1
|
Shukla S, Bhattacharya A, Sehrawat P, Agarwal P, Shobhawat R, Malik N, Duraisamy K, Rangan NS, Hosur RV, Kumar A. Disorder in CENP-A Cse4 tail-chaperone interaction facilitates binding with Ame1/Okp1 at the kinetochore. Structure 2024; 32:690-705.e6. [PMID: 38565139 DOI: 10.1016/j.str.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 11/16/2023] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
The centromere is epigenetically marked by a histone H3 variant-CENP-A. The budding yeast CENP-A called Cse4, consists of an unusually long N-terminus that is known to be involved in kinetochore assembly. Its disordered chaperone, Scm3 is responsible for the centromeric deposition of Cse4 as well as in the maintenance of a segregation-competent kinetochore. In this study, we show that the Cse4 N-terminus is intrinsically disordered and interacts with Scm3 at multiple sites, and the complex does not gain any substantial structure. Additionally, the complex forms a synergistic association with an essential inner kinetochore component (Ctf19-Mcm21-Okp1-Ame1), and a model has been suggested to this effect. Thus, our study provides mechanistic insights into the Cse4 N-terminus-chaperone interaction and also illustrates how intrinsically disordered proteins mediate assembly of complex multiprotein networks, in general.
Collapse
Affiliation(s)
- Shivangi Shukla
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Mumbai, India
| | | | - Parveen Sehrawat
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Prakhar Agarwal
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Rahul Shobhawat
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Nikita Malik
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Kalaiyarasi Duraisamy
- Centre for Advanced Protein Studies, Syngene International Limited, Bangalore, India
| | | | - Ramakrishna V Hosur
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Ashutosh Kumar
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Mumbai, India.
| |
Collapse
|
2
|
Naish M, Henderson IR. The structure, function, and evolution of plant centromeres. Genome Res 2024; 34:161-178. [PMID: 38485193 PMCID: PMC10984392 DOI: 10.1101/gr.278409.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Centromeres are essential regions of eukaryotic chromosomes responsible for the formation of kinetochore complexes, which connect to spindle microtubules during cell division. Notably, although centromeres maintain a conserved function in chromosome segregation, the underlying DNA sequences are diverse both within and between species and are predominantly repetitive in nature. The repeat content of centromeres includes high-copy tandem repeats (satellites), and/or specific families of transposons. The functional region of the centromere is defined by loading of a specific histone 3 variant (CENH3), which nucleates the kinetochore and shows dynamic regulation. In many plants, the centromeres are composed of satellite repeat arrays that are densely DNA methylated and invaded by centrophilic retrotransposons. In some cases, the retrotransposons become the sites of CENH3 loading. We review the structure of plant centromeres, including monocentric, holocentric, and metapolycentric architectures, which vary in the number and distribution of kinetochore attachment sites along chromosomes. We discuss how variation in CENH3 loading can drive genome elimination during early cell divisions of plant embryogenesis. We review how epigenetic state may influence centromere identity and discuss evolutionary models that seek to explain the paradoxically rapid change of centromere sequences observed across species, including the potential roles of recombination. We outline putative modes of selection that could act within the centromeres, as well as the role of repeats in driving cycles of centromere evolution. Although our primary focus is on plant genomes, we draw comparisons with animal and fungal centromeres to derive a eukaryote-wide perspective of centromere structure and function.
Collapse
Affiliation(s)
- Matthew Naish
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
3
|
Senaratne AP, Cortes-Silva N, Drinnenberg IA. Evolution of holocentric chromosomes: Drivers, diversity, and deterrents. Semin Cell Dev Biol 2022; 127:90-99. [PMID: 35031207 DOI: 10.1016/j.semcdb.2022.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023]
Abstract
Centromeres are specialized chromosomal regions that recruit kinetochore proteins and mediate spindle microtubule attachment to ensure faithful chromosome segregation during mitosis and meiosis. Centromeres can be restricted to one region of the chromosome. Named "monocentromere", this type represents the most commonly found centromere organization across eukaryotes. Alternatively, centromeres can also be assembled at sites chromosome-wide. This second type is called "holocentromere". Despite their early description over 100 years ago, research on holocentromeres has lagged behind that of monocentromeres. Nevertheless, the application of next generation sequencing approaches and advanced microscopic technologies enabled recent advances understanding the molecular organization and regulation of holocentromeres in different organisms. Here we review the current state of research on holocentromeres focusing on evolutionary considerations. First, we provide a brief historical perspective on the discovery of holocentric chromosomes. We then discuss models/drivers that have been proposed over the years to explain the evolutionary transition from mono- to holocentric chromosomes. We continue to review the description of holocentric chromosomes in diverse eukaryotic groups and then focus our discussion on a specific and recently characterized type of holocentromere organization in insects that functions independently of the otherwise essential centromeric marker protein CenH3, thus providing novel insights into holocentromere evolution in insects. Finally, we propose reasons to explain why the holocentric trait is not more frequent across eukaryotes despite putative selective advantages.
Collapse
Affiliation(s)
| | - Nuria Cortes-Silva
- Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Ines A Drinnenberg
- Institut Curie, PSL Research University, CNRS, UMR3664, F-75005 Paris, France; Sorbonne Université, Institut Curie, CNRS, UMR3664, F-75005 Paris, France.
| |
Collapse
|
4
|
Shukla S, Agarwal P, Kumar A. Disordered regions tune order in chromatin organization and function. Biophys Chem 2022; 281:106716. [PMID: 34844028 DOI: 10.1016/j.bpc.2021.106716] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 12/29/2022]
Abstract
Intrinsically disordered proteins or hybrid proteins with ordered domains and disordered regions (both collectively designated as IDP(R)s) defy the well-established structure-function paradigm due to their ability to perform multiple biological functions even in the absence of a well-defined 3D structure. IDP(R)s have a unique ability to exist as a functional heterogeneous ensemble, where they adopt multiple thermodynamically stable conformations with low energy barriers between states. The resultant structural plasticity or conformational adaptability provides them with a high functional diversity and ease of regulation. Hence, IDP(R)s are highly efficient biological machinery to mediate intricate cellular functions such as signaling, gene expression, and assembly of complex structures. One such structure is the nucleoprotein complex known as Chromatin. Interestingly, the proteins involved in shaping up the structure and function of chromatin are abundant in disordered regions, which serve more than just as mere flexible linkers. The disordered regions are involved in crucial processes such as gene expression regulation, chromatin architecture maintenance, and liquid-liquid phase separation initiation. This review is an attempt to explore the advantages and the functional and regulatory roles of intrinsic disorder in several Chromatin Associated Proteins from a mechanistic standpoint.
Collapse
Affiliation(s)
- Shivangi Shukla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Prakhar Agarwal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Ashutosh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India.
| |
Collapse
|
5
|
The ATAD2/ANCCA homolog Yta7 cooperates with Scm3 HJURP to deposit Cse4 CENP-A at the centromere in yeast. Proc Natl Acad Sci U S A 2020; 117:5386-5393. [PMID: 32079723 DOI: 10.1073/pnas.1917814117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The AAA+ ATPase and bromodomain factor ATAD2/ANCCA is overexpressed in many types of cancer, but how it contributes to tumorigenesis is not understood. Here, we report that the Saccharomyces cerevisiae homolog Yta7ATAD2 is a deposition factor for the centromeric histone H3 variant Cse4CENP-A at the centromere in yeast. Yta7ATAD2 regulates the levels of centromeric Cse4CENP-A in that yta7∆ causes reduced Cse4CENP-A deposition, whereas YTA7 overexpression causes increased Cse4CENP-A deposition. Yta7ATAD2 coimmunoprecipitates with Cse4CENP-A and is associated with the centromere, arguing for a direct role of Yta7ATAD2 in Cse4CENP-A deposition. Furthermore, increasing centromeric Cse4CENP-A levels by YTA7 overexpression requires the activity of Scm3HJURP, the centromeric nucleosome assembly factor. Importantly, Yta7ATAD2 interacts in vivo with Scm3HJURP, indicating that Yta7ATAD2 is a cochaperone for Scm3HJURP The absence of Yta7 causes defects in growth and chromosome segregation with mutations in components of the inner kinetochore (CTF19/CCAN, Mif2CENP-C, Cbf1). Since Yta7ATAD2 is an AAA+ ATPase and potential hexameric unfoldase, our results suggest that it may unfold the Cse4CENP-A histone and hand it over to Scm3HJURP for subsequent deposition in the centromeric nucleosome. Furthermore, our findings suggest that ATAD2 overexpression may enhance malignant transformation in humans by misregulating centromeric CENP-A levels, thus leading to defects in kinetochore assembly and chromosome segregation.
