1
|
Kaya Z. Bernard-Soulier Syndrome: A Review of Epidemiology, Molecular Pathology, Clinical Features, Laboratory Diagnosis, and Therapeutic Management. Semin Thromb Hemost 2025; 51:209-218. [PMID: 39191409 DOI: 10.1055/s-0044-1789184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Bernard-Soulier syndrome (BSS) is an inherited platelet function disorder caused by mutations in the genes that encode the glycoprotein (GP) Ibα and GPIbβ subunits, as well as the GPIX subunit in the GPIbIX complex, which is located on the platelet surface and has roles in platelet adhesion and activation. Patients with autosomal recessively inherited biallelic BSS have a homozygous or compound heterozygous expression in the GPIbα, GPIbβ, and GPIX subunits of the GPIbIX complex. Patients with autosomal dominantly inherited monoallelic BSS have a heterozygous expression in only the GPIbα and GPIbβ subunits of the GPIbIX complex. To date, no BSS mutations in the GP5 gene have been reported. Patients with biallelic form are usually diagnosed at a young age, typically with mucocutaneous bleeding, whereas monoallelic forms are generally identified later in life and are frequently misdiagnosed with immune thrombocytopenic purpura (ITP). In biallelic BSS, giant platelets in the peripheral blood smear, absence of ristocetin-induced platelet aggregation (RIPA) using light transmission aggregometry (LTA), and complete loss of GPIbIX complex in flow cytometry are observed, whereas in monoallelic forms, genetic diagnosis is recommended due to the presence of large platelets in the peripheral blood smear, decreased or normal RIPA response in LTA, and partial loss or normal GPIbIX complex in flow cytometry. Platelet transfusion is the main therapy but recombinant factor VIIa is advised in alloimmunized patients, and allogeneic stem cell transplantation is suggested in refractory cases. Antifibrinolytics and oral contraceptives are utilized as supplementary treatments. Finally, differentiation from ITP is critical due to differences in management. Thus, BSS should be kept in mind in the presence of individuals with chronic persistent thrombocytopenia, positive family history, unresponsive ITP treatment, macrothrombocytopenia, and absence of RIPA response.
Collapse
Affiliation(s)
- Zühre Kaya
- Department of Pediatrics, Unit of Pediatric Hematology, Faculty of Medicine, Gazi University, Ankara, Türkiye
| |
Collapse
|
2
|
Bendas G, Schlesinger M. The GPIb-IX complex on platelets: insight into its novel physiological functions affecting immune surveillance, hepatic thrombopoietin generation, platelet clearance and its relevance for cancer development and metastasis. Exp Hematol Oncol 2022; 11:19. [PMID: 35366951 PMCID: PMC8976409 DOI: 10.1186/s40164-022-00273-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/19/2022] [Indexed: 12/13/2022] Open
Abstract
The glycoprotein (GP) Ib-IX complex is a platelet receptor that mediates the initial interaction with subendothelial von Willebrand factor (VWF) causing platelet arrest at sites of vascular injury even under conditions of high shear. GPIb-IX dysfunction or deficiency is the reason for the rare but severe Bernard-Soulier syndrome (BSS), a congenital bleeding disorder. Although knowledge on GPIb-IX structure, its basic functions, ligands, and intracellular signaling cascades have been well established, several advances in GPIb-IX biology have been made in the recent years. Thus, two mechanosensitive domains and a trigger sequence in GPIb were characterized and its role as a thrombin receptor was deciphered. Furthermore, it became clear that GPIb-IX is involved in the regulation of platelet production, clearance and thrombopoietin secretion. GPIb is deemed to contribute to liver cancer development and metastasis. This review recapitulates these novel findings highlighting GPIb-IX in its multiple functions as a key for immune regulation, host defense, and liver cancer development.
