1
|
Teng X, Wang Y, You L, Wei L, Zhang C, Du Y. Screening a DNA Aptamer Specifically Targeting Integrin β3 and Partially Inhibiting Tumor Cell Migration. Anal Chem 2023; 95:12406-12418. [PMID: 37555842 PMCID: PMC10448441 DOI: 10.1021/acs.analchem.3c01995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023]
Abstract
Due to its key roles in malignant tumor progression and reprograming of the tumor microenvironment, integrin β3 has attracted great attention as a new target for tumor therapy. However, the structure-function relationship of integrins β3 remains incompletely understood, leading to the shortage of specific and effective targeting probes. This work uses a purified extracellular domain of integrin β3 and integrin β3-positive cells to screen aptamers, specifically targeting integrin β3 in the native conformation on live cells through the SELEX approach. Following meticulous truncation and characterization of the initial aptamer candidates, the optimized aptamer S10yh2 was produced, exhibiting a low equilibrium dissociation constant (Kd) in the nanomolar range. S10yh2 displays specific recognition of cancer cells with varying levels of integrin β3 expression and demonstrates favorable stability in serum. Subsequent analysis of docking sites revealed that S10yh2 binds to the seven amino acid residues located in the core region of integrin β3. The S10yh2 aptamer can downregulate the level of integrin heterodimer αvβ3 on integrin β3 overexpressed cancer cells and partially inhibit cell migration behavior. In summary, S10yh2 is a promising probe with a small size, simple synthesis, good stability, high binding affinity, and selectivity. It therefore holds great potential for investigating the structure-function relationship of integrins.
Collapse
Affiliation(s)
- Xiaoyan Teng
- Department
of Laboratory Medicine, Shanghai Jiao Tong
University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Yu Wang
- State
Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute,
Department of Oncology, Institute of Molecular Medicine, Renji Hospital,
School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Liuxia You
- Department
of Clinical Laboratory, The Second Affiliated
Hospital of Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Lirong Wei
- Department
of Laboratory Medicine, Shanghai Jiao Tong
University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Chao Zhang
- State
Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute,
Department of Oncology, Institute of Molecular Medicine, Renji Hospital,
School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yuzhen Du
- Department
of Laboratory Medicine, Shanghai Jiao Tong
University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| |
Collapse
|
2
|
Tan SK, Fong KP, Polizzi NF, Sternisha A, Slusky JSG, Yoon K, DeGrado WF, Bennett JS. Modulating Integrin αIIbβ3 Activity through Mutagenesis of Allosterically Regulated Intersubunit Contacts. Biochemistry 2019; 58:3251-3259. [PMID: 31264850 DOI: 10.1021/acs.biochem.9b00430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Integrin αIIbβ3, a transmembrane heterodimer, mediates platelet aggregation when it switches from an inactive to an active ligand-binding conformation following platelet stimulation. Central to regulating αIIbβ3 activity is the interaction between the αIIb and β3 extracellular stalks, which form a tight heterodimer in the inactive state and dissociate in the active state. Here, we demonstrate that alanine replacements of sensitive positions in the heterodimer stalk interface destabilize the inactive conformation sufficiently to cause constitutive αIIbβ3 activation. To determine the structural basis for this effect, we performed a structural bioinformatics analysis and found that perturbing intersubunit contacts with favorable interaction geometry through substitutions to alanine quantitatively accounted for the degree of constitutive αIIbβ3 activation. This mutational study directly assesses the relationship between favorable interaction geometry at mutation-sensitive positions and the functional activity of those mutants, giving rise to a simple model that highlights the importance of interaction geometry in contributing to the stability between protein-protein interactions.
Collapse
Affiliation(s)
- Sophia K Tan
- Department of Pharmaceutical Chemistry , University of California, San Francisco , San Francisco , California 94158 , United States
| | - Karen P Fong
- Hematology-Oncology Division , University of Pennsylvania School of Medicine , Philadelphia , Pennsylvania 19104 , United States
| | - Nicholas F Polizzi
- Department of Pharmaceutical Chemistry , University of California, San Francisco , San Francisco , California 94158 , United States
| | - Alex Sternisha
- Hematology-Oncology Division , University of Pennsylvania School of Medicine , Philadelphia , Pennsylvania 19104 , United States
| | - Joanna S G Slusky
- Department of Molecular Biosciences and Center for Computational Biology , University of Kansas , Lawrence , Kansas 66045 , United States
| | - Kyungchul Yoon
- Hematology-Oncology Division , University of Pennsylvania School of Medicine , Philadelphia , Pennsylvania 19104 , United States
| | - William F DeGrado
- Department of Pharmaceutical Chemistry , University of California, San Francisco , San Francisco , California 94158 , United States
| | - Joel S Bennett
- Hematology-Oncology Division , University of Pennsylvania School of Medicine , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
3
|
Unique transmembrane domain interactions differentially modulate integrin αvβ3 and αIIbβ3 function. Proc Natl Acad Sci U S A 2019; 116:12295-12300. [PMID: 31160446 DOI: 10.1073/pnas.1904867116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lateral transmembrane (TM) helix-helix interactions between single-span membrane proteins play an important role in the assembly and signaling of many cell-surface receptors. Often, these helices contain two highly conserved yet distinct interaction motifs, arranged such that the motifs cannot be engaged simultaneously. However, there is sparse experimental evidence that dual-engagement mechanisms play a role in biological signaling. Here, we investigate the function of the two conserved interaction motifs in the TM domain of the integrin β3-subunit. The first motif uses reciprocating "large-large-small" amino acid packing to mediate the interaction of the β3 and αIIb TM domains and maintain the inactive resting conformation of the platelet integrin αIIbβ3. The second motif, S-x3-A-x3-I, is a variant of the classical "G-x3-G" motif. Using site-directed mutagenesis, optical trap-based force spectroscopy, and molecular modeling, we show that S-x3-A-x3-I does not engage αIIb but rather mediates the interaction of the β3 TM domain with the TM domain of the αv-subunit of the integrin αvβ3. Like αIIbβ3, αvβ3 on circulating platelets is inactive, and in the absence of platelet stimulation is unable to interact with components of the subendothelial matrix. However, disrupting any residue in the β3 S-x3-A-x3-I motif by site-directed mutations is sufficient to induce αvβ3 binding to the αvβ3 ligand osteopontin and to the monoclonal antibody WOW-1. Thus, the β3-integrin TM domain is able to engage in two mutually exclusive interactions that produce alternate α-subunit pairing, creating two integrins with distinct biological functions.
Collapse
|
4
|
Bennett JS. Regulation of integrins in platelets. Biopolymers 2016; 104:323-33. [PMID: 26010651 DOI: 10.1002/bip.22679] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/07/2015] [Accepted: 05/08/2015] [Indexed: 11/08/2022]
Abstract
Blood platelets prevent bleeding after trauma by forming occlusive aggregates at sites of vascular injury. Platelet aggregation is mediated by the integrin heterodimer αIIbβ3 and occurs when platelet agonists generated at the injury site convert αIIbβ3 from its resting to its active conformation. Active αIIbβ3 is then able to bind macromolecular ligands such as fibrinogen that crosslink adjacent platelets into hemostatic aggregates. Platelets circulate in a plasma milieu containing high concentrations of the principal αIIbβ3 ligand fibrinogen. Thus, αIIbβ3 activity is tightly regulated to prevent the spontaneous formation of platelet aggregates. αIIbβ3 activity is regulated at least three levels. First, intramolecular interactions involving motifs located in the membrane-proximal stalk regions, transmembrane domains, and the membrane-proximal cytosolic tails of αIIb and β3 maintain αIIbβ3 in its inactive conformation. Transmembrane domain interactions appear particularly important because disrupting these interactions causes constitutive αIIbβ3 activation. Second, the agonist-stimulated binding of the cytosolic proteins talin and kindlin-3 to the β3 cytosolic tail rapidly causes αIIbβ3 activation by disrupting the intramolecular interactions constraining αIIbβ3 activity. Third, the strength of ligand binding to active αIIbβ3 seems to be allosterically regulated. Thus, αIIbβ3 exists in a minimum of three interconvertible states: an inactive (resting) state that does not interact with ligands and two active ligand binding states that differ in their affinity for fibrinogen and in the mechanical stability of fibrinogen complexes they form.
Collapse
Affiliation(s)
- Joel S Bennett
- Hematology-Oncology Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania Philadelphia, 19104, Pennsylvania
| |
Collapse
|
5
|
Bury L, Falcinelli E, Chiasserini D, Springer TA, Italiano JE, Gresele P. Cytoskeletal perturbation leads to platelet dysfunction and thrombocytopenia in variant forms of Glanzmann thrombasthenia. Haematologica 2015; 101:46-56. [PMID: 26452979 DOI: 10.3324/haematol.2015.130849] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 10/01/2015] [Indexed: 11/09/2022] Open
Abstract
Several patients have been reported to have variant dominant forms of Glanzmann thrombasthenia, associated with macrothrombocytopenia and caused by gain-of-function mutations of ITGB3 or ITGA2B leading to reduced surface expression and constitutive activation of integrin αIIbβ3. The mechanisms leading to a bleeding phenotype of these patients have never been addressed. The aim of this study was to unravel the mechanism by which ITGB3 mutations causing activation of αIIbβ3 lead to platelet dysfunction and macrothrombocytopenia. Using platelets from two patients carrying the β3 del647-686 mutation and Chinese hamster ovary cells expressing different αIIbβ3-activating mutations, we showed that reduced surface expression of αIIbβ3 is due to receptor internalization. Moreover, we demonstrated that permanent triggering of αIIbβ3-mediated outside-in signaling causes an impairment of cytoskeletal reorganization arresting actin turnover at the stage of polymerization. The induction of actin polymerization by jasplakinolide, a natural toxin that promotes actin nucleation and prevents depolymerization of stress fibers, in control platelets produced an impairment of platelet function similar to that of patients with variant forms of dominant Glanzmann thrombasthenia. del647-686β3-transduced murine megakaryocytes generated proplatelets with a reduced number of large tips and asymmetric barbell-proplatelets, suggesting that impaired cytoskeletal rearrangement is the cause of macrothrombocytopenia. These data show that impaired cytoskeletal remodeling caused by a constitutively activated αIIbβ3 is the main effector of platelet dysfunction and macrothrombocytopenia, and thus of bleeding, in variant forms of dominant Glanzmann thrombasthenia.
Collapse
Affiliation(s)
- Loredana Bury
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Italy
| | - Emanuela Falcinelli
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Italy
| | - Davide Chiasserini
- Department of Medicine, Section of Neurology, University of Perugia, Italy
| | - Timothy A Springer
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Program in Cellular and Molecular Medicine, Children's Hospital, Boston, MA, USA
| | - Joseph E Italiano
- Hematology Division, Department of Medicine, Brigham and Women's Hospital, Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Paolo Gresele
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Italy
| |
Collapse
|
6
|
Alsop JD, Mitchell JC. Interolog interfaces in protein-protein docking. Proteins 2015; 83:1940-6. [PMID: 25740680 PMCID: PMC5054918 DOI: 10.1002/prot.24788] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 02/17/2015] [Accepted: 02/24/2015] [Indexed: 12/26/2022]
Abstract
Proteins are essential elements of biological systems, and their function typically relies on their ability to successfully bind to specific partners. Recently, an emphasis of study into protein interactions has been on hot spots, or residues in the binding interface that make a significant contribution to the binding energetics. In this study, we investigate how conservation of hot spots can be used to guide docking prediction. We show that the use of evolutionary data combined with hot spot prediction highlights near‐native structures across a range of benchmark examples. Our approach explores various strategies for using hot spots and evolutionary data to score protein complexes, using both absolute and chemical definitions of conservation along with refinements to these strategies that look at windowed conservation and filtering to ensure a minimum number of hot spots in each binding partner. Finally, structure‐based models of orthologs were generated for comparison with sequence‐based scoring. Using two data sets of 22 and 85 examples, a high rate of top 10 and top 1 predictions are observed, with up to 82% of examples returning a top 10 hit and 35% returning top 1 hit depending on the data set and strategy applied; upon inclusion of the native structure among the decoys, up to 55% of examples yielded a top 1 hit. The 20 common examples between data sets show that more carefully curated interolog data yields better predictions, particularly in achieving top 1 hits. Proteins 2015; 83:1940–1946. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- James D Alsop
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin
| | - Julie C Mitchell
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin.,Department of Mathematics, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
7
|
Abstract
During the past decade, advanced techniques in structural biology have provided atomic level information on the platelet integrin αIIbβ3 activation mechanism that results in it adopting a high-affinity ligand-binding conformation(s). This review focuses on advances in imaging intact αIIbβ3 in a lipid bilayer in the absence of detergent and new structural insights into the changes in the ligand-binding pocket with receptor activation and ligand binding. It concludes with descriptions of novel therapeutic αIIbβ3 antagonists being developed based on an advanced knowledge of the receptor's structure.
Collapse
Affiliation(s)
- B S Coller
- Rockefeller University, New York, NY, USA
| |
Collapse
|
8
|
Nurden AT, Pillois X, Wilcox DA. Glanzmann thrombasthenia: state of the art and future directions. Semin Thromb Hemost 2013; 39:642-55. [PMID: 23929305 DOI: 10.1055/s-0033-1353393] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Glanzmann thrombasthenia (GT) is the principal inherited disease of platelets and the most commonly encountered disorder of an integrin. GT is characterized by spontaneous mucocutaneous bleeding and an exaggerated response to trauma caused by platelets that fail to aggregate when stimulated by physiologic agonists. GT is caused by quantitative or qualitative deficiencies of αIIbβ3, an integrin coded by the ITGA2B and ITGB3 genes and which by binding fibrinogen and other adhesive proteins joins platelets together in the aggregate. Widespread genotyping has revealed that mutations spread across both genes, yet the reason for the extensive variation in both the severity and intensity of bleeding between affected individuals remains poorly understood. Furthermore, although genetic defects of ITGB3 affect other tissues with β3 present as αvβ3 (the vitronectin receptor), the bleeding phenotype continues to dominate. Here, we look in detail at mutations that affect (i) the β-propeller region of the αIIb head domain and (ii) the membrane proximal disulfide-rich epidermal growth factor (EGF) domains of β3 and which often result in spontaneous integrin activation. We also examine deep vein thrombosis as an unexpected complication of GT and look at curative procedures for the diseases, including allogeneic stem cell transfer and the potential for gene therapy.
Collapse
Affiliation(s)
- Alan T Nurden
- Plateforme Technologique et d'Innovation Biomédicale, Hôpital Xavier Arnozan, Pessac, France.
| | | | | |
Collapse
|
9
|
Dong X, Mi LZ, Zhu J, Wang W, Hu P, Luo BH, Springer TA. α(V)β(3) integrin crystal structures and their functional implications. Biochemistry 2012; 51:8814-28. [PMID: 23106217 PMCID: PMC3495331 DOI: 10.1021/bi300734n] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Many questions about the significance of structural features of integrin α(V)β(3) with respect to its mechanism of activation remain. We have determined and re-refined crystal structures of the α(V)β(3) ectodomain linked to C-terminal coiled coils (α(V)β(3)-AB) and four transmembrane (TM) residues in each subunit (α(V)β(3)-1TM), respectively. The α(V) and β(3) subunits with four and eight extracellular domains, respectively, are bent at knees between the integrin headpiece and lower legs, and the headpiece has the closed, low-affinity conformation. The structures differ in the occupancy of three metal-binding sites in the βI domain. Occupancy appears to be related to the pH of crystallization, rather than to the physiologic regulation of ligand binding at the central, metal ion-dependent adhesion site. No electron density was observed for TM residues and much of the α(V) linker. α(V)β(3)-AB and α(V)β(3)-1TM demonstrate flexibility in the linker between their extracellular and TM domains, rather than the previously proposed rigid linkage. A previously postulated interface between the α(V) and β(3) subunits at their knees was also not supported, because it lacks high-quality density, required rebuilding in α(V)β(3)-1TM, and differed markedly between α(V)β(3)-1TM and α(V)β(3)-AB. Together with the variation in domain-domain orientation within their bent ectodomains between α(V)β(3)-AB and α(V)β(3)-1TM, these findings are compatible with the requirement for large structural changes, such as extension at the knees and headpiece opening, in conveying activation signals between the extracellular ligand-binding site and the cytoplasm.
Collapse
Affiliation(s)
- Xianchi Dong
- Immune Disease Institute, Children's Hospital Boston and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 3 Blackfan Circle, Boston, MA 02115
| | - Li-Zhi Mi
- Immune Disease Institute, Children's Hospital Boston and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 3 Blackfan Circle, Boston, MA 02115
| | - Jianghai Zhu
- Immune Disease Institute, Children's Hospital Boston and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 3 Blackfan Circle, Boston, MA 02115
| | - Wei Wang
- Department of Biological Sciences, 202 Life Sciences Building, Louisiana State University, Baton Rouge, LA 70803
| | - Ping Hu
- Department of Biological Sciences, 202 Life Sciences Building, Louisiana State University, Baton Rouge, LA 70803
| | - Bing-Hao Luo
- Immune Disease Institute, Children's Hospital Boston and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 3 Blackfan Circle, Boston, MA 02115
- Department of Biological Sciences, 202 Life Sciences Building, Louisiana State University, Baton Rouge, LA 70803
| | - Timothy A. Springer
- Immune Disease Institute, Children's Hospital Boston and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 3 Blackfan Circle, Boston, MA 02115
| |
Collapse
|
10
|
Mor-Cohen R, Rosenberg N, Einav Y, Zelzion E, Landau M, Mansour W, Averbukh Y, Seligsohn U. Unique disulfide bonds in epidermal growth factor (EGF) domains of β3 affect structure and function of αIIbβ3 and αvβ3 integrins in different manner. J Biol Chem 2012; 287:8879-91. [PMID: 22308022 DOI: 10.1074/jbc.m111.311043] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The β3 subunit of αIIbβ3 and αvβ3 integrins contains four epidermal growth factor (EGF)-like domains. Each domain harbors four disulfide bonds of which one is unique for integrins. We previously discerned a regulatory role of the EGF-4 Cys-560-Cys-583 unique bond for αIIbβ3 activation. In this study we further investigated the role of all four integrin unique bonds in both αIIbβ3 and αvβ3. We created β3 mutants harboring serine substitutions of each or both cysteines that disrupt the four unique bonds (Cys-437-Cys-457 in EGF-1, Cys-473-Cys-503 in EGF-2, Cys-523-Cys-544 in EGF-3, and Cys-560-Cys-583 in EGF-4) and transfected them into baby hamster kidney cells together with normal αv or αIIb. Flow cytometry was used to measure surface expression of αIIbβ3 and αvβ3 and their activity state by soluble fibrinogen binding. Most cysteine substitutions caused similarly reduced surface expression of both receptors. Disrupting all four unique disulfide bonds by single cysteine substitutions resulted in variable constitutive activation of αIIbβ3 and αvβ3. In contrast, whereas double C437S/C457S and C473S/C503S mutations yielded constitutively active αIIbβ3 and αvβ3, the C560S/C583S mutation did not, and the C523S/C544S mutation only yielded constitutively active αIIbβ3. Activation of C523S/C544S αvβ3 mutant by activating antibody and dithiothreitol was also impaired. Molecular dynamics of C523S/C544S β3 in αIIbβ3 but not in αvβ3 displayed an altered stable conformation. Our findings indicate that unique disulfide bonds in β3 differently affect the function of αIIbβ3 and αvβ3 and suggest a free sulfhydryl-dependent regulatory role for Cys-560-Cys-583 in both αIIbβ3 and αvβ3 and for Cys-523-Cys-544 only in αvβ3.
Collapse
Affiliation(s)
- Ronit Mor-Cohen
- the Amalia Biron Research Institute of Thrombosis and Hemostasis, Chaim Sheba Medical Center, Tel-Hashomer, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Yagi M, Murray J, Strand K, Blystone S, Interlandi G, Suda Y, Sobel M. Heparin modulates the conformation and signaling of platelet integrin αIIbβ3. Thromb Res 2011; 129:743-9. [PMID: 22197178 DOI: 10.1016/j.thromres.2011.11.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 11/07/2011] [Accepted: 11/30/2011] [Indexed: 10/14/2022]
Abstract
INTRODUCTION The glycosaminoglycan heparin has been shown to bind to platelet integrin αIIbβ3 and induce platelet activation and aggregation, although the relationship between binding and activation is unclear. We analyzed the interaction of heparin and αIIbβ3 in detail, to obtain a better understanding of the mechanism by which heparin acts on platelets. METHODS We assessed conformational changes in αIIbβ3 by flow cytometry of platelets exposed to unfractionated heparin. In human platelets and K562 cells engineered to express αIIbβ3, we assayed the effect of heparin on key steps in integrin signaling: phosphorylation of the β3 chain cytoplasmic tail, and activation of src kinase. We measured the heparin binding affinity of purified αIIbβ3, and of recombinant fragments of αIIb and β3, by surface plasmon resonance. RESULTS AND CONCLUSIONS Heparin binding results in conformational changes in αIIbβ3, similar to those observed upon ligand binding. Heparin binding alone is not sufficient to induce tyrosine phosphorylation of the integrin β3 cytoplasmic domain, but the presence of heparin increased both β3 phosphorylation and src kinase activation in response to ligand binding. Specific recombinant fragments derived from αIIb bound heparin, while recombinant β3 did not bind. This pattern of heparin binding, compared to the crystal structure of αIIbβ3, suggests that heparin-binding sites are located in clusters of basic amino acids in the headpiece and/or leg domains of αIIb. Binding of heparin to these clusters may stabilize the transition of αIIbβ3 to an open conformation with enhanced affinity for ligand, facilitating outside-in signaling and platelet activation.
Collapse
Affiliation(s)
- Mayumi Yagi
- Research & Development, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Wehrle-Haller B. Structure and function of focal adhesions. Curr Opin Cell Biol 2011; 24:116-24. [PMID: 22138388 DOI: 10.1016/j.ceb.2011.11.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 11/01/2011] [Accepted: 11/02/2011] [Indexed: 01/17/2023]
Abstract
Integrin-dependent cell adhesions come in different shapes and serve in different cell types for tasks ranging from cell-adhesion, migration, and the remodeling of the extracellular matrix to the formation and stabilization of immunological and chemical synapses. A major challenge consists in the identification of adhesion-specific as well as common regulatory mechanisms, motivating the need for a deeper analysis of protein-protein interactions in the context of intact focal adhesions. Specifically, it is critical to understand how small differences in binding of integrins to extracellular ligands and/or cytoplasmic adapter proteins affect the assembly and function of an entire focal adhesion. By using the talin-integrin pair as a starting point, I would like to discuss how specific protein-protein and protein-lipid interactions can control the behavior and function of focal adhesions. By responding to chemical and mechanical cues several allosterically regulated proteins create a dynamic multifunctional protein network that provides both adhesion to the extracellular matrix as well as intracellular signaling in response to mechanical changes in the cellular environment.
Collapse
Affiliation(s)
- Bernhard Wehrle-Haller
- University of Geneva, Department of Cell Physiology and Metabolism, Centre Médical Universitaire, 1. Rue Michel-Servet, 1211 Geneva 4, Switzerland.
| |
Collapse
|
13
|
Arjomandi M, Galanter JM, Choudhry S, Eng C, Hu D, Beckman K, Chapela R, Rodríguez-Santana JR, Rodríguez-Cintrón W, Ford J, Avila PC, Burchard EG. Polymorphism in Osteopontin Gene (SPP1) Is Associated with Asthma and Related Phenotypes in a Puerto Rican Population. PEDIATRIC ALLERGY IMMUNOLOGY AND PULMONOLOGY 2011; 24:207-214. [PMID: 22276228 DOI: 10.1089/ped.2011.0095] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 08/21/2011] [Indexed: 11/12/2022]
Abstract
Recent studies have shown that osteopontin, a cytokine with suggested immunoregulatory functions, may contribute to pathogenesis of asthma. To determine whether single-nucleotide polymorphisms (SNPs) in SPP1, the gene encoding osteopontin, are associated with risk of asthma, we genotyped 6 known SNPs in SPP1 in the well-characterized Genetics of Asthma in Latino Americans population of 294 Mexican and 365 Puerto Rican parent-child asthma trios. The associations between SNPs and asthma or asthma-related phenotypes were examined by transmission disequilibrium tests as implemented in the family-based association test program. Three polymorphisms, 1 in exon 7 (rs1126616C) and 2 in the 3'-untranslated region (rs1126772A and rs9138A) of SPP1, were associated with diagnosis of asthma, severity of asthma, asthma in subjects with elevated immunoglobulin E (IgE) (IgE >100 IU/mL), and postbronchodilator FEV(1) in Puerto Ricans (P values=0.00007-0.04). The CC genotype of rs1126616 conferred an odds ratio of 1.7 (95% CI=[1.3, 2.3], P value adjusted for multiple comparisons=0.001) for asthma compared with the CT and TT genotypes. Furthermore, haplotype analysis identified rs1126616C-rs1126772A-rs9138A to be associated with an increased risk for asthma, severity of asthma, and asthma in subjects with elevated IgE (P=0.03). There was no association between the SPP1 SNPs and asthma outcomes in Mexicans. Our findings suggest that the SPP1 gene is a risk factor for asthma and asthma-related phenotypes in Puerto Ricans, and are consistent with previous animal and human studies on the role of osteopontin in pathogenesis of asthma.
Collapse
|
14
|
Grigoryan G, Moore DT, DeGrado WF. Transmembrane communication: general principles and lessons from the structure and function of the M2 proton channel, K⁺ channels, and integrin receptors. Annu Rev Biochem 2011; 80:211-37. [PMID: 21548783 DOI: 10.1146/annurev-biochem-091008-152423] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Signal transduction across biological membranes is central to life. This process generally happens through communication between different domains and hierarchical coupling of information. Here, we review structural and thermodynamic principles behind transmembrane (TM) signal transduction and discuss common themes. Communication between signaling domains can be understood in terms of thermodynamic and kinetic principles, and complex signaling patterns can arise from simple wiring of thermodynamically coupled domains. We relate this to functions of several signal transduction systems: the M2 proton channel from influenza A virus, potassium channels, integrin receptors, and bacterial kinases. We also discuss key features in the structural rearrangements responsible for signal transduction in these systems.
Collapse
Affiliation(s)
- Gevorg Grigoryan
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
15
|
Saven JG. Computational protein design: engineering molecular diversity, nonnatural enzymes, nonbiological cofactor complexes, and membrane proteins. Curr Opin Chem Biol 2011; 15:452-7. [PMID: 21493122 DOI: 10.1016/j.cbpa.2011.03.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 03/18/2011] [Accepted: 03/18/2011] [Indexed: 11/18/2022]
Abstract
Computational and theoretical methods are advancing protein design as a means to create and investigate proteins. Such efforts further our capacity to control, design and understand biomolecular structure, sequence and function. Herein, the focus is on some recent applications that involve using theoretical and computational methods to guide the design of protein sequence ensembles, new enzymes, proteins with novel cofactors, and membrane proteins.
Collapse
Affiliation(s)
- Jeffery G Saven
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| |
Collapse
|