Collapse
|
6
|
Bhattacharya A, Shukla VK, Hosur RV, Kumar A. Backbone and side-chain resonance assignments of centromeric protein Scm3 from Saccharomyces cerevisiae. BIOMOLECULAR NMR ASSIGNMENTS 2019; 13:267-273. [PMID: 30937734 DOI: 10.1007/s12104-019-09889-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
The centromeric chromatin plays an essential role in regulating the attachment of microtubules and controlling the segregation of sister chromatids during mitosis. In budding yeast, the evolutionary conserved histone variant, Cse4 is a vital component of the multiprotein kinetochore complex and is recruited to the centromere through its chaperone, Suppressor of chromosome mis-segregation (Scm3). Scm3 is an inner kinetochore protein crucial for the formation of a functional inner kinetochore. Scm3 has been known to play an active role in the assembly of the centromeric nucleosome and its deletion has been found to have deleterious effects on the cells leading to chromosome segregation defects. However, structural details of monomeric full length Scm3 have remained elusive so far. Here, we report the backbone and side-chain resonance assignments of centromeric protein, Scm3. 1H, 13C and 15N chemical shifts of Scm3 have been obtained by various 2D and 3D heteronuclear NMR experiments at pH 7.4 and 283 K.
Collapse
Affiliation(s)
- Anusri Bhattacharya
- UM-DAE-Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Mumbai, 400098, India
| | - Vaibhav Kumar Shukla
- UM-DAE-Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Mumbai, 400098, India
| | - Ramakrishna V Hosur
- UM-DAE-Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Mumbai, 400098, India.
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| | - Ashutosh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
7
|
Hewawasam GS, Dhatchinamoorthy K, Mattingly M, Seidel C, Gerton JL. Chromatin assembly factor-1 (CAF-1) chaperone regulates Cse4 deposition into chromatin in budding yeast. Nucleic Acids Res 2019. [PMID: 29522205 PMCID: PMC5961020 DOI: 10.1093/nar/gky169] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Correct localization of the centromeric histone variant CenH3/CENP-A/Cse4 is an important part of faithful chromosome segregation. Mislocalization of CenH3 could affect chromosome segregation, DNA replication and transcription. CENP-A is often overexpressed and mislocalized in cancer genomes, but the underlying mechanisms are not understood. One major regulator of Cse4 deposition is Psh1, an E3 ubiquitin ligase that controls levels of Cse4 to prevent deposition into non-centromeric regions. We present evidence that Chromatin assembly factor-1 (CAF-1), an evolutionarily conserved histone H3/H4 chaperone with subunits shown previously to interact with CenH3 in flies and human cells, regulates Cse4 deposition in budding yeast. yCAF-1 interacts with Cse4 and can assemble Cse4 nucleosomes in vitro. Loss of yCAF-1 dramatically reduces the amount of Cse4 deposited into chromatin genome-wide when Cse4 is overexpressed. The incorporation of Cse4 genome-wide may have multifactorial effects on growth and gene expression. Loss of yCAF-1 can rescue growth defects and some changes in gene expression associated with Cse4 deposition that occur in the absence of Psh1-mediated proteolysis. Incorporation of Cse4 into promoter nucleosomes at transcriptionally active genes depends on yCAF-1. Overall our findings suggest CAF-1 can act as a CenH3 chaperone, regulating levels and incorporation of CenH3 in chromatin.
Collapse
Affiliation(s)
| | | | - Mark Mattingly
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Chris Seidel
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jennifer L Gerton
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.,Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.,University of Kansas Cancer Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| |
Collapse
|
8
|
Lang J, Barber A, Biggins S. An assay for de novo kinetochore assembly reveals a key role for the CENP-T pathway in budding yeast. eLife 2018; 7:37819. [PMID: 30117803 PMCID: PMC6097842 DOI: 10.7554/elife.37819] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/06/2018] [Indexed: 01/25/2023] Open
Abstract
Chromosome segregation depends on the kinetochore, the machine that establishes force-bearing attachments between DNA and spindle microtubules. Kinetochores are formed every cell cycle via a highly regulated process that requires coordinated assembly of multiple subcomplexes on specialized chromatin. To elucidate the underlying mechanisms, we developed an assay to assemble kinetochores de novo using centromeric DNA and budding yeast extracts. Assembly is enhanced by mitotic phosphorylation of the Dsn1 kinetochore protein and generates kinetochores capable of binding microtubules. We used this assay to investigate why kinetochores recruit the microtubule-binding Ndc80 complex via two receptors: the Mis12 complex and CENP-T. Although the CENP-T pathway is non-essential in yeast, we demonstrate that it becomes essential for viability and Ndc80c recruitment when the Mis12 pathway is crippled by defects in Dsn1 phosphorylation. Assembling kinetochores de novo in yeast extracts provides a powerful and genetically tractable method to elucidate critical regulatory events in the future.
Collapse
Affiliation(s)
- Jackie Lang
- Division of Basic Sciences, Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, United States.,Molecular and Cellular Biology Program, University of Washington, Seattle, United States
| | - Adrienne Barber
- Division of Basic Sciences, Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Sue Biggins
- Division of Basic Sciences, Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, United States
| |
Collapse
|
9
|
Moreno-Moreno O, Torras-Llort M, Azorín F. Variations on a nucleosome theme: The structural basis of centromere function. Bioessays 2017; 39. [PMID: 28220502 DOI: 10.1002/bies.201600241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The centromere is a specialized chromosomal structure that dictates kinetochore assembly and, thus, is essential for accurate chromosome segregation. Centromere identity is determined epigenetically by the presence of a centromere-specific histone H3 variant, CENP-A, that replaces canonical H3 in centromeric chromatin. Here, we discuss recent work by Roulland et al. that identifies structural elements of the nucleosome as essential determinants of centromere function. In particular, CENP-A nucleosomes have flexible DNA ends due to the short αN helix of CENP-A. The higher flexibility of the DNA ends of centromeric nucleosomes impairs binding of linker histones H1, while it facilitates binding of other essential centromeric proteins, such as CENP-C, and is required for mitotic fidelity. This work extends previous observations indicating that the differential structural properties of CENP-A nucleosomes are on the basis of its contribution to centromere identity and function. Here, we discuss the implications of this work and the questions arising from it.
Collapse
Affiliation(s)
- Olga Moreno-Moreno
- Institute of Molecular Biology of Barcelona, CSIC, Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona, The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Mònica Torras-Llort
- Institute of Molecular Biology of Barcelona, CSIC, Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona, The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Fernando Azorín
- Institute of Molecular Biology of Barcelona, CSIC, Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona, The Barcelona Institute for Science and Technology, Barcelona, Spain
| |
Collapse
|
10
|
Hammond CM, Strømme CB, Huang H, Patel DJ, Groth A. Histone chaperone networks shaping chromatin function. Nat Rev Mol Cell Biol 2017; 18:141-158. [PMID: 28053344 DOI: 10.1038/nrm.2016.159] [Citation(s) in RCA: 378] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The association of histones with specific chaperone complexes is important for their folding, oligomerization, post-translational modification, nuclear import, stability, assembly and genomic localization. In this way, the chaperoning of soluble histones is a key determinant of histone availability and fate, which affects all chromosomal processes, including gene expression, chromosome segregation and genome replication and repair. Here, we review the distinct structural and functional properties of the expanding network of histone chaperones. We emphasize how chaperones cooperate in the histone chaperone network and via co-chaperone complexes to match histone supply with demand, thereby promoting proper nucleosome assembly and maintaining epigenetic information by recycling modified histones evicted from chromatin.