Collapse
Affiliation(s)
- Gerd Bendas
- Department of Pharmacy, Rheinische Friedrich-Wilhelms-University Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Martin Schlesinger
- Department of Pharmacy, Rheinische Friedrich-Wilhelms-University Bonn, An der Immenburg 4, 53121, Bonn, Germany. .,Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany.
| |
Collapse
|
3
|
Goto S, Oka H, Ayabe K, Yabushita H, Nakayama M, Hasebe T, Yokota H, Takagi S, Sano M, Tomita A, Goto S. Prediction of binding characteristics between von Willebrand factor and platelet glycoprotein Ibα with various mutations by molecular dynamic simulation. Thromb Res 2019; 184:129-135. [PMID: 31739151 DOI: 10.1016/j.thromres.2019.10.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 10/12/2019] [Accepted: 10/21/2019] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Binding of platelet glycoprotein (GP)Ibα with von-Willebrand factor (VWF) exclusively mediates the initial platelet adhesion to injured vessel wall. To understand the mechanism of biomedical functions, we calculated the dynamic fluctuating three-dimensional (3D) structures and dissociation energy for GPIbα with various single amino-acid substitution at G233, which location is known to cause significant changes in platelet adhesive characteristics. MATERIAL AND METHODS Molecular dynamics (MD) simulation was utilized to calculate 3D structures and Potential of Mean Force (PMF) for wild-type VWF bound with wild-type, G233A (equal function), G233V (gain of function), and G233D (loss of function) GPIbα. Simulation was done on water-soluble condition with time-step of 2 × 10-15 s using NAnoscale Molecular Dynamics (NAMD) with Chemistry at HARvard Molecular Mechanics (CHARMM) force field. Initial structure for each mutant was obtained by inducing single amino-acid substitution to the stable water-soluble binding structure of wild-type. RESULTS The most stable structures of wild-type VWF bound to GPIbα in wild-type or any mutant did not differ. However, bond dissociation energy defined as difference of PMF between most stable structure and the structure at 65 Å mass center distances in G233D was 4.32 kcal/mol (19.5%) lower than that of wild-type. Approximately, 2.07 kcal/mol energy was required to dissociate VWF from GPIbα with G233V at mass center distance from 48 to 52 Å, which may explain the apparent "gain of function" in G233V. CONCLUSION The mechanism of substantially different biochemical characteristics of GPIbα with mutations in G233 location was predicted from physical movement of atoms constructing these proteins.
Collapse
Affiliation(s)
- Shinichi Goto
- Department of Medicine (Cardiology), Tokai University School of Medicine, Metabolic Disease Research Center, Tokai University Graduate School of Medicine, Isehara, Japan; Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Hideki Oka
- Department of Medicine (Cardiology), Tokai University School of Medicine, Metabolic Disease Research Center, Tokai University Graduate School of Medicine, Isehara, Japan
| | - Kengo Ayabe
- Department of Medicine (Cardiology), Tokai University School of Medicine, Metabolic Disease Research Center, Tokai University Graduate School of Medicine, Isehara, Japan
| | - Hiroto Yabushita
- Department of Medicine (Cardiology), Tokai University School of Medicine, Metabolic Disease Research Center, Tokai University Graduate School of Medicine, Isehara, Japan
| | - Masamitsu Nakayama
- Department of Medicine (Cardiology), Tokai University School of Medicine, Metabolic Disease Research Center, Tokai University Graduate School of Medicine, Isehara, Japan
| | - Terumitsu Hasebe
- Department of Radiology, Tokai University Hachioji Hospital, Tokai University School of Medicine, Hachioji, Tokyo, Japan
| | - Hideo Yokota
- Image Processing Research Team, Center for Advanced Photonics Extreme Photonics Research, RIKEN, Wako, Japan
| | - Shu Takagi
- Department of Mechanical Engineering, The University of Tokyo, Tokyo, Japan
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Aiko Tomita
- Department of Clinical Pharmacology, Tokai University School of Medicine, Isehara, Japan
| | - Shinya Goto
- Department of Medicine (Cardiology), Tokai University School of Medicine, Metabolic Disease Research Center, Tokai University Graduate School of Medicine, Isehara, Japan.
