1
|
Tang Y, Wu D, Zhang Y, Liu X, Chu H, Tan Q, Jiang L, Chen S, Wu G, Wang L. Molecular basis of the phosphorothioation-sensing antiphage defense system IscS-DndBCDE-DndI. Nucleic Acids Res 2024; 52:13594-13604. [PMID: 39611571 DOI: 10.1093/nar/gkae1133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/30/2024] Open
Abstract
Phosphorothioation serves as a DNA backbone modification mechanism, wherein a sulfur atom substitutes the nonbridging oxygen atom within the phosphodiester, facilitated by the gene products of dndABCDE or sspABCD. The combination of dndABCDE with dndFGH forms a bona fide defense system, where the DndFGH protein complex exhibits DNA nickase and DNA translocase activities to prevent phage invasion. In this study, we identified that dndI, co-transcribed with dndFGH, can independently couple with iscS-dndBCDE as an anti-phage defense system. Moreover, we resolved the crystal structure of DndI from Salmonella at a resolution of 3.10 Å. We discovered that its residue Y25, residing within a hydrophobic region of DndI, is involved in phosphorothioate (PT) sensing. Upon sensing PT modifications at 5'-GPSAAC-3'/5'-GPSTTC-3', the ATPase activity of DndI is stimulated, which subsequently triggers a conformational transition, facilitating the dissociation of DndI from self-DNA, thereby allowing DndI to avoid cleaving self-DNA while restricting PT-deficient phage DNA. This research broadens the knowledge of the mechanistic diversity underlying PT-based defense systems and highlights their complexity in the course of evolution.
Collapse
Affiliation(s)
- Yaqian Tang
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 169 Donghu Road, Wuchang District, Wuhan 430071, China
- Department of Respiratory Diseases, Institute of Pediatrics, Shenzhen Children's Hospital, Yitian Road 7019, Futian District, Shenzhen 518026, China
| | - Dan Wu
- Senior Department of Nephrology, the First Medical Center of Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Fuxing road 28, Haidian District, Beijing 100853, China
| | - Yueying Zhang
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 169 Donghu Road, Wuchang District, Wuhan 430071, China
| | - Xuan Liu
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 169 Donghu Road, Wuchang District, Wuhan 430071, China
| | - Hui Chu
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 169 Donghu Road, Wuchang District, Wuhan 430071, China
| | - Qian Tan
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 169 Donghu Road, Wuchang District, Wuhan 430071, China
| | - Lixu Jiang
- Department of Burn and Plastic Surgery, Shenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and Application, Shenzhen Institute of Translational Medicine, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Shenzhen University Medical School, The First Affiliated Hospital of Shenzhen University, Guanguang Road 1301, Longhua District, Shenzhen 518035, China
| | - Shi Chen
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 169 Donghu Road, Wuchang District, Wuhan 430071, China
- Department of Burn and Plastic Surgery, Shenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and Application, Shenzhen Institute of Translational Medicine, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Shenzhen University Medical School, The First Affiliated Hospital of Shenzhen University, Guanguang Road 1301, Longhua District, Shenzhen 518035, China
| | - Geng Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Dongchuan Road 800, Minhang District, Shanghai, 200240, China
| | - Lianrong Wang
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 169 Donghu Road, Wuchang District, Wuhan 430071, China
- Department of Respiratory Diseases, Institute of Pediatrics, Shenzhen Children's Hospital, Yitian Road 7019, Futian District, Shenzhen 518026, China
| |
Collapse
|
2
|
Luteibacter flocculans sp. nov., Isolated from a Eutrophic Pond and Isolation and Characterization of Luteibacter Phage vB_LflM-Pluto. Microorganisms 2023; 11:microorganisms11020307. [PMID: 36838271 PMCID: PMC9965599 DOI: 10.3390/microorganisms11020307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Luteibacter is a genus of the Rhodanobacteraceae family. The present study describes a novel species within the genus Luteibacter (EIF3T). The strain was analyzed genomically, morphologically and physiologically. Average nucleotide identity analysis revealed that it is a new species of Luteibacter. In silico analysis indicated two putative prophages (one incomplete, one intact). EIF3T cells form an elliptical morphotype with an average length of 2.0 µm and width of 0.7 µm and multiple flagella at one end. The bacterial strain is an aerobic Gram-negative with optimal growth at 30 °C. EIF3T is resistant towards erythromycin, tetracycline and vancomycin. We propose the name Luteibacter flocculans sp. nov. with EIF3T (=DSM 112537T = LMG 32416T) as type strain. Further, we describe the first known Luteibacter-associated bacteriophage called vB_LflM-Pluto.
Collapse
|
3
|
Zhang W, Liang Y, Zheng K, Gu C, Liu Y, Wang Z, Zhang X, Shao H, Jiang Y, Guo C, He H, Wang H, Sung YY, Mok WJ, Zhang Y, McMinn A, Wang M. Characterization and genomic analysis of the first Oceanospirillum phage, vB_OliS_GJ44, representing a novel siphoviral cluster. BMC Genomics 2021; 22:675. [PMID: 34544379 PMCID: PMC8451122 DOI: 10.1186/s12864-021-07978-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 08/31/2021] [Indexed: 01/18/2023] Open
Abstract
Background Marine bacteriophages play key roles in the community structure of microorganisms, biogeochemical cycles, and the mediation of genetic diversity through horizontal gene transfer. Recently, traditional isolation methods, complemented by high-throughput sequencing metagenomics technology, have greatly increased our understanding of the diversity of bacteriophages. Oceanospirillum, within the order Oceanospirillales, are important symbiotic marine bacteria associated with hydrocarbon degradation and algal blooms, especially in polar regions. However, until now there has been no isolate of an Oceanospirillum bacteriophage, and so details of their metagenome has remained unknown. Results Here, we reported the first Oceanospirillum phage, vB_OliS_GJ44, which was assembled into a 33,786 bp linear dsDNA genome, which includes abundant tail-related and recombinant proteins. The recombinant module was highly adapted to the host, according to the tetranucleotides correlations. Genomic and morphological analyses identified vB_OliS_GJ44 as a siphovirus, however, due to the distant evolutionary relationship with any other known siphovirus, it is proposed that this virus could be classified as the type phage of a new Oceanospirivirus genus within the Siphoviridae family. vB_OliS_GJ44 showed synteny with six uncultured phages, which supports its representation in uncultured environmental viral contigs from metagenomics. Homologs of several vB_OliS_GJ44 genes have mostly been found in marine metagenomes, suggesting the prevalence of this phage genus in the oceans. Conclusions These results describe the first Oceanospirillum phage, vB_OliS_GJ44, that represents a novel viral cluster and exhibits interesting genetic features related to phage–host interactions and evolution. Thus, we propose a new viral genus Oceanospirivirus within the Siphoviridae family to reconcile this cluster, with vB_OliS_GJ44 as a representative member. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07978-4.
Collapse
Affiliation(s)
- Wenjing Zhang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Yantao Liang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China. .,UMT-OUC Joint Centre for Marine Studies, Qingdao, 266003, China.
| | - Kaiyang Zheng
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Chengxiang Gu
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Yundan Liu
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Ziyue Wang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Xinran Zhang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Hongbing Shao
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.,UMT-OUC Joint Centre for Marine Studies, Qingdao, 266003, China
| | - Yong Jiang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.,UMT-OUC Joint Centre for Marine Studies, Qingdao, 266003, China
| | - Cui Guo
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.,UMT-OUC Joint Centre for Marine Studies, Qingdao, 266003, China
| | - Hui He
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.,UMT-OUC Joint Centre for Marine Studies, Qingdao, 266003, China
| | - Hualong Wang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.,UMT-OUC Joint Centre for Marine Studies, Qingdao, 266003, China
| | - Yeong Yik Sung
- UMT-OUC Joint Centre for Marine Studies, Qingdao, 266003, China.,Institute of Marine Biotechnology, Universiti Malaysia Terengganu (UMT), 21030, Kuala Nerus, Malaysia
| | - Wen Jye Mok
- UMT-OUC Joint Centre for Marine Studies, Qingdao, 266003, China.,Institute of Marine Biotechnology, Universiti Malaysia Terengganu (UMT), 21030, Kuala Nerus, Malaysia
| | - Yuzhong Zhang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.,Shangdong University, Qingdao, 266000, China
| | - Andrew McMinn
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.,Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Min Wang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China. .,UMT-OUC Joint Centre for Marine Studies, Qingdao, 266003, China. .,The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
4
|
Schultzhaus Z, Chen A, Shuryak I, Wang Z. The Transcriptomic and Phenotypic Response of the Melanized Yeast Exophiala dermatitidis to Ionizing Particle Exposure. Front Microbiol 2021; 11:609996. [PMID: 33510728 PMCID: PMC7835796 DOI: 10.3389/fmicb.2020.609996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/14/2020] [Indexed: 01/20/2023] Open
Abstract
Fungi can tolerate extremely high doses of ionizing radiation compared with most other eukaryotes, a phenomenon encompassing both the recovery from acute exposure and the growth of melanized fungi in chronically contaminated environments such as nuclear disaster sites. This observation has led to the use of fungi in radiobiology studies, with the goal of finding novel resistance mechanisms. However, it is still not entirely clear what underlies this phenomenon, as genetic studies have not pinpointed unique responses to ionizing radiation in the most resistant fungi. Additionally, little work has been done examining how fungi (other than budding yeast) respond to irradiation by ionizing particles (e.g., protons, α-particles), although particle irradiation may cause distinct cellular damage, and is more relevant for human risks. To address this paucity of data, in this study we have characterized the phenotypic and transcriptomic response of the highly radioresistant yeast Exophiala dermatitidis to irradiation by three separate ionizing radiation sources: protons, deuterons, and α-particles. The experiment was performed with both melanized and non-melanized strains of E. dermatitidis, to determine the effect of this pigment on the response. No significant difference in survival was observed between these strains under any condition, suggesting that melanin does not impart protection to acute irradiation to these particles. The transcriptomic response during recovery to particle exposure was similar to that observed after γ-irradiation, with DNA repair and replication genes upregulated, and genes involved in translation and ribosomal biogenesis being heavily repressed, indicating an attenuation of cell growth. However, a comparison of global gene expression showed clear clustering of particle and γ-radiation groups. The response elicited by particle irradiation was, in total, more complex. Compared to the γ-associated response, particle irradiation resulted in greater changes in gene expression, a more diverse set of differentially expressed genes, and a significant induction of gene categories such as autophagy and protein catabolism. Additionally, analysis of individual particle responses resulted in identification of the first unique expression signatures and individual genes for each particle type that could be used as radionuclide discrimination markers.
Collapse
Affiliation(s)
- Zachary Schultzhaus
- Center for Biomolecular Science and Engineering, United States Naval Research Laboratory, Washington, DC, United States
| | - Amy Chen
- Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, United States
| | - Zheng Wang
- Center for Biomolecular Science and Engineering, United States Naval Research Laboratory, Washington, DC, United States
| |
Collapse
|
5
|
Wu CC, Lin JL, Yuan HS. Structures, Mechanisms, and Functions of His-Me Finger Nucleases. Trends Biochem Sci 2020; 45:935-946. [DOI: 10.1016/j.tibs.2020.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/30/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
|
6
|
The Order-Disorder Continuum: Linking Predictions of Protein Structure and Disorder through Molecular Simulation. Sci Rep 2020; 10:2068. [PMID: 32034199 PMCID: PMC7005769 DOI: 10.1038/s41598-020-58868-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/16/2019] [Indexed: 12/11/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) and intrinsically disordered regions within proteins (IDRs) serve an increasingly expansive list of biological functions, including regulation of transcription and translation, protein phosphorylation, cellular signal transduction, as well as mechanical roles. The strong link between protein function and disorder motivates a deeper fundamental characterization of IDPs and IDRs for discovering new functions and relevant mechanisms. We review recent advances in experimental techniques that have improved identification of disordered regions in proteins. Yet, experimentally curated disorder information still does not currently scale to the level of experimentally determined structural information in folded protein databases, and disorder predictors rely on several different binary definitions of disorder. To link secondary structure prediction algorithms developed for folded proteins and protein disorder predictors, we conduct molecular dynamics simulations on representative proteins from the Protein Data Bank, comparing secondary structure and disorder predictions with simulation results. We find that structure predictor performance from neural networks can be leveraged for the identification of highly dynamic regions within molecules, linked to disorder. Low accuracy structure predictions suggest a lack of static structure for regions that disorder predictors fail to identify. While disorder databases continue to expand, secondary structure predictors and molecular simulations can improve disorder predictor performance, which aids discovery of novel functions of IDPs and IDRs. These observations provide a platform for the development of new, integrated structural databases and fusion of prediction tools toward protein disorder characterization in health and disease.
Collapse
|
7
|
Jablonska J, Matelska D, Steczkiewicz K, Ginalski K. Systematic classification of the His-Me finger superfamily. Nucleic Acids Res 2017; 45:11479-11494. [PMID: 29040665 PMCID: PMC5714182 DOI: 10.1093/nar/gkx924] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/29/2017] [Indexed: 02/06/2023] Open
Abstract
The His-Me finger endonucleases, also known as HNH or ββα-metal endonucleases, form a large and diverse protein superfamily. The His-Me finger domain can be found in proteins that play an essential role in cells, including genome maintenance, intron homing, host defense and target offense. Its overall structural compactness and non-specificity make it a perfectly-tailored pathogenic module that participates on both sides of inter- and intra-organismal competition. An extremely low sequence similarity across the superfamily makes it difficult to identify and classify new His-Me fingers. Using state-of-the-art distant homology detection methods, we provide an updated and systematic classification of His-Me finger proteins. In this work, we identified over 100 000 proteins and clustered them into 38 groups, of which three groups are new and cannot be found in any existing public domain database of protein families. Based on an analysis of sequences, structures, domain architectures, and genomic contexts, we provide a careful functional annotation of the poorly characterized members of this superfamily. Our results may inspire further experimental investigations that should address the predicted activity and clarify the potential substrates, to provide more detailed insights into the fundamental biological roles of these proteins.
Collapse
Affiliation(s)
- Jagoda Jablonska
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Dorota Matelska
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Kamil Steczkiewicz
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Krzysztof Ginalski
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| |
Collapse
|
8
|
Delattre H, Souiai O, Fagoonee K, Guerois R, Petit MA. Phagonaute: A web-based interface for phage synteny browsing and protein function prediction. Virology 2016; 496:42-50. [PMID: 27254594 DOI: 10.1016/j.virol.2016.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/04/2016] [Accepted: 05/09/2016] [Indexed: 01/25/2023]
Abstract
Distant homology search tools are of great help to predict viral protein functions. However, due to the lack of profile databases dedicated to viruses, they can lack sensitivity. We constructed HMM profiles for more than 80,000 proteins from both phages and archaeal viruses, and performed all pairwise comparisons with HHsearch program. The whole resulting database can be explored through a user-friendly "Phagonaute" interface to help predict functions. Results are displayed together with their genetic context, to strengthen inferences based on remote homology. Beyond function prediction, this tool permits detections of co-occurrences, often indicative of proteins completing a task together, and observation of conserved patterns across large evolutionary distances. As a test, Herpes simplex virus I was added to Phagonaute, and 25% of its proteome matched to bacterial or archaeal viral protein counterparts. Phagonaute should therefore help virologists in their quest for protein functions and evolutionary relationships.
Collapse
Affiliation(s)
- Hadrien Delattre
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Oussema Souiai
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Khema Fagoonee
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Raphaël Guerois
- I2BC, CEA, Université Paris-Saclay, 91198 Gif-sur-Yvette, France.
| | - Marie-Agnès Petit
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| |
Collapse
|
9
|
Ronayne EA, Wan YCS, Boudreau BA, Landick R, Cox MM. P1 Ref Endonuclease: A Molecular Mechanism for Phage-Enhanced Antibiotic Lethality. PLoS Genet 2016; 12:e1005797. [PMID: 26765929 PMCID: PMC4713147 DOI: 10.1371/journal.pgen.1005797] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 12/19/2015] [Indexed: 12/11/2022] Open
Abstract
Ref is an HNH superfamily endonuclease that only cleaves DNA to which RecA protein is bound. The enigmatic physiological function of this unusual enzyme is defined here. Lysogenization by bacteriophage P1 renders E. coli more sensitive to the DNA-damaging antibiotic ciprofloxacin, an example of a phenomenon termed phage-antibiotic synergy (PAS). The complementary effect of phage P1 is uniquely traced to the P1-encoded gene ref. Ref is a P1 function that amplifies the lytic cycle under conditions when the bacterial SOS response is induced due to DNA damage. The effect of Ref is multifaceted. DNA binding by Ref interferes with normal DNA metabolism, and the nuclease activity of Ref enhances genome degradation. Ref also inhibits cell division independently of the SOS response. Ref gene expression is toxic to E. coli in the absence of other P1 functions, both alone and in combination with antibiotics. The RecA proteins of human pathogens Neisseria gonorrhoeae and Staphylococcus aureus serve as cofactors for Ref-mediated DNA cleavage. Ref is especially toxic during the bacterial SOS response and the limited growth of stationary phase cultures, targeting aspects of bacterial physiology that are closely associated with the development of bacterial pathogen persistence.
Collapse
Affiliation(s)
- Erin A. Ronayne
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Y. C. Serena Wan
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Beth A. Boudreau
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Michael M. Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
10
|
Gruber AJ, Olsen TM, Dvorak RH, Cox MM. Function of the N-terminal segment of the RecA-dependent nuclease Ref. Nucleic Acids Res 2015; 43:1795-803. [PMID: 25618854 PMCID: PMC4330346 DOI: 10.1093/nar/gku1330] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The bacteriophage P1 Ref (recombination enhancement function) protein is a RecA-dependent, HNH endonuclease. It can be directed to create targeted double-strand breaks within a displacement loop formed by RecA. The 76 amino acid N-terminal region of Ref is positively charged (25/76 amino acid residues) and inherently unstructured in solution. Our investigation of N-terminal truncation variants shows this region is required for DNA binding, contains a Cys involved in incidental dimerization and is necessary for efficient Ref-mediated DNA cleavage. Specifically, Ref N-terminal truncation variants lacking between 21 and 47 amino acids are more effective RecA-mediated targeting nucleases. We propose a more refined set of options for the Ref-mediated cleavage mechanism, featuring the N-terminal region as an anchor for at least one of the DNA strand cleavage events.
Collapse
Affiliation(s)
- Angela J Gruber
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Tayla M Olsen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Rachel H Dvorak
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
11
|
Ronayne EA, Cox MM. RecA-dependent programmable endonuclease Ref cleaves DNA in two distinct steps. Nucleic Acids Res 2013; 42:3871-83. [PMID: 24371286 PMCID: PMC3973344 DOI: 10.1093/nar/gkt1342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The bacteriophage P1 recombination enhancement function (Ref) protein is a RecA-dependent programmable endonuclease. Ref targets displacement loops formed when an oligonucleotide is bound by a RecA filament and invades homologous double-stranded DNA sequences. Mechanistic details of this reaction have been explored, revealing that (i) Ref is nickase, cleaving the two target strands of a displacement loop sequentially, (ii) the two strands are cleaved in a prescribed order, with the paired strand cut first and (iii) the two cleavage events have different requirements. Cutting the paired strand is rapid, does not require RecA-mediated ATP hydrolysis and is promoted even by Ref active site variant H153A. The displaced strand is cleaved much more slowly, requires RecA-mediated ATP hydrolysis and does not occur with Ref H153A. The two cleavage events are also affected differently by solution conditions. We postulate that the second cleavage (displaced strand) is limited by some activity of RecA protein.
Collapse
Affiliation(s)
- Erin A Ronayne
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
12
|
Moodley S, Maxwell KL, Kanelis V. The protein gp74 from the bacteriophage HK97 functions as a HNH endonuclease. Protein Sci 2012; 21:809-18. [PMID: 22434504 DOI: 10.1002/pro.2064] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 03/12/2012] [Accepted: 03/15/2012] [Indexed: 11/10/2022]
Abstract
The last gene in the genome of the bacteriophage HK97 encodes the protein gp74. We present data in this article that demonstrates, for the first time, that gp74 possesses HNH endonuclease activity. HNH endonucleases are small DNA binding and digestion proteins characterized by two His residues and an Asn residue. We demonstrate that gp74 cleaves lambda phage DNA at multiple sites and that gp74 requires divalent metals for its endonuclease activity. We also present intrinsic tryptophan fluorescence data that show direct binding of Ni(2+) to gp74. The activity of gp74 in the presence of Ni(2+) is significantly decreased below neutral pH, suggesting the presence of one or more His residues in metal binding and/or DNA digestion. Surprisingly, this pH-dependence of activity is not seen with Zn(2+) , suggesting a different mode of binding of Zn(2+) and Ni(2+) . This difference in activity may result from binding of a second Zn(2+) ion by a putative zinc finger in gp74 in addition to binding of a Zn(2+) ion by the HNH motif. These studies define the biochemical function of gp74 as an HNH endonuclease and provide a platform for determining the role of gp74 in life cycle of the bacteriophage HK97.
Collapse
Affiliation(s)
- Serisha Moodley
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
13
|
Towards artificial metallonucleases for gene therapy: recent advances and new perspectives. Future Med Chem 2011; 3:1935-66. [DOI: 10.4155/fmc.11.139] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The process of DNA targeting or repair of mutated genes within the cell, induced by specifically positioned double-strand cleavage of DNA near the mutated sequence, can be applied for gene therapy of monogenic diseases. For this purpose, highly specific artificial metallonucleases are developed. They are expected to be important future tools of modern genetics. The present state of art and strategies of research are summarized, including protein engineering and artificial ‘chemical’ nucleases. From the results, we learn about the basic role of the metal ions and the various ligands, and about the DNA binding and cleavage mechanism. The results collected provide useful guidance for engineering highly controlled enzymes for use in gene therapy.
Collapse
|