Collapse
Affiliation(s)
- Colin M Hammond
- Biotech Research and Innovation Centre (BRIC) and Centre for Epigenetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Caroline B Strømme
- Biotech Research and Innovation Centre (BRIC) and Centre for Epigenetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Hongda Huang
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Anja Groth
- Biotech Research and Innovation Centre (BRIC) and Centre for Epigenetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| |
Collapse
|
11
|
Zasadzińska E, Foltz DR. Orchestrating the Specific Assembly of Centromeric Nucleosomes. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2017; 56:165-192. [PMID: 28840237 DOI: 10.1007/978-3-319-58592-5_7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Centromeres are chromosomal loci that are defined epigenetically in most eukaryotes by incorporation of a centromere-specific nucleosome in which the canonical histone H3 variant is replaced by Centromere Protein A (CENP-A). Therefore, the assembly and propagation of centromeric nucleosomes are critical for maintaining centromere identify and ensuring genomic stability. Centromeres direct chromosome segregation (during mitosis and meiosis) by recruiting the constitutive centromere-associated network of proteins throughout the cell cycle that in turn recruits the kinetochore during mitosis. Assembly of centromere-specific nucleosomes in humans requires the dedicated CENP-A chaperone HJURP, and the Mis18 complex to couple the deposition of new CENP-A to the site of the pre-existing centromere, which is essential for maintaining centromere identity. Human CENP-A deposition occurs specifically in early G1, into pre-existing chromatin, and several additional chromatin-associated complexes regulate CENP-A nucleosome deposition and stability. Here we review the current knowledge on how new CENP-A nucleosomes are assembled selectively at the existing centromere in different species and how this process is controlled to ensure stable epigenetic inheritance of the centromere.
Collapse
Affiliation(s)
- Ewelina Zasadzińska
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Daniel R Foltz
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA. .,Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA. .,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
12
|
Mishra PK, Guo J, Dittman LE, Haase J, Yeh E, Bloom K, Basrai MA. Pat1 protects centromere-specific histone H3 variant Cse4 from Psh1-mediated ubiquitination. Mol Biol Cell 2015; 26:2067-79. [PMID: 25833709 PMCID: PMC4472017 DOI: 10.1091/mbc.e14-08-1335] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 03/27/2015] [Indexed: 11/25/2022] Open
Abstract
A novel Pat1-dependent mechanism is identified for the protection of kinetochore-associated Cse4 from ubiquitination in order to ensure faithful chromosome segregation and genomic stability. Evolutionarily conserved histone H3 variant Cse4 and its homologues are essential components of specialized centromere (CEN)-specific nucleosomes and serve as an epigenetic mark for CEN identity and propagation. Cse4 is a critical determinant for the structure and function of the kinetochore and is required to ensure faithful chromosome segregation. The kinetochore protein Pat1 regulates the levels and spatial distribution of Cse4 at centromeres. Deletion of PAT1 results in altered structure of CEN chromatin and chromosome segregation errors. In this study, we show that Pat1 protects CEN-associated Cse4 from ubiquitination in order to maintain proper structure and function of the kinetochore in budding yeast. PAT1-deletion strains exhibit increased ubiquitination of Cse4 and faster turnover of Cse4 at kinetochores. Psh1, a Cse4-specific E3-ubiquitin ligase, interacts with Pat1 in vivo and contributes to the increased ubiquitination of Cse4 in pat1∆ strains. Consistent with a role of Psh1 in ubiquitination of Cse4, transient induction of PSH1 in a wild-type strain resulted in phenotypes similar to a pat1∆ strain, including a reduction in CEN-associated Cse4, increased Cse4 ubiquitination, defects in spatial distribution of Cse4 at kinetochores, and altered structure of CEN chromatin. Pat1 interacts with Scm3 and is required for its maintenance at kinetochores. In conclusion, our studies provide novel insights into mechanisms by which Pat1 affects the structure of CEN chromatin and protects Cse4 from Psh1-mediated ubiquitination for faithful chromosome segregation.
Collapse
Affiliation(s)
- Prashant K Mishra
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jiasheng Guo
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Lauren E Dittman
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Julian Haase
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Elaine Yeh
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Kerry Bloom
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Munira A Basrai
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
13
|
Westhorpe FG, Straight AF. The centromere: epigenetic control of chromosome segregation during mitosis. Cold Spring Harb Perspect Biol 2014; 7:a015818. [PMID: 25414369 DOI: 10.1101/cshperspect.a015818] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A fundamental challenge for the survival of all organisms is maintaining the integrity of the genome in all cells. Cells must therefore segregate their replicated genome equally during each cell division. Eukaryotic organisms package their genome into a number of physically distinct chromosomes, which replicate during S phase and condense during prophase of mitosis to form paired sister chromatids. During mitosis, cells form a physical connection between each sister chromatid and microtubules of the mitotic spindle, which segregate one copy of each chromatid to each new daughter cell. The centromere is the DNA locus on each chromosome that creates the site of this connection. In this review, we present a brief history of centromere research and discuss our current knowledge of centromere establishment, maintenance, composition, structure, and function in mitosis.
Collapse
Affiliation(s)
- Frederick G Westhorpe
- Department of Biochemistry, Stanford University Medical School, Stanford, California 94305
| | - Aaron F Straight
- Department of Biochemistry, Stanford University Medical School, Stanford, California 94305
| |
Collapse
|
14
|
Hewawasam GS, Mattingly M, Venkatesh S, Zhang Y, Florens L, Workman JL, Gerton JL. Phosphorylation by casein kinase 2 facilitates Psh1 protein-assisted degradation of Cse4 protein. J Biol Chem 2014; 289:29297-309. [PMID: 25183013 PMCID: PMC4200280 DOI: 10.1074/jbc.m114.580589] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cse4 is the centromeric histone H3 variant in budding yeast. Psh1 is an E3 ubiquitin ligase that controls Cse4 levels through proteolysis. Here we report that Psh1 is phosphorylated by the Cka2 subunit of casein kinase 2 (CK2) to promote its E3 activity for Cse4. Deletion of CKA2 significantly stabilized Cse4. Consistent with phosphorylation promoting the activity of Psh1, Cse4 was stabilized in a Psh1 phosphodepleted mutant strain in which the major phosphorylation sites were changed to alanines. Phosphorylation of Psh1 did not control Psh1-Cse4 or Psh1-Ubc3(E2) interactions. Although Cse4 was highly stabilized in a cka2Δ strain, mislocalization of Cse4 was mild, suggesting that Cse4 misincorporation was prevented by the intact Psh1-Cse4 association. Supporting this idea, Psh1 was also stabilized in a cka2Δ strain. Collectively our data suggest that phosphorylation is crucial in Psh1-assisted control of Cse4 levels and that the Psh1-Cse4 association itself functions to prevent Cse4 misincorporation.
Collapse
Affiliation(s)
- Geetha S Hewawasam
- From the Stowers Institute for Medical Research, Kansas City, Missouri 64110 and
| | - Mark Mattingly
- From the Stowers Institute for Medical Research, Kansas City, Missouri 64110 and
| | | | - Ying Zhang
- From the Stowers Institute for Medical Research, Kansas City, Missouri 64110 and
| | - Laurence Florens
- From the Stowers Institute for Medical Research, Kansas City, Missouri 64110 and
| | - Jerry L Workman
- From the Stowers Institute for Medical Research, Kansas City, Missouri 64110 and
| | - Jennifer L Gerton
- From the Stowers Institute for Medical Research, Kansas City, Missouri 64110 and Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160
| |
Collapse
|
15
|
Müller S, Montes de Oca R, Lacoste N, Dingli F, Loew D, Almouzni G. Phosphorylation and DNA binding of HJURP determine its centromeric recruitment and function in CenH3(CENP-A) loading. Cell Rep 2014; 8:190-203. [PMID: 25001279 DOI: 10.1016/j.celrep.2014.06.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/21/2014] [Accepted: 06/01/2014] [Indexed: 01/20/2023] Open
Abstract
Centromeres, epigenetically defined by the presence of the histone H3 variant CenH3, are essential for ensuring proper chromosome segregation. In mammals, centromeric CenH3(CENP-A) deposition requires its dedicated chaperone HJURP and occurs during telophase/early G1. We find that the cell-cycle-dependent recruitment of HJURP to centromeres depends on its timely phosphorylation controlled via cyclin-dependent kinases. A nonphosphorylatable HJURP mutant localizes prematurely to centromeres in S and G2 phase. This unregulated targeting causes a premature loading of CenH3(CENP-A) at centromeres, and cell-cycle delays ensue. Once recruited to centromeres, HJURP functions to promote CenH3(CENP-A) deposition by a mechanism involving a unique DNA-binding domain. With our findings, we propose a model wherein (1) the phosphorylation state of HJURP controls its centromeric recruitment in a cell-cycle-dependent manner, and (2) HJURP binding to DNA is a mechanistic determinant in CenH3(CENP-A) loading.