| |
Collapse
|
4
|
Shang D, Zhang Z, Wang Q, Ran Y, Shaw TS, Van JN, Peng Y. Membrane skeleton orchestrates the platelet glycoprotein (GP) Ib-IX complex clustering and signaling. IUBMB Life 2016; 68:823-9. [PMID: 27634617 PMCID: PMC5132009 DOI: 10.1002/iub.1559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/03/2016] [Indexed: 11/10/2022]
Abstract
Platelet glycoprotein Ib‐IX complex is affixed to the membrane skeleton through interaction with actin binding protein 280 (ABP‐280). We find that removal of the ABP‐280 binding sites in GP Ibα cytoplasmic tail has little impact on the complex clustering induced by antibody crosslinking. However, large truncation of the GP Ibα cytoplasmic tail allows the formation of larger patches of the complex, suggesting that an ABP‐280 independent force may exist. Besides, we observe that the signaling upon GP Ib‐IX clustering is elicited in both membrane lipid domain dependent and independent manner, a choice that relies on how the membrane skeleton interacts with the complex. Our findings suggest a more complex mechanism for how the membrane skeleton regulates the GP Ib‐IX function. © 2016 The Authors IUBMB Life published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology, 68(10):823–829, 2016
Collapse
Affiliation(s)
- Dan Shang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Medicine, Cardiovascular Research Section, Baylor College of Medicine, Houston, TX
| | - Zuping Zhang
- Department of Medicine, Cardiovascular Research Section, Baylor College of Medicine, Houston, TX.,Department of Parasitology, School of Basic Medicine, Central South University, Changsha, China
| | - Qian Wang
- Department of Medicine, Cardiovascular Research Section, Baylor College of Medicine, Houston, TX
| | - Yali Ran
- Department of Medicine, Cardiovascular Research Section, Baylor College of Medicine, Houston, TX
| | - Tanner S Shaw
- Department of Medicine, Cardiovascular Research Section, Baylor College of Medicine, Houston, TX
| | - John N Van
- Department of Medicine, Infectious Disease Section, Baylor College of Medicine, Houston, TX
| | - Yuandong Peng
- Department of Medicine, Cardiovascular Research Section, Baylor College of Medicine, Houston, TX.
| |
Collapse
|
5
|
Zhou H, Ran Y, Da Q, Shaw TS, Shang D, Reddy AK, López JA, Ballantyne CM, Ware J, Wu H, Peng Y. Defective Association of the Platelet Glycoprotein Ib-IX Complex with the Glycosphingolipid-Enriched Membrane Domain Inhibits Murine Thrombus and Atheroma Formation. THE JOURNAL OF IMMUNOLOGY 2016; 197:288-95. [PMID: 27206768 DOI: 10.4049/jimmunol.1501946] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 04/29/2016] [Indexed: 01/13/2023]
Abstract
Localization of the platelet glycoprotein Ib-IX complex to the membrane lipid domain is essential for platelet adhesion to von Willebrand factor and subsequent platelet activation in vitro. Yet, the in vivo importance of this localization has never been addressed. We recently found that the disulfide linkage between Ibα and Ibβ is critical for the association of Ibα with the glycosphingolipid-enriched membrane domain; in this study, we established a transgenic mouse model expressing this mutant human Ibα that is also devoid of endogenous Ibα (HαSSMα(-/-)). Characterization of this model demonstrated a similar dissociation of Ibα from murine platelet glycosphingolipid-enriched membrane to that expressed in Chinese hamster ovary cells, which correlates well with the impaired adhesion of the transgenic platelets to von Willebrand factor ex vivo and in vivo. Furthermore, we bred our transgenic mice into an atherosclerosis-prone background (HαSSMα(-/-)ApoE(-/-) and HαWTMα(-/-)ApoE(-/-)). We observed that atheroma formation was significantly inhibited in mutant mice where fewer platelet-bound CD11c(+) leukocytes were circulating (CD45(+)/CD11c(+)/CD41(+)) and residing in atherosclerotic lesions (CD45(+)/CD11c(+)), suggesting that platelet-mediated adhesion and infiltration of CD11c(+) leukocytes may be one of the mechanisms. To our knowledge, these observations provide the first in vivo evidence showing that the membrane GEM is physiologically and pathophysiologically critical in the function of the glycoprotein Ib-IX complex.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Hospital Infection Management of Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Yali Ran
- Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Qi Da
- Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Tanner S Shaw
- Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Dan Shang
- Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030; Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Anilkumar K Reddy
- Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - José A López
- Puget Sound Blood Center, Division of Hematology, Department of Medicine, University of Washington, Seattle, WA 98195
