-slip bond like other selectin family members. We also make the novel observation of an "ideal" bond in a highly multivalent system of this receptor-ligand pair.
Collapse
Affiliation(s)
- Jeremy H Snook
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA 22908, USA
| | - William H Guilford
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA 22908, USA
| |
Collapse
|