Collapse
Affiliation(s)
- Sebastian Müller
- Institut Curie, Centre de Recherche, Paris 75248, France; CNRS, UMR3664, Paris 75248, France; Equipe Labellisée Ligue contre le Cancer, UMR3664, Paris 75248, France; UPMC, UMR3664, Paris 75248, France; Sorbonne University, Paris 75005, France
| | - Rocio Montes de Oca
- Institut Curie, Centre de Recherche, Paris 75248, France; CNRS, UMR3664, Paris 75248, France; Equipe Labellisée Ligue contre le Cancer, UMR3664, Paris 75248, France; UPMC, UMR3664, Paris 75248, France; Sorbonne University, Paris 75005, France
| | - Nicolas Lacoste
- Institut Curie, Centre de Recherche, Paris 75248, France; CNRS, UMR3664, Paris 75248, France; Equipe Labellisée Ligue contre le Cancer, UMR3664, Paris 75248, France; UPMC, UMR3664, Paris 75248, France; Sorbonne University, Paris 75005, France
| | - Florent Dingli
- Institut Curie, Centre de Recherche, Paris 75248, France; Laboratory of Proteomic Mass Spectrometry, 75248 Paris Cedex 05, France
| | - Damarys Loew
- Institut Curie, Centre de Recherche, Paris 75248, France; Laboratory of Proteomic Mass Spectrometry, 75248 Paris Cedex 05, France
| | - Geneviève Almouzni
- Institut Curie, Centre de Recherche, Paris 75248, France; CNRS, UMR3664, Paris 75248, France; Equipe Labellisée Ligue contre le Cancer, UMR3664, Paris 75248, France; UPMC, UMR3664, Paris 75248, France; Sorbonne University, Paris 75005, France.
| |
Collapse
|
16
|
Wisniewski J, Hajj B, Chen J, Mizuguchi G, Xiao H, Wei D, Dahan M, Wu C. Imaging the fate of histone Cse4 reveals de novo replacement in S phase and subsequent stable residence at centromeres. eLife 2014; 3:e02203. [PMID: 24844245 PMCID: PMC4067749 DOI: 10.7554/elife.02203] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The budding yeast centromere contains Cse4, a specialized histone H3 variant. Fluorescence pulse-chase analysis of an internally tagged Cse4 reveals that it is replaced with newly synthesized molecules in S phase, remaining stably associated with centromeres thereafter. In contrast, C-terminally-tagged Cse4 is functionally impaired, showing slow cell growth, cell lethality at elevated temperatures, and extra-centromeric nuclear accumulation. Recent studies using such strains gave conflicting findings regarding the centromeric abundance and cell cycle dynamics of Cse4. Our findings indicate that internally tagged Cse4 is a better reporter of the biology of this histone variant. Furthermore, the size of centromeric Cse4 clusters was precisely mapped with a new 3D-PALM method, revealing substantial compaction during anaphase. Cse4-specific chaperone Scm3 displays steady-state, stoichiometric co-localization with Cse4 at centromeres throughout the cell cycle, while undergoing exchange with a nuclear pool. These findings suggest that a stable Cse4 nucleosome is maintained by dynamic chaperone-in-residence Scm3.DOI: http://dx.doi.org/10.7554/eLife.02203.001.
Collapse
Affiliation(s)
- Jan Wisniewski
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Bassam Hajj
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Jiji Chen
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Gaku Mizuguchi
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Hua Xiao
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Debbie Wei
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Maxime Dahan
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Carl Wu
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States
| |
Collapse
|
17
|
Henikoff S, Ramachandran S, Krassovsky K, Bryson TD, Codomo CA, Brogaard K, Widom J, Wang JP, Henikoff JG. The budding yeast Centromere DNA Element II wraps a stable Cse4 hemisome in either orientation in vivo. eLife 2014; 3:e01861. [PMID: 24737863 PMCID: PMC3983907 DOI: 10.7554/elife.01861] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In budding yeast, a single cenH3 (Cse4) nucleosome occupies the ∼120-bp functional centromere, however conflicting structural models for the particle have been proposed. To resolve this controversy, we have applied H4S47C-anchored cleavage mapping, which reveals the precise position of histone H4 in every nucleosome in the genome. We find that cleavage patterns at centromeres are unique within the genome and are incompatible with symmetrical structures, including octameric nucleosomes and (Cse4/H4)2 tetrasomes. Centromere cleavage patterns are compatible with a precisely positioned core structure, one in which each of the 16 yeast centromeres is occupied by oppositely oriented Cse4/H4/H2A/H2B hemisomes in two rotational phases within the population. Centromere-specific hemisomes are also inferred from distances observed between closely-spaced H4 cleavages, as predicted from structural modeling. Our results indicate that the orientation and rotational position of the stable hemisome at each yeast centromere is not specified by the functional centromere sequence. DOI:http://dx.doi.org/10.7554/eLife.01861.001 DNA is tightly packaged in cells for a variety of reasons—to allow it to fit inside the nucleus, to protect it from damage, and to help control the production of proteins from genes. The basic unit of packaged DNA is called a nucleosome, which consists of DNA wrapped around a structure formed by two pairs of four different proteins. These proteins, which are called histones, have a role that extends beyond providing structural support for DNA. When cells divide, for example, pairs of ‘sister chromosomes’ are pulled apart to ensure that the two daughter cells both have the same chromosomes as the original cell. The sister chromosomes are pulled apart from a single position called a centromere, and the nucleosomes at this position contain a histone that is different from the histones found everywhere else in the cell. However, until recently it was not clear if the nucleosomes that contained these special cenH3 histones had the same structure as other nucleosomes. Now Henikoff et al. have used a method called H4S47C-anchored cleavage mapping to study every nucleosome in the genome of the yeast S. cerevisiae. This mapping technique uses DNA sequencing to measure the precise distances between fixed points on the DNA in the nucleosome. Knowing these distances tells researchers a great deal about the number and position of the histones within each nucleosome in the genome. Using this approach, Henikoff et al. found that nucleosomes at centromeres are different from other nucleosomes in histone number and arrangement. In particular, the nucleosome at each yeast centromere contains only one each of the four different histones in an asymmetrical orientation, in contrast to all other yeast nucleosomes, which contain two sets of four histones in a symmetrical arrangement. Furthermore, each nucleosome at a centromere can adopt one of two orientations: these orientations are mirror images of each other, and they occur with equal probability. It should also be possible to use the mapping technique developed by Henikoff et al. to study the larger and more complex centromeres found in other organisms, including humans. DOI:http://dx.doi.org/10.7554/eLife.01861.002
Collapse
Affiliation(s)
- Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Dechassa ML, Wyns K, Luger K. Scm3 deposits a (Cse4-H4)2 tetramer onto DNA through a Cse4-H4 dimer intermediate. Nucleic Acids Res 2014; 42:5532-42. [PMID: 24623811 PMCID: PMC4027189 DOI: 10.1093/nar/gku205] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The assembly of centromeric nucleosomes is mediated by histone variant-specific chaperones. In budding yeast, the centromere-specific histone H3 variant is Cse4, and the histone chaperone Scm3 functions as a Cse4-specific nucleosome assembly factor. Here, we show that Scm3 exhibits specificity for Cse4-H4, but also interacts with major-type H3-H4 and H2A-H2B. Previously published structures of the Scm3 histone complex demonstrate that Scm3 binds only one copy of Cse4-H4. Consistent with this, we show that Scm3 deposits Cse4-H4 through a dimer intermediate onto deoxyribonucleic acid (DNA) to form a (Cse4-H4)2-DNA complex (tetrasome). Scm3-bound Cse4-H4 does not form a tetramer in the absence of DNA. Moreover, we demonstrate that Cse4 and H3 are structurally compatible to be incorporated in the same nucleosome to form heterotypic particles. Our data shed light on the mechanism of Scm3-mediated nucleosome assembly at the centromere.
Collapse
Affiliation(s)
- Mekonnen Lemma Dechassa
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789, USA
| | - Katharina Wyns
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Karolin Luger
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789, USA
| |
Collapse
|
19
|
A network of players in H3 histone variant deposition and maintenance at centromeres. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:241-50. [DOI: 10.1016/j.bbagrm.2013.11.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 11/14/2013] [Accepted: 11/19/2013] [Indexed: 11/21/2022]
|
20
|
Abstract
The propagation of all organisms depends on the accurate and orderly segregation of chromosomes in mitosis and meiosis. Budding yeast has long served as an outstanding model organism to identify the components and underlying mechanisms that regulate chromosome segregation. This review focuses on the kinetochore, the macromolecular protein complex that assembles on centromeric chromatin and maintains persistent load-bearing attachments to the dynamic tips of spindle microtubules. The kinetochore also serves as a regulatory hub for the spindle checkpoint, ensuring that cell cycle progression is coupled to the achievement of proper microtubule-kinetochore attachments. Progress in understanding the composition and overall architecture of the kinetochore, as well as its properties in making and regulating microtubule attachments and the spindle checkpoint, is discussed.
Collapse
|
21
|
Chen CC, Dechassa ML, Bettini E, Ledoux MB, Belisario C, Heun P, Luger K, Mellone BG. CAL1 is the Drosophila CENP-A assembly factor. ACTA ACUST UNITED AC 2014; 204:313-29. [PMID: 24469636 PMCID: PMC3912524 DOI: 10.1083/jcb.201305036] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Representing a unique family of histone assembly factors, CAL1 assembles the histone H3 variant CENP-A on centromeric DNA in Drosophila. Centromeres are specified epigenetically by the incorporation of the histone H3 variant CENP-A. In humans, amphibians, and fungi, CENP-A is deposited at centromeres by the HJURP/Scm3 family of assembly factors, but homologues of these chaperones are absent from a number of major eukaryotic lineages such as insects, fish, nematodes, and plants. In Drosophila, centromeric deposition of CENP-A requires the fly-specific protein CAL1. Here, we show that targeting CAL1 to noncentromeric DNA in Drosophila cells is sufficient to heritably recruit CENP-A, kinetochore proteins, and microtubule attachments. CAL1 selectively interacts with CENP-A and is sufficient to assemble CENP-A nucleosomes that display properties consistent with left-handed octamers. The CENP-A assembly activity of CAL1 resides within an N-terminal domain, whereas the C terminus mediates centromere recognition through an interaction with CENP-C. Collectively, this work identifies the “missing” CENP-A chaperone in flies, revealing fundamental conservation between insect and vertebrate centromere-specification mechanisms.
Collapse
Affiliation(s)
- Chin-Chi Chen
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Zasadzińska E, Barnhart-Dailey MC, Kuich PHJL, Foltz DR. Dimerization of the CENP-A assembly factor HJURP is required for centromeric nucleosome deposition. EMBO J 2013; 32:2113-24. [PMID: 23771058 DOI: 10.1038/emboj.2013.142] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 05/23/2013] [Indexed: 11/09/2022] Open
Abstract
The epigenetic mark of the centromere is thought to be a unique centromeric nucleosome that contains the histone H3 variant, centromere protein-A (CENP-A). The deposition of new centromeric nucleosomes requires the CENP-A-specific chromatin assembly factor HJURP (Holliday junction recognition protein). Crystallographic and biochemical data demonstrate that the Scm3-like domain of HJURP binds a single CENP-A-histone H4 heterodimer. However, several lines of evidence suggest that HJURP forms an octameric CENP-A nucleosome. How an octameric CENP-A nucleosome forms from individual CENP-A/histone H4 heterodimers is unknown. Here, we show that HJURP forms a homodimer through its C-terminal domain that includes the second HJURP_C domain. HJURP exists as a dimer in the soluble preassembly complex and at chromatin when new CENP-A is deposited. Dimerization of HJURP is essential for the deposition of new CENP-A nucleosomes. The recruitment of HJURP to centromeres occurs independent of dimerization and CENP-A binding. These data provide a mechanism whereby the CENP-A pre-nucleosomal complex achieves assembly of the octameric CENP-A nucleosome through the dimerization of the CENP-A chaperone HJURP.
Collapse
Affiliation(s)
- Ewelina Zasadzińska
- Department of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| | | | | | | |
Collapse
|
23
|
Norman-Axelsson U, Durand-Dubief M, Prasad P, Ekwall K. DNA topoisomerase III localizes to centromeres and affects centromeric CENP-A levels in fission yeast. PLoS Genet 2013; 9:e1003371. [PMID: 23516381 PMCID: PMC3597498 DOI: 10.1371/journal.pgen.1003371] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 01/25/2013] [Indexed: 11/21/2022] Open
Abstract
Centromeres are specialized chromatin regions marked by the presence of nucleosomes containing the centromere-specific histone H3 variant CENP-A, which is essential for chromosome segregation. Assembly and disassembly of nucleosomes is intimately linked to DNA topology, and DNA topoisomerases have previously been implicated in the dynamics of canonical H3 nucleosomes. Here we show that Schizosaccharomyces pombe Top3 and its partner Rqh1 are involved in controlling the levels of CENP-ACnp1 at centromeres. Both top3 and rqh1 mutants display defects in chromosome segregation. Using chromatin immunoprecipitation and tiling microarrays, we show that Top3, unlike Top1 and Top2, is highly enriched at centromeric central domains, demonstrating that Top3 is the major topoisomerase in this region. Moreover, centromeric Top3 occupancy positively correlates with CENP-ACnp1 occupancy. Intriguingly, both top3 and rqh1 mutants display increased relative enrichment of CENP-ACnp1 at centromeric central domains. Thus, Top3 and Rqh1 normally limit the levels of CENP-ACnp1 in this region. This new role is independent of the established function of Top3 and Rqh1 in homologous recombination downstream of Rad51. Therefore, we hypothesize that the Top3-Rqh1 complex has an important role in controlling centromere DNA topology, which in turn affects the dynamics of CENP-ACnp1 nucleosomes. Centromeres are unique regions on eukaryotic chromosomes that are essential for chromosome segregation at mitosis and meiosis. Centromere identity and function depends on the presence of specialized chromatin with nucleosomes containing the centromere-specific histone H3 variant CENP-A. Assembly and disassembly of nucleosomes have previously been shown to involve a family of enzymes known as DNA topoisomerases. We show that centromeres are unique in that they are associated with high levels of Top3, but low levels of Top1 and Top2, suggesting that Top3 is particularly important for centromeric DNA topology. Impaired function of Top3 or its partner Rqh1 results in chromosome segregation defects and increased levels of CENP-ACnp1 at centromeres. This role in limiting the levels of CENP-ACnp1 at centromeres is independent of the established role for the Top3-Rqh1 complex in homologous recombination. Therefore, we hypothesize that the Top3-Rqh1 complex exerts this effect by regulating centromere DNA topology, which in turn affects CENP-ACnp1 nucleosome dynamics. Specific removal of negative supercoiling by Top3 could directly have a negative effect on assembly of CENP-ACnp1 nucleosomes with left-handed negative wrapping of DNA and/or act indirectly by inhibiting transcription-coupled CENP-ACnp1 assembly. Alternatively, Top3 may be a factor that promotes formation of CENP-ACnp1 hemisomes with right-handed wrapping of DNA over conventional octamers. This suggests a new role for the Top3-Rqh1 complex at centromeres and may contribute to the understanding of the structural and functional specification of centromeres.
Collapse
Affiliation(s)
- Ulrika Norman-Axelsson
- Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Mickaël Durand-Dubief
- Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Punit Prasad
- Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Karl Ekwall
- Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- * E-mail:
| |
Collapse
|
24
|
Dunleavy EM, Beier NL, Gorgescu W, Tang J, Costes SV, Karpen GH. The cell cycle timing of centromeric chromatin assembly in Drosophila meiosis is distinct from mitosis yet requires CAL1 and CENP-C. PLoS Biol 2012; 10:e1001460. [PMID: 23300382 PMCID: PMC3531500 DOI: 10.1371/journal.pbio.1001460] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 11/13/2012] [Indexed: 01/16/2023] Open
Abstract
CENP-A (CID in flies) is the histone H3 variant essential for centromere specification, kinetochore formation, and chromosome segregation during cell division. Recent studies have elucidated major cell cycle mechanisms and factors critical for CENP-A incorporation in mitosis, predominantly in cultured cells. However, we do not understand the roles, regulation, and cell cycle timing of CENP-A assembly in somatic tissues in multicellular organisms and in meiosis, the specialized cell division cycle that gives rise to haploid gametes. Here we investigate the timing and requirements for CID assembly in mitotic tissues and male and female meiosis in Drosophila melanogaster, using fixed and live imaging combined with genetic approaches. We find that CID assembly initiates at late telophase and continues during G1 phase in somatic tissues in the organism, later than the metaphase assembly observed in cultured cells. Furthermore, CID assembly occurs at two distinct cell cycle phases during male meiosis: prophase of meiosis I and after exit from meiosis II, in spermatids. CID assembly in prophase I is also conserved in female meiosis. Interestingly, we observe a novel decrease in CID levels after the end of meiosis I and before meiosis II, which correlates temporally with changes in kinetochore organization and orientation. We also demonstrate that CID is retained on mature sperm despite the gross chromatin remodeling that occurs during protamine exchange. Finally, we show that the centromere proteins CAL1 and CENP-C are both required for CID assembly in meiosis and normal progression through spermatogenesis. We conclude that the cell cycle timing of CID assembly in meiosis is different from mitosis and that the efficient propagation of CID through meiotic divisions and on sperm is likely to be important for centromere specification in the developing zygote.
Collapse
Affiliation(s)
- Elaine M. Dunleavy
- Department of Genome Dynamics, Life Sciences Division, Lawrence Berkeley National Laboratory, and Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Nicole L. Beier
- Department of Genome Dynamics, Life Sciences Division, Lawrence Berkeley National Laboratory, and Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Walter Gorgescu
- Department of Cancer and DNA Damage Responses, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Jonathan Tang
- Department of Cancer and DNA Damage Responses, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Sylvain V. Costes
- Department of Cancer and DNA Damage Responses, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Gary H. Karpen
- Department of Genome Dynamics, Life Sciences Division, Lawrence Berkeley National Laboratory, and Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
25
|
Phansalkar R, Lapierre P, Mellone BG. Evolutionary insights into the role of the essential centromere protein CAL1 in Drosophila. Chromosome Res 2012; 20:493-504. [PMID: 22820845 DOI: 10.1007/s10577-012-9299-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Centromeres are essential cis-elements on chromosomes that are crucial for the stable transmission of genetic information during mitotic and meiotic cell divisions. Different species employ a variety of centromere configurations, from small genetically defined centromeres in budding yeast to holocentric centromeres that occupy entire chromosomes in Caenorhabditis, yet the incorporation of nucleosomes containing the essential centromere-specific histone H3 variant CENP-A is a common feature of centromeres in all eukaryotes. In vertebrates and fungi, CENP-A is specifically deposited at centromeres by a conserved chaperone, called HJURP or Scm3, respectively. Surprisingly, homologs of these proteins have not been identified in Drosophila, Caenorhabditis, or plants. How CENP-A is targeted to centromeres in these organisms is not known. The Drosophila centromeric protein CAL1, found only in the Diptera genus, is essential for CENP-A localization, is recruited to centromeres at a similar time as CENP-A, and interacts with CENP-A in both chromatin and pre-nucleosomal complexes, making it a strong candidate for a CENP-A chaperone in this lineage. Here, we discuss the conservation and evolution of this essential centromere factor and report the identification of a "Scm3-domain"-like region with similarity to the corresponding region of fungal Scm3 as well as a shared predicted alpha-helical structure. Given the lack of common ancestry between Scm3 and CAL1, we propose that an optimal CENP-A binding region was independently acquired by CAL1, which caused the loss of an ancestral Scm3 protein from the Diptera lineage.
Collapse
Affiliation(s)
- Ragini Phansalkar
- Department of Molecular and Cell Biology, University of Connecticut, 354 Mansfield Road, U2131, R247, Storrs, CT 06269, USA
| | | | | |
Collapse
|
26
|
Smith KM, Galazka JM, Phatale PA, Connolly LR, Freitag M. Centromeres of filamentous fungi. Chromosome Res 2012; 20:635-56. [PMID: 22752455 DOI: 10.1007/s10577-012-9290-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
How centromeres are assembled and maintained remains one of the fundamental questions in cell biology. Over the past 20 years, the idea of centromeres as precise genetic loci has been replaced by the realization that it is predominantly the protein complement that defines centromere localization and function. Thus, placement and maintenance of centromeres are excellent examples of epigenetic phenomena in the strict sense. In contrast, the highly derived "point centromeres" of the budding yeast Saccharomyces cerevisiae and its close relatives are counter-examples for this general principle of centromere maintenance. While we have learned much in the past decade, it remains unclear if mechanisms for epigenetic centromere placement and maintenance are shared among various groups of organisms. For that reason, it seems prudent to examine species from many different phylogenetic groups with the aim to extract comparative information that will yield a more complete picture of cell division in all eukaryotes. This review addresses what has been learned by studying the centromeres of filamentous fungi, a large, heterogeneous group of organisms that includes important plant, animal and human pathogens, saprobes, and symbionts that fulfill essential roles in the biosphere, as well as a growing number of taxa that have become indispensable for industrial use.
Collapse
Affiliation(s)
- Kristina M Smith
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331-7305, USA
| | | | | | | | | |
Collapse
|
27
|
Shivaraju M, Unruh JR, Slaughter BD, Mattingly M, Berman J, Gerton JL. Cell-cycle-coupled structural oscillation of centromeric nucleosomes in yeast. Cell 2012; 150:304-16. [PMID: 22817893 DOI: 10.1016/j.cell.2012.05.034] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 03/16/2012] [Accepted: 05/18/2012] [Indexed: 11/17/2022]
Abstract
The centromere is a specialized chromosomal structure that regulates chromosome segregation. Centromeres are marked by a histone H3 variant. In budding yeast, the histone H3 variant Cse4 is present in a single centromeric nucleosome. Experimental evidence supports several different models for the structure of centromeric nucleosomes. To investigate Cse4 copy number in live yeast, we developed a method coupling fluorescence correlation spectroscopy and calibrated imaging. We find that centromeric nucleosomes have one copy of Cse4 during most of the cell cycle, whereas two copies are detected at anaphase. The proposal of an anaphase-coupled structural change is supported by Cse4-Cse4 interactions, incorporation of Cse4, and the absence of Scm3 in anaphase. Nucleosome reconstitution and ChIP suggests both Cse4 structures contain H2A/H2B. The increase in Cse4 intensity and deposition at anaphase are also observed in Candida albicans. Our experimental evidence supports a cell-cycle-coupled oscillation of centromeric nucleosome structure in yeast.
Collapse
|
28
|
Stellfox ME, Bailey AO, Foltz DR. Putting CENP-A in its place. Cell Mol Life Sci 2012; 70:387-406. [PMID: 22729156 DOI: 10.1007/s00018-012-1048-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/15/2012] [Accepted: 06/01/2012] [Indexed: 01/19/2023]
Abstract
The centromere is the chromosomal region that directs kinetochore assembly during mitosis in order to facilitate the faithful segregation of sister chromatids. The location of the human centromere is epigenetically specified. The presence of nucleosomes that contain the histone H3 variant, CENP-A, are thought to be the epigenetic mark that indicates active centromeres. Maintenance of centromeric identity requires the deposition of new CENP-A nucleosomes with each cell cycle. During S-phase, existing CENP-A nucleosomes are divided among the daughter chromosomes, while new CENP-A nucleosomes are deposited during early G1. The specific assembly of CENP-A nucleosomes at centromeres requires the Mis18 complex, which recruits the CENP-A assembly factor, HJURP. We will review the unique features of centromeric chromatin as well as the mechanism of CENP-A nucleosome deposition. We will also highlight a few recent discoveries that begin to elucidate the factors that temporally and spatially control CENP-A deposition.
Collapse
Affiliation(s)
- Madison E Stellfox
- Department of Biochemistry and Molecular Genetics, University of Virginia Medical School, PO Box 800733, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
29
|
The unconventional structure of centromeric nucleosomes. Chromosoma 2012; 121:341-52. [PMID: 22552438 PMCID: PMC3401303 DOI: 10.1007/s00412-012-0372-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 04/09/2012] [Accepted: 04/10/2012] [Indexed: 12/11/2022]
Abstract
The centromere is a defining feature of the eukaryotic chromosome, required for attachment to spindle microtubules and segregation to the poles at both mitosis and meiosis. The fundamental unit of centromere identity is the centromere-specific nucleosome, in which the centromeric histone 3 (cenH3) variant takes the place of H3. The structure of the cenH3 nucleosome has been the subject of controversy, as mutually exclusive models have been proposed, including conventional and unconventional left-handed octamers (octasomes), hexamers with non-histone protein constituents, and right-handed heterotypic tetramers (hemisomes). Hemisomes have been isolated from native centromeric chromatin, but traditional nucleosome assembly protocols have generally yielded partially unwrapped left-handed octameric nucleosomes. In budding yeast, topology analysis and high-resolution mapping has revealed that a single right-handed cenH3 hemisome occupies the ~80-bp Centromere DNA Element II (CDEII) of each chromosome. Overproduction of cenH3 leads to promiscuous low-level incorporation of octasome-sized particles throughout the yeast genome. We propose that the right-handed cenH3 hemisome is the universal unit of centromeric chromatin, and that the inherent instability of partially unwrapped left-handed cenH3 octamers is an adaptation to prevent formation of neocentromeres on chromosome arms.
Collapse
|
30
|
Sekulic N, Black BE. Molecular underpinnings of centromere identity and maintenance. Trends Biochem Sci 2012; 37:220-9. [PMID: 22410197 DOI: 10.1016/j.tibs.2012.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 01/20/2012] [Accepted: 01/24/2012] [Indexed: 11/15/2022]
Abstract
Centromeres direct faithful chromosome inheritance at cell division but are not defined by a conserved DNA sequence. Instead, a specialized form of chromatin containing the histone H3 variant, CENP-A, epigenetically specifies centromere location. We discuss current models where CENP-A serves as the marker for the centromere during the entire cell cycle in addition to generating the foundational chromatin for the kinetochore in mitosis. Recent elegant experiments have indicated that engineered arrays of CENP-A-containing nucleosomes are sufficient to serve as the site of kinetochore formation and for seeding centromeric chromatin that self-propagates through cell generations. Finally, recent structural and dynamic studies of CENP-A-containing histone complexes - before and after assembly into nucleosomes - provide models to explain underlying molecular mechanisms at the centromere.
Collapse
Affiliation(s)
- Nikolina Sekulic
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6059, USA
| | | |
Collapse
|
31
|
Choy JS, Mishra PK, Au WC, Basrai MA. Insights into assembly and regulation of centromeric chromatin in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:776-83. [PMID: 22366340 DOI: 10.1016/j.bbagrm.2012.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 02/08/2012] [Accepted: 02/10/2012] [Indexed: 12/30/2022]
Abstract
At the core of chromosome segregation is the centromere, which nucleates the assembly of a macromolecular kinetochore (centromere DNA and associated proteins) complex responsible for mediating spindle attachment. Recent advances in centromere research have led to identification of many kinetochore components, such as the centromeric-specific histone H3 variant, CenH3, and its interacting partner, Scm3. Both are essential for chromosome segregation and are evolutionarily conserved from yeast to humans. CenH3 is proposed to be the epigenetic mark that specifies centromeric identity. Molecular mechanisms that regulate the assembly of kinetochores at specific chromosomal sites to mediate chromosome segregation are not fully understood. In this review, we summarize the current literature and discuss results from our laboratory, which show that restricting the localization of budding yeast CenH3, Cse4, to centromeres and balanced stoichiometry between Scm3 and Cse4, contribute to faithful chromosome transmission. We highlight our findings that, similar to other eukaryotic centromeres, budding yeast centromeric histone H4 is hypoacetylated, and we discuss how altered histone acetylation affects chromosome segregation. This article is part of a Special Issue entitled: Chromatin in time and space.
Collapse
Affiliation(s)
- John S Choy
- Genetics Branch Center for Cancer research, National Cancer Institute, National Institutes of Health, 41 Medlars Drive, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
32
|
Abstract
This chapter focuses on the three-dimensional organization of the nucleus in normal, early genomically unstable, and tumor cells. A cause-consequence relationship is discussed between nuclear alterations and the resulting genomic rearrangements. Examples are presented from studies on conditional Myc deregulation, experimental tumorigenesis in mouse plasmacytoma, nuclear remodeling in Hodgkin's lymphoma, and in adult glioblastoma. A model of nuclear remodeling is proposed for cancer progression in multiple myeloma. Current models of nuclear remodeling are described, including our model of altered nuclear architecture and the onset of genomic instability.
Collapse
|
33
|
Dorn JF, Maddox PS. Kinetochore dynamics: how protein dynamics affect chromosome segregation. Curr Opin Cell Biol 2011; 24:57-63. [PMID: 22209729 DOI: 10.1016/j.ceb.2011.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 11/29/2011] [Accepted: 12/04/2011] [Indexed: 11/19/2022]
Abstract
Protein dynamics generate adaptive cellular architecture. This concept is exemplified by kinetochores, organelles that orchestrate chromosome segregation during mitosis. In this review, we will focus on protein dynamics at kinetochores and discuss how these dynamics impact chromosome motility during mitosis.
Collapse
Affiliation(s)
- Jonas F Dorn
- Institute for Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC, H3C 3J7, Canada
| | | |
Collapse
|
34
|
Pauleau AL, Erhardt S. Centromere regulation: new players, new rules, new questions. Eur J Cell Biol 2011; 90:805-10. [PMID: 21684630 DOI: 10.1016/j.ejcb.2011.04.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 04/15/2011] [Accepted: 04/19/2011] [Indexed: 01/12/2023] Open
Abstract
Centromeres support the assembly of the kinetochore on every chromosome and are therefore essential for the proper segregation of sister chromatids during cell division. Centromere identity is regulated epigenetically through the presence of the histone H3 variant CENP-A. CENP-A regulation and incorporation specifically into centromeric nucleosomes are the matter of intensive studies in many different model organisms. Here we briefly review the current knowledge in centromere biology with a focus on Drosophila melanogaster and how these insights lead to new rules and challenges.
Collapse
Affiliation(s)
- Anne-Laure Pauleau
- CellNetworks-Cluster of Excellence and ZMBH-DKFZ-Alliance, ZMBH, Heidelberg University, Im Neuenheimer Feld 282, Heidelberg, Germany
| | | |
Collapse
|
35
|
Maddox PS, Corbett KD, Desai A. Structure, assembly and reading of centromeric chromatin. Curr Opin Genet Dev 2011; 22:139-47. [PMID: 22178421 DOI: 10.1016/j.gde.2011.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 11/28/2011] [Indexed: 11/28/2022]
Abstract
Centromeres are epigenetically defined chromatin domains marked by the presence of the histone H3 variant CENP-A. Here we review recent structural and biochemical work on CENP-A, and advances in understanding the mechanisms that propagate and read centromeric chromatin domains.
Collapse
Affiliation(s)
- Paul S Maddox
- Institute for Research in Immunology and Cancer, Dept of Pathology and Cell Biology, Université de Montréal, Montréal, QC H3C 3J7, Canada.
| | | | | |
Collapse
|
36
|
Falk SJ, Black BE. Centromeric chromatin and the pathway that drives its propagation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:313-21. [PMID: 22154124 DOI: 10.1016/j.bbagrm.2011.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 11/09/2011] [Accepted: 11/10/2011] [Indexed: 01/03/2023]
Abstract
The centromere is the locus that directs chromosomal inheritance at cell division. While centromeres in diverse eukaryotes are commonly found at sites of repetitive DNA, their location is epigenetically specified. The histone H3 variant CENP-A is the prime candidate for epigenetically marking the centromere, and recent work has uncovered several additional proteins that play key roles in centromere assembly and maintenance. We describe advances in the identification and characterization of proteins that form the centromere, and focus on recent findings that have advanced our understanding of the assembly of functional centromeric chromatin. This article is part of a Special Issue entitled: Histone chaperones and chromatin assembly.
Collapse
|
37
|
Misregulation of Scm3p/HJURP causes chromosome instability in Saccharomyces cerevisiae and human cells. PLoS Genet 2011; 7:e1002303. [PMID: 21980305 PMCID: PMC3183075 DOI: 10.1371/journal.pgen.1002303] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 07/29/2011] [Indexed: 11/19/2022] Open
Abstract
The kinetochore (centromeric DNA and associated proteins) is a key determinant for high fidelity chromosome transmission. Evolutionarily conserved Scm3p is an essential component of centromeric chromatin and is required for assembly and function of kinetochores in humans, fission yeast, and budding yeast. Overexpression of HJURP, the mammalian homolog of budding yeast Scm3p, has been observed in lung and breast cancers and is associated with poor prognosis; however, the physiological relevance of these observations is not well understood. We overexpressed SCM3 and HJURP in Saccharomyces cerevisiae and HJURP in human cells and defined domains within Scm3p that mediate its chromosome loss phenotype. Our results showed that the overexpression of SCM3 (GALSCM3) or HJURP (GALHJURP) caused chromosome loss in a wild-type yeast strain, and overexpression of HJURP led to mitotic defects in human cells. GALSCM3 resulted in reduced viability in kinetochore mutants, premature separation of sister chromatids, and reduction in Cse4p and histone H4 at centromeres. Overexpression of CSE4 or histone H4 suppressed chromosome loss and restored levels of Cse4p at centromeres in GALSCM3 strains. Using mutant alleles of scm3, we identified a domain in the N-terminus of Scm3p that mediates its interaction with CEN DNA and determined that the chromosome loss phenotype of GALSCM3 is due to centromeric association of Scm3p devoid of Cse4p/H4. Furthermore, we determined that similar to other systems the centromeric association of Scm3p is cell cycle regulated. Our results show that altered stoichiometry of Scm3p/HJURP, Cse4p, and histone H4 lead to defects in chromosome segregation. We conclude that stringent regulation of HJURP and SCM3 expression are critical for genome stability.
Collapse
|
38
|
Kawashima S, Nakabayashi Y, Matsubara K, Sano N, Enomoto T, Tanaka K, Seki M, Horikoshi M. Global analysis of core histones reveals nucleosomal surfaces required for chromosome bi-orientation. EMBO J 2011; 30:3353-67. [PMID: 21772248 DOI: 10.1038/emboj.2011.241] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 06/27/2011] [Indexed: 01/15/2023] Open
Abstract
The attachment of sister kinetochores to microtubules from opposite spindle poles is essential for faithful chromosome segregation. Kinetochore assembly requires centromere-specific nucleosomes containing the histone H3 variant CenH3. However, the functional roles of the canonical histones (H2A, H2B, H3, and H4) in chromosome segregation remain elusive. Using a library of histone point mutants in Saccharomyces cerevisiae, 24 histone residues that conferred sensitivity to the microtubule-depolymerizing drugs thiabendazole (TBZ) and benomyl were identified. Twenty-three of these mutations were clustered at three spatially separated nucleosomal regions designated TBS-I, -II, and -III (TBZ/benomyl-sensitive regions I-III). Elevation of mono-polar attachment induced by prior nocodazole treatment was observed in H2A-I112A (TBS-I), H2A-E57A (TBS-II), and H4-L97A (TBS-III) cells. Severe impairment of the centromere localization of Sgo1, a key modulator of chromosome bi-orientation, occurred in H2A-I112A and H2A-E57A cells. In addition, the pericentromeric localization of Htz1, the histone H2A variant, was impaired in H4-L97A cells. These results suggest that the spatially separated nucleosomal regions, TBS-I and -II, are necessary for Sgo1-mediated chromosome bi-orientation and that TBS-III is required for Htz1 function.
Collapse
Affiliation(s)
- Satoshi Kawashima
- Molecular Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Barnhart MC, Kuich PHJL, Stellfox ME, Ward JA, Bassett EA, Black BE, Foltz DR. HJURP is a CENP-A chromatin assembly factor sufficient to form a functional de novo kinetochore. ACTA ACUST UNITED AC 2011; 194:229-43. [PMID: 21768289 PMCID: PMC3144403 DOI: 10.1083/jcb.201012017] [Citation(s) in RCA: 262] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Centromeres of higher eukaryotes are epigenetically marked by the centromere-specific CENP-A nucleosome. New CENP-A recruitment requires the CENP-A histone chaperone HJURP. In this paper, we show that a LacI (Lac repressor) fusion of HJURP drove the stable recruitment of CENP-A to a LacO (Lac operon) array at a noncentromeric locus. Ectopically targeted CENP-A chromatin at the LacO array was sufficient to direct the assembly of a functional centromere as indicated by the recruitment of the constitutive centromere-associated network proteins, the microtubule-binding protein NDC80, and the formation of stable kinetochore-microtubule attachments. An amino-terminal fragment of HJURP was able to assemble CENP-A nucleosomes in vitro, demonstrating that HJURP is a chromatin assembly factor. Furthermore, HJURP recruitment to endogenous centromeres required the Mis18 complex. Together, these data suggest that the role of the Mis18 complex in CENP-A deposition is to recruit HJURP and that the CENP-A nucleosome assembly activity of HJURP is responsible for centromeric chromatin assembly to maintain the epigenetic mark.
Collapse
Affiliation(s)
- Meghan C Barnhart
- Department of Biochemistry and Molecular Genetics, University of Virginia Medical School, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Sánchez P, Losada A. New clues to understand how CENP-A maintains centromere identity. Cell Div 2011; 6:11. [PMID: 21554702 PMCID: PMC3104478 DOI: 10.1186/1747-1028-6-11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 05/09/2011] [Indexed: 12/05/2022] Open
Abstract
The centromere is a specialized chromosomal region that directs the formation of the kinetochore, a huge protein assembly that acts as the attachment site for spindle microtubules and carries out chromosome movement during cell division. Centromere loss or the presence of extra centromeres adversely affect chromosome segregation and may result in aneuploidy, a condition found in many human tumors and a major cause of miscarriages and birth defects. Consequently, understanding the basis of centromere determination and propagation is of great relevance to both fundamental and clinical research. In recent years, it has become clear that centromeres are defined by the presence of a histone H3 variant known as Centromere Protein A, CENP-A, or CenH3. Much effort has been devoted to understanding the mechanisms that drive the assembly of CENP-A containing nucleosomes exclusively onto centromeric DNA, as well as the peculiar structure of these nucleosomes. We have recently developed an immunofluorescence-based assay that measures CENP-A incorporation in the centromeres of chromosomes assembled in Xenopus egg extracts. The spatial and temporal specificity of CENP-A deposition observed in human cells can be recapitulated in this in vitro system, making it suitable to dissect the precise role of the different factors that contribute to this pathway. Here, we discuss our results together with other recent advances in our understanding of the mechanisms that mediate centromere inheritance.
Collapse
Affiliation(s)
- Patricia Sánchez
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain.
| | | |
Collapse
|