| | - Christie M Ballantyne
- Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Jerry Ware
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | - Huaizhu Wu
- Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Yuandong Peng
- Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030;
| |
Collapse
|
6
|
Xu G, Shang D, Zhang Z, Shaw TS, Ran Y, López JA, Peng Y. The Transmembrane Domains of β and IX Subunits Mediate the Localization of the Platelet Glycoprotein Ib-IX Complex to the Glycosphingolipid-enriched Membrane Domain. J Biol Chem 2015. [PMID: 26203189 DOI: 10.1074/jbc.m115.668145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
We have previously reported that the structural elements of the GP Ib-IX complex required for its localization to glycosphingolipid-enriched membranes (GEMs) reside in the Ibβ and IX subunits. To identify them, we generated a series of cell lines expressing mutant GP Ibβ and GP IX where 1) the cytoplasmic tails (CTs) of either or both GP Ibβ and IX are truncated, and 2) the transmembrane domains (TMDs) of GP Ibβ and GP IX were swapped with the TMD of a non-GEMs associating molecule, human transferrin receptor. Sucrose density fractionation analysis showed that the removal of either or both of the CTs from GP Ibβ and GP IX does not alter GP Ibα-GEMs association when compared with the wild type. In contrast, swapping of the TMDs of either GP Ibβ or GP IX with that of transferrin receptor results in a significant loss (∼ 50%) of GP Ibα from the low density GEMs fractions, with the largest effect seen in the dual TMD-replaced cells (> 80% loss) when compared with the wild type cells (100% of GP Ibα present in the GEMs fractions). Under high shear flow, the TMD-swapped cells adhere poorly to a von Willebrand factor-immobilized surface to a much lesser extent than the previously reported disulfide linkage dysfunctional GP Ibα-expressing cells. Thus, our data demonstrate that the bundle of GP Ibβ and GP IX TMDs instead of their individual CTs is the structural element that mediates the β/IX complex localization to the membrane GEMs, which through the α/β disulfide linkage brings GP Ibα into the GEMs.
Collapse
Affiliation(s)
- Guofeng Xu
- From the XinHua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China, the Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| | - Dan Shang
- the Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China, the Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| | - Zuping Zhang
- the School of Basic Medicine, Central South University, Changsha 410013, China, the Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| | - Tanner S Shaw
- the Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| | - Yali Ran
- the Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| | - José A López
- the Department of Medicine, Puget Sound Blood Center, Division of Hematology, University of Washington, Seattle, Washington 98195, and
| | - Yuandong Peng
- the Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
7
|
Gitz E, Koopman CD, Giannas A, Koekman CA, van den Heuvel DJ, Deckmyn H, Akkerman JWN, Gerritsen HC, Urbanus RT. Platelet interaction with von Willebrand factor is enhanced by shear-induced clustering of glycoprotein Ibα. Haematologica 2013; 98:1810-8. [PMID: 23753027 DOI: 10.3324/haematol.2013.087221] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Initial platelet arrest at the exposed arterial vessel wall is mediated through glycoprotein Ibα binding to the A1 domain of von Willebrand factor. This interaction occurs at sites of elevated shear force, and strengthens upon increasing hydrodynamic drag. The increased interaction requires shear-dependent exposure of the von Willebrand factor A1 domain, but the contribution of glycoprotein Ibα remains ill defined. We have previously found that glycoprotein Ibα forms clusters upon platelet cooling and hypothesized that such a property enhances the interaction with von Willebrand factor under physiological conditions. We analyzed the distribution of glycoprotein Ibα with Förster resonance energy transfer using time-gated fluorescence lifetime imaging microscopy. Perfusion at a shear rate of 1,600 s(-1) induced glycoprotein Ibα clusters on platelets adhered to von Willebrand factor, while clustering did not require von Willebrand factor contact at 10,000 s(-1). Shear-induced clustering was reversible, not accompanied by granule release or αIIbβ3 activation and improved glycoprotein Ibα-dependent platelet interaction with von Willebrand factor. Clustering required glycoprotein Ibα translocation to lipid rafts and critically depended on arachidonic acid-mediated binding of 14-3-3ζ to its cytoplasmic tail. This newly identified mechanism emphasizes the ability of platelets to respond to mechanical force and provides new insights into how changes in hemodynamics influence arterial thrombus formation.
Collapse
|
8
|
Ozaki Y, Suzuki-Inoue K, Inoue O. Platelet receptors activated via mulitmerization: glycoprotein VI, GPIb-IX-V, and CLEC-2. J Thromb Haemost 2013; 11 Suppl 1:330-9. [PMID: 23809136 DOI: 10.1111/jth.12235] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
While very different in structure, GPVI - the major collagen receptor on platelet membranes, the GPIb-IX-V complex - the receptor for von Willebrand factor, and CLEC-2, a novel platelet activation receptor for podoplanin, share several common features in terms of function and platelet activation signal transduction pathways. All employ Src family kinases (SFK), Syk, and other signaling molecules involving tyrosine phosphorylation, similar to those of immunoreceptors for T and B cells. There appear to be overlapping functional roles for these glycoproteins, and in some cases, they can compensate for each other, suggesting a degree of redundancy. New ligands for these receptors are being identified, which broadens their functional relevancy. This is particularly true for CLEC-2, whose functions beyond hemostasis are being explored. The common mode of signaling, clustering, and localization to glycosphingolipid-enriched microdomains (GEMs) suggest that GEMs are central to signaling function by ligand-dependent association of these receptors, SFK, Syk, phosphotyrosine phosphatases, and other signaling molecules.
Collapse
Affiliation(s)
- Y Ozaki
- Department of Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan.
| | | | | |
Collapse
|
9
|
Li R, Emsley J. The organizing principle of the platelet glycoprotein Ib-IX-V complex. J Thromb Haemost 2013; 11:605-14. [PMID: 23336709 PMCID: PMC3696474 DOI: 10.1111/jth.12144] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 01/17/2013] [Indexed: 11/28/2022]
Abstract
The glycoprotein (GP)Ib-IX-V complex is the platelet receptor for von Willebrand factor and many other molecules that are critically involved in hemostasis and thrombosis. The lack of functional GPIb-IX-V complexes on the platelet surface is the cause of Bernard-Soulier syndrome, a rare hereditary bleeding disorder that is also associated with macrothrombocytopenia. GPIb-IX-V contains GPIbα, GPIbβ, GPIX and GPV subunits, all of which are type I transmembrane proteins containing leucine-rich repeat domains. Although all of the subunits were identified decades ago, not until recently did the mechanism of complex assembly begin to emerge from a systematic characterization of inter-subunit interactions. This review summarizes the forces driving the assembly of GPIb-IX-V, discusses their implications for the pathogenesis of Bernard-Soulier syndrome, and identifies questions that remain about the structure and organization of GPIb-IX-V.
Collapse
Affiliation(s)
- R Li
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA30322, USA.
| | | |
Collapse
|
10
|
Gitz E, Koekman CA, van den Heuvel DJ, Deckmyn H, Akkerman JW, Gerritsen HC, Urbanus RT. Improved platelet survival after cold storage by prevention of glycoprotein Ibα clustering in lipid rafts. Haematologica 2012; 97:1873-81. [PMID: 22733027 DOI: 10.3324/haematol.2012.066290] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Storing platelets for transfusion at room temperature increases the risk of microbial infection and decreases platelet functionality, leading to out-date discard rates of up to 20%. Cold storage may be a better alternative, but this treatment leads to rapid platelet clearance after transfusion, initiated by changes in glycoprotein Ibα, the receptor for von Willebrand factor. DESIGN AND METHODS We examined the change in glycoprotein Ibα distribution using Förster resonance energy transfer by time-gated fluorescence lifetime imaging microscopy. RESULTS Cold storage induced deglycosylation of glycoprotein Ibα ectodomain, exposing N-acetyl-D-glucosamine residues, which sequestered with GM1 gangliosides in lipid rafts. Raft-associated glycoprotein Ibα formed clusters upon binding of 14-3-3ζ adaptor proteins to its cytoplasmic tail, a process accompanied by mitochondrial injury and phosphatidyl serine exposure. Cold storage left glycoprotein Ibα surface expression unchanged and although glycoprotein V decreased, the fall did not affect glycoprotein Ibα clustering. Prevention of glycoprotein Ibα clustering by blockade of deglycosylation and 14-3-3ζ translocation increased the survival of cold-stored platelets to above the levels of platelets stored at room temperature without compromising hemostatic functions. CONCLUSIONS We conclude that glycoprotein Ibα translocates to lipid rafts upon cold-induced deglycosylation and forms clusters by associating with 14-3-3ζ. Interference with these steps provides a means to enable cold storage of platelet concentrates in the near future.
Collapse
Affiliation(s)
- Eelo Gitz
- Thrombosis and Hemostasis Laboratory, Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | | | | | | | | |
Collapse
|