1
|
Qian W, Liu D, Han Y, Liu M, Liu B, Ji Q, Zhang B, Mei Q, Zhou S, Cheng Y. Cyclosporine A-loaded apoferritin alleviates myocardial ischemia-reperfusion injury by simultaneously blocking ferroptosis and apoptosis of cardiomyocytes. Acta Biomater 2023; 160:265-280. [PMID: 36822483 DOI: 10.1016/j.actbio.2023.02.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023]
Abstract
Myocardial ischemia-reperfusion injury (MI/RI) seriously restricts the therapeutic effect of reperfusion. It is demonstrated that ferroptosis and apoptosis of cardiomyocytes are widely involved in MI/RI. Therefore, simultaneous inhibition of ferroptosis and apoptosis of cardiomyocytes can be a promising strategy to treat MI/RI. Besides, transferrin receptor 1 (TfR1) is highly expressed in ischemic myocardium, and apoferritin (ApoFn) is a ligand of the transferrin receptor. In this study, CsA@ApoFn was prepared by wrapping cyclosporin A (CsA) with ApoFn and actively accumulated in ischemic cardiomyocytes through TfR1 mediated endoctosis in MI/RI mice. After entering cardiomyocytes, ApoFn in CsA@ApoFn inhibited ferroptosis of ischemic cardiomyocytes by increasing the protein expression of GPX4 and reducing the content of labile iron pool and lipid peroxides. At the same time, CsA in CsA@ApoFn attenuated the apoptosis of ischemic cardiomyocytes through recovering mitochondrial membrane potential and reducing the level of reactive oxygen species, which played a synergistic role with ApoFn in the treatment of MI/RI. In conclusion, CsA@ApoFn restored cardiac function of MI/RI mice by simultaneously blocking ferroptosis and apoptosis of cardiomyocytes. ApoFn itself not only served as a safe carrier to specifically deliver CsA to ischemic cardiomyocytes but also played a therapeutic role on MI/RI. CsA@ApoFn is proved as an effective drug delivery platform for the treatment of MI/RI. STATEMENT OF SIGNIFICANCE: Recent studies have shown that ferroptosis is an important mechanism of myocardial ischemia-reperfusion injury (MI/RI). Therefore, simultaneous inhibition of ferroptosis and apoptosis of cardiomyocytes can be a promising strategy to treat MI/RI. Apoferritin, as a delivery carrier, can actively target to ischemic myocardium through binding with highly expressed transferrin receptor on ischemic cardiomyocytes. At the same time, apoferritin plays a protective role on ischemic cardiomyocytes by inhibiting ferroptosis. This strategy of killing two birds with one stone significantly improves the therapeutic effect on MI/RI while does not need more pharmaceutical excipients, which has the prospect of clinical transformation.
Collapse
Affiliation(s)
- Wenqiang Qian
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China
| | - Daozhou Liu
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China
| | - Ying Han
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China
| | - Miao Liu
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China
| | - Bao Liu
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China
| | - Qifeng Ji
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China
| | - Bangle Zhang
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China
| | - Qibing Mei
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China
| | - Siyuan Zhou
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China.
| | - Ying Cheng
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
2
|
Parida A, Mohanty A, Raut RK, Padhy I, Behera RK. Modification of 4-Fold and B-Pores in Bacterioferritin from Mycobacterium tuberculosis Reveals Their Role in Fe 2+ Entry and Oxidoreductase Activity. Inorg Chem 2023; 62:178-191. [PMID: 36525578 DOI: 10.1021/acs.inorgchem.2c03156] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The self-assembled ferritin nanocages, nature's solution to iron toxicity and its low solubility, scavenge free iron to synthesize hydrated ferric oxyhydroxide mineral inside their central cavity by protein-mediated ferroxidase and hydrolytic/nucleation reactions. These complex processes in ferritin commence with the rapid influx of Fe2+ ions via the inter-subunit contact points (i.e., pores/channels). Investigation of these pores as Fe2+ uptake routes in ferritins remains a subject of intense research, in iron metabolism, toxicity, and bacterial pathogenesis, which are yet to be established in the bacterioferritin (BfrA) from Mycobacterium tuberculosis (Mtb). The electrostatic properties of this protein indicate that the 4-fold and B-pores might serve as potential Fe2+ entry routes. Therefore, in the current work, electrostatics at/along these pores was altered by site-directed mutagenesis to establish their role in Fe2+ uptake/oxidation (ferroxidase activity) in Mtb BfrA. Despite forming self-assembled protein nanocompartment, these 4-fold and B-pore variants exhibited partial loss of ferroxidase activity and lower accumulation of transient species, which not only indicated their role in Fe2+ entry but also suggested the existence of multiple pathways. Although the B-pore variants inhibited the rapid ferroxidase activity to a larger extent, they had minimal impact on their cage stability. The current work revealed the relative contribution of these pores toward rapid Fe2+ uptake/oxidation and cage stability, possibly as consequences of their differential symmetry, number of modified residues (at each pore), and heme content. Therefore, these findings may help to understand the role of these pores in iron acquisition and Mtb proliferation under iron-limiting conditions to control its pathogenesis.
Collapse
Affiliation(s)
- Akankshika Parida
- Department of Chemistry, National Institute of Technology, Rourkela, 769008Odisha, India
| | - Abhinav Mohanty
- Department of Chemistry, National Institute of Technology, Rourkela, 769008Odisha, India
| | - Rohit Kumar Raut
- Department of Chemistry, National Institute of Technology, Rourkela, 769008Odisha, India
| | - Ipsita Padhy
- Department of Chemistry, National Institute of Technology, Rourkela, 769008Odisha, India
| | - Rabindra K Behera
- Department of Chemistry, National Institute of Technology, Rourkela, 769008Odisha, India
| |
Collapse
|
3
|
Wu Y, Huo C, Ming T, Liu Y, Su C, Qiu X, Lu C, Zhou J, Li Y, Zhang Z, Han J, Feng Y, Su X. Structural and Functional Insights into the Roles of Potential Metal-Binding Sites in Apostichopus japonicus Ferritin. Polymers (Basel) 2022; 14:5378. [PMID: 36559745 PMCID: PMC9785301 DOI: 10.3390/polym14245378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/21/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Ferritin is widely acknowledged as a conservative iron storage protein found in almost all living kingdoms. Apostichopus japonicus (Selenka) is among the oldest echinoderm fauna and has unique regenerative potential, but the catalytic mechanism of iron oxidation in A. japonicus ferritin (AjFER) remains elusive. We previously identified several potential metal-binding sites at the ferroxidase center, the three- and four-fold channels in AjFER. Herein, we prepared AjFER, AjFER-E25A/E60A/E105A, AjFER-D129A/E132A, and AjFER-E168A mutants, investigated their structures, and functionally characterized these ferritins with respect to Fe2+ uptake using X-ray techniques together with biochemical analytical methods. A crystallographic model of the AjFER-D129A/E132A mutant, which was solved to a resolution of 1.98 Å, suggested that the substitutions had a significant influence on the quaternary structure of the three-fold channel compared to that of AjFER. The structures of these ferritins in solution were determined based on the molecular envelopes of AjFER and its variants by small-angle X-ray scattering, and the structures were almost consistent with the characteristics of well-folded and globular-shaped proteins. Comparative biochemical analyses indicated that site-directed mutagenesis of metal-binding sites in AjFER presented relatively low rates of iron oxidation and thermostability, as well as weak iron-binding affinity, suggesting that these potential metal-binding sites play critical roles in the catalytic activity of ferritin. These findings provide profound insight into the structure-function relationships related to marine invertebrate ferritins.
Collapse
Affiliation(s)
- Yan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315832, China
| | - Chunheng Huo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315832, China
- School of Marine Science, Ningbo University, Ningbo 315832, China
| | - Tinghong Ming
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315832, China
- School of Marine Science, Ningbo University, Ningbo 315832, China
| | - Yan Liu
- Zhejiang Collaborative Innovation Center for High Value Utilization of Byproducts from Ethylene Project, Ningbo Polytechnic, Ningbo 315800, China
| | - Chang Su
- Zhejiang Collaborative Innovation Center for High Value Utilization of Byproducts from Ethylene Project, Ningbo Polytechnic, Ningbo 315800, China
| | - Xiaoting Qiu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Chenyang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315832, China
- School of Marine Science, Ningbo University, Ningbo 315832, China
| | - Jun Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315832, China
- School of Marine Science, Ningbo University, Ningbo 315832, China
| | - Ye Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315832, China
- School of Marine Science, Ningbo University, Ningbo 315832, China
| | - Zhen Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315832, China
- School of Marine Science, Ningbo University, Ningbo 315832, China
| | - Jiaojiao Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315832, China
- School of Marine Science, Ningbo University, Ningbo 315832, China
| | - Ying Feng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315832, China
- School of Marine Science, Ningbo University, Ningbo 315832, China
- College of Life Sciences, Tonghua Normal University, Tonghua 134000, China
| | - Xiurong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315832, China
- School of Marine Science, Ningbo University, Ningbo 315832, China
| |
Collapse
|
4
|
Zhang N, Yu X, Song L, Xiao Z, Xie J, Xu H. Ferritin confers protection against iron-mediated neurotoxicity and ferroptosis through iron chelating mechanisms in MPP +-induced MES23.5 dopaminergic cells. Free Radic Biol Med 2022; 193:751-763. [PMID: 36395957 DOI: 10.1016/j.freeradbiomed.2022.11.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Ferritin is the main iron storage protein and plays an important role in maintaining iron homeostasis. In a previous study, we reported that apoferritin exerted a neuroprotective effect against MPTP by regulation of brain iron metabolism and ferroptosis. However, the precise cellular mechanisms of extracellular ferritin underlying this protection are not fully elucidated. Ferritin was reported to be localized in different intracellular compartments, cytoplasm or released outside cells. Here we demonstrated that the intracellular iron increased after iron treatment in primary cultured astrocytes. These iron-loaded astrocytes released more ferritin in order to buffer extracellular iron. Using co-culture system of primary cultured astrocytes and MES23.5 dopaminergic cells, we showed that ferritin released by astrocytes could enter MES23.5 dopaminergic cells. And primary cultured astrocytes protected MES23.5 dopaminergic cells against 1-methyl-4-phenylpyridinium ion (MPP+)-induced neurotoxicity and ferroptosis. In addition, we found that exogenous Apoferritin or Ferritin pretreatment could significantly inhibit MPP+-induced cell damage by restoring the cell viability and mitochondrial transmembrane potential (ΔΨm). Furthermore, exogenous Apoferritin and Ferritin might also protect MES23.5 dopaminergic cells against MPP+ by decreasing reactive oxygen species (ROS) and inhibiting the increase of the labile iron pool (LIP). This suggests that astrocytes increased ferritin release to respond to iron overload, which might inhibit iron-mediated oxidative damage and ferroptosis of dopamine (DA) neurons in Parkinson's disease (PD).
Collapse
Affiliation(s)
- Na Zhang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xiaoqi Yu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Limei Song
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Zhixin Xiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Junxia Xie
- Institute of Brain Science and Disease, Qingdao University, Qingdao, China.
| | - Huamin Xu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
5
|
Tasneem N, Szyszka TN, Jenner EN, Lau YH. How Pore Architecture Regulates the Function of Nanoscale Protein Compartments. ACS NANO 2022; 16:8540-8556. [PMID: 35583458 DOI: 10.1021/acsnano.2c02178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Self-assembling proteins can form porous compartments that adopt well-defined architectures at the nanoscale. In nature, protein compartments act as semipermeable barriers to enable spatial separation and organization of complex biochemical processes. The compartment pores play a key role in their overall function by selectively controlling the influx and efflux of important biomolecular species. By engineering the pores, the functionality of compartments can be tuned to facilitate non-native applications, such as artificial nanoreactors for catalysis. In this review, we analyze how protein structure determines the porosity and impacts the function of both native and engineered compartments, highlighting the wealth of structural data recently obtained by cryo-EM and X-ray crystallography. Through this analysis, we offer perspectives on how current structural insights can inform future studies into the design of artificial protein compartments as nanoreactors with tunable porosity and function.
Collapse
Affiliation(s)
- Nuren Tasneem
- School of Chemistry, The University of Sydney, Eastern Avenue, Camperdown, New South Wales 2006, Australia
| | - Taylor N Szyszka
- School of Chemistry, The University of Sydney, Eastern Avenue, Camperdown, New South Wales 2006, Australia
- University of Sydney Nano Institute, Camperdown, New South Wales 2006, Australia
| | - Eric N Jenner
- School of Chemistry, The University of Sydney, Eastern Avenue, Camperdown, New South Wales 2006, Australia
| | - Yu Heng Lau
- School of Chemistry, The University of Sydney, Eastern Avenue, Camperdown, New South Wales 2006, Australia
- University of Sydney Nano Institute, Camperdown, New South Wales 2006, Australia
| |
Collapse
|
6
|
Mohanty A, Parida A, Raut RK, Behera RK. Ferritin: A Promising Nanoreactor and Nanocarrier for Bionanotechnology. ACS BIO & MED CHEM AU 2022; 2:258-281. [PMID: 37101573 PMCID: PMC10114856 DOI: 10.1021/acsbiomedchemau.2c00003] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
The essence of bionanotechnology lies in the application of nanotechnology/nanomaterials to solve the biological problems. Quantum dots and nanoparticles hold potential biomedical applications, but their inherent problems such as low solubility and associated toxicity due to their interactions at nonspecific target sites is a major concern. The self-assembled, thermostable, ferritin protein nanocages possessing natural iron scavenging ability have emerged as a potential solution to all the above-mentioned problems by acting as nanoreactor and nanocarrier. Ferritins, the cellular iron repositories, are hollow, spherical, symmetric multimeric protein nanocages, which sequester the excess of free Fe(II) and synthesize iron biominerals (Fe2O3·H2O) inside their ∼5-8 nm central cavity. The electrostatics and dynamics of the pore residues not only drives the natural substrate Fe2+ inside ferritin nanocages but also uptakes a set of other metals ions/counterions during in vitro synthesis of nanomaterial. The current review aims to report the recent developments/understanding on ferritin structure (self-assembly, surface/pores electrostatics, metal ion binding sites) and chemistry occurring inside these supramolecular protein cages (protein mediated metal ion uptake and mineralization/nanoparticle formation) along with its surface modification to exploit them for various nanobiotechnological applications. Furthermore, a better understanding of ferritin self-assembly would be highly useful for optimizing the incorporation of nanomaterials via the disassembly/reassembly approach. Several studies have reported the successful engineering of these ferritin protein nanocages in order to utilize them as potential nanoreactor for synthesizing/incorporating nanoparticles and as nanocarrier for delivering imaging agents/drugs at cell specific target sites. Therefore, the combination of nanoscience (nanomaterials) and bioscience (ferritin protein) projects several benefits for various applications ranging from electronics to medicine.
Collapse
|
7
|
Ming T, Jiang Q, Huo C, Huan H, Wu Y, Su C, Qiu X, Lu C, Zhou J, Li Y, Han J, Zhang Z, Su X. Structural Insights Into the Effects of Interactions With Iron and Copper Ions on Ferritin From the Blood Clam Tegillarca granosa. Front Mol Biosci 2022; 9:800008. [PMID: 35359603 PMCID: PMC8961696 DOI: 10.3389/fmolb.2022.800008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
In addition to its role as an iron storage protein, ferritin can function as a major detoxification component in the innate immune defense, and Cu2+ ions can also play crucial antibacterial roles in the blood clam, Tegillarca granosa. However, the mechanism of interaction between iron and copper in recombinant Tegillarca granosa ferritin (TgFer) remains to be investigated. In this study, we investigated the crystal structure of TgFer and examined the effects of Fe2+ and Cu2+ ions on the TgFer structure and catalytic activity. The crystal structure revealed that TgFer presented a typically 4–3–2 symmetry in a cage-like, spherical shell composed of 24 identical subunits, featuring highly conserved organization in both the ferroxidase center and the 3-fold channel. Structural and biochemical analyses indicated that the 4-fold channel of TgFer could be serviced as potential binding sites of metal ions. Cu2+ ions appear to bind preferentially with the 3-fold channel as well as ferroxidase site over Fe2+ ions, possibly inhibiting the ferroxidase activity of TgFer. Our results present a structural and functional characterization of TgFer, providing mechanistic insight into the interactions between TgFer and both Fe2+ and Cu2+ ions.
Collapse
Affiliation(s)
- Tinghong Ming
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Qinqin Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Chunheng Huo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Hengshang Huan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Yan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Chang Su
- Zhejiang Collaborative Innovation Center for High Value Utilization of Byproducts from Ethylene Project, Ningbo Polytechnic College, Ningbo, China
| | - Xiaoting Qiu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Chenyang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Jun Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Ye Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Jiaojiao Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Zhen Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Xiurong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
- *Correspondence: Xiurong Su,
| |
Collapse
|
8
|
Ciambellotti S, Pratesi A, Tassone G, Turano P, Mangani S, Pozzi C. Iron Binding in the Ferroxidase Site of Human Mitochondrial Ferritin. Chemistry 2021; 27:14690-14701. [PMID: 34343376 DOI: 10.1002/chem.202102270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Indexed: 12/12/2022]
Abstract
Ferritins are nanocage proteins that store iron ions in their central cavity as hydrated ferric oxide biominerals. In mammals, further the L (light) and H (heavy) chains constituting cytoplasmic maxi-ferritins, an additional type of ferritin has been identified, the mitochondrial ferritin (MTF). Human MTF (hMTF) is a functional homopolymeric H-like ferritin performing the ferroxidase activity in its ferroxidase site (FS), in which Fe(II) is oxidized to Fe(III) in the presence of dioxygen. To better investigate its ferroxidase properties, here we performed time-lapse X-ray crystallography analysis of hMTF, providing structural evidence of how iron ions interact with hMTF and of their binding to the FS. Transient iron binding sites, populating the pathway along the cage from the iron entry channel to the catalytic center, were also identified. Furthermore, our kinetic data at variable iron loads indicate that the catalytic iron oxidation reaction occurs via a diferric peroxo intermediate followed by the formation of ferric-oxo species, with significant differences with respect to human H-type ferritin.
Collapse
Affiliation(s)
- Silvia Ciambellotti
- Department of Chemistry "Ugo Schiff" Department of Excellence 2018-2022, University of Florence, via della Lastruccia 2, 50019, Sesto Fiorentino, Italy.,Magnetic Resonance Center (CERM), University of Florence, Luigi Sacconi 6, 50019, Sesto Fiorentino (FI), Italy.,Consorzio Interuniversitario Risonanze Magnetiche di, Metallo Proteine (C.I.R.M.M.P.), via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Giusy Tassone
- Department of Biotechnology, Chemistry and Pharmacy Department of Excellence 2018-2020, University of Siena, via Aldo Moro, 2, 53110, Siena, Italy
| | - Paola Turano
- Department of Chemistry "Ugo Schiff" Department of Excellence 2018-2022, University of Florence, via della Lastruccia 2, 50019, Sesto Fiorentino, Italy.,Magnetic Resonance Center (CERM), University of Florence, Luigi Sacconi 6, 50019, Sesto Fiorentino (FI), Italy.,Consorzio Interuniversitario Risonanze Magnetiche di, Metallo Proteine (C.I.R.M.M.P.), via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Stefano Mangani
- Magnetic Resonance Center (CERM), University of Florence, Luigi Sacconi 6, 50019, Sesto Fiorentino (FI), Italy.,Consorzio Interuniversitario Risonanze Magnetiche di, Metallo Proteine (C.I.R.M.M.P.), via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy.,Department of Biotechnology, Chemistry and Pharmacy Department of Excellence 2018-2020, University of Siena, via Aldo Moro, 2, 53110, Siena, Italy
| | - Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy Department of Excellence 2018-2020, University of Siena, via Aldo Moro, 2, 53110, Siena, Italy
| |
Collapse
|
9
|
Zhang N, Yu X, Xie J, Xu H. New Insights into the Role of Ferritin in Iron Homeostasis and Neurodegenerative Diseases. Mol Neurobiol 2021; 58:2812-2823. [PMID: 33507490 DOI: 10.1007/s12035-020-02277-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/28/2020] [Indexed: 12/11/2022]
Abstract
Growing evidence has indicated that iron deposition is one of the key factors leading to neuronal death in the neurodegenerative diseases. Ferritin is a hollow iron storage protein composed of 24 subunits of two types, ferritin heavy chain (FTH) and ferritin light chain (FTL), which plays an important role in maintaining iron homeostasis. Recently, the discovery of extracellular ferritin and ferritin in exosomes indicates that ferritin might be not only an iron storage protein within the cell, but might also be an important factor in the regulation of tissue and body iron homeostasis. In this review, we first described the structural characteristics, regulation and the physiological functions of ferritin. Secondly, we reviewed the current evidence concerning the mechanisms underlying the secretion of ferritin and the possible role of secreted ferritin in the brain. Then, we summarized the relationship between ferritin and the neurodegenerative diseases including Parkinson's disease (PD), Alzheimer's disease (AD) and neuroferritinopathy (NF). Given the importance and relationship between iron and neurodegenerative diseases, understanding the role of ferritin in the brain can be expected to contribute to our knowledge of iron dysfunction and neurodegenerative diseases.
Collapse
Affiliation(s)
- Na Zhang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.,Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China
| | - Xiaoqi Yu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.,Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China
| | - Junxia Xie
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China. .,Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China.
| | - Huamin Xu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China. .,Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
10
|
Melman A, Bou-Abdallah F. Iron mineralization and core dissociation in mammalian homopolymeric H-ferritin: Current understanding and future perspectives. Biochim Biophys Acta Gen Subj 2020; 1864:129700. [DOI: 10.1016/j.bbagen.2020.129700] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 01/13/2023]
|
11
|
Bradley JM, Pullin J, Moore GR, Svistunenko DA, Hemmings AM, Le Brun NE. Routes of iron entry into, and exit from, the catalytic ferroxidase sites of the prokaryotic ferritin SynFtn. Dalton Trans 2020; 49:1545-1554. [DOI: 10.1039/c9dt03570b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This work describes the identification of two residues, D137 and E62, that are critical for, respectively, the transport of Fe2+ into, and Fe3+ out of, the catalytic sites of a prokaryotic ferritin.
Collapse
Affiliation(s)
- Justin M. Bradley
- Centre for Molecular and Structural Biochemistry
- School of Chemistry
- University of East Anglia
- Norwich
- UK
| | - Jacob Pullin
- School of Biological Sciences
- University of Essex
- Colchester CO4 3SQ
- UK
| | - Geoffrey R. Moore
- Centre for Molecular and Structural Biochemistry
- School of Chemistry
- University of East Anglia
- Norwich
- UK
| | | | - Andrew M. Hemmings
- Centre for Molecular and Structural Biochemistry
- School of Chemistry
- University of East Anglia
- Norwich
- UK
| | - Nick E. Le Brun
- Centre for Molecular and Structural Biochemistry
- School of Chemistry
- University of East Anglia
- Norwich
- UK
| |
Collapse
|
12
|
Chandramouli B, Del Galdo S, Mancini G, Barone V. Mechanistic insights into metal ions transit through threefold ferritin channel. Biochim Biophys Acta Gen Subj 2018; 1863:472-480. [PMID: 30496786 DOI: 10.1016/j.bbagen.2018.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/26/2018] [Accepted: 11/14/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND The mechanism of how the hydrophilic threefold channel (C3) of ferritin nanocages facilitates diffusion of diverse metal ions into the internal cavity remains poorly explored. METHODS Computational modeling and free energy estimations were carried out on R. catesbeiana H´ ferritin. Transit features and associated energetics for Fe2+, Mg2+, Zn2+ ions through the C3 channel have been examined. RESULTS We highlight that iron conduction requires the involvement of two Fe2+ ions in the channel. In such doubly occupied configuration, as observed in X-ray structures, Fe2+ is displaced from the internal site (stabilized by D127) at lower energetic cost. Moreover, comparison of Fe2+, Mg2+ and Zn2+ transit features shows that E130 geometric constriction provides not only an electrostatic anchor to the incoming ions but also differentially influence their diffusion kinetics. CONCLUSIONS Overall, the study provides insights into Fe2+ entry mechanism and characteristic features of metal-protein interactions that influence the metal ions passage. The dynamics data suggest that E130 may act as a metal selectivity gate. This implicates an ion-specific entry mechanism through the channel with the distinct diffusion kinetics being the discriminating factor. GENERAL SIGNIFICANCE Ferritin nanocages not only act as biological iron reservoirs but also have gained importance in material science as template scaffolds for synthesizing metal nanoparticles. This study provides mechanistic understanding on the conduction of different metal ions through the channel.
Collapse
Affiliation(s)
- Balasubramanian Chandramouli
- Compunet, Istituto Italiano di Tecnologia (IIT), Via Morego 30, I-16163 Genova, Italy; Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy.
| | - Sara Del Galdo
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy; Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti OrganoMetallici (ICCOMCNR), UOS di Pisa, Area della Ricerca CNR, Via G. Moruzzi 1, I-56124 Pisa, Italy
| | - Giordano Mancini
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy; Istituto Nazionale di Fisica Nucleare (INFN) sezione di Pisa, Largo Bruno Pontecorvo 3, I-56127, Pisa, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy; Istituto Nazionale di Fisica Nucleare (INFN) sezione di Pisa, Largo Bruno Pontecorvo 3, I-56127, Pisa, Italy
| |
Collapse
|
13
|
Lin CY, Shieh MJ. Near-Infrared Fluorescent Dye-Decorated Nanocages to Form Grenade-like Nanoparticles with Dual Control Release for Photothermal Theranostics and Chemotherapy. Bioconjug Chem 2018; 29:1384-1398. [PMID: 29505243 DOI: 10.1021/acs.bioconjchem.8b00088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Recently, nanoparticles (NPs) have been widely investigated for delivery of anticancer drugs. Here, a dual control drug-release modality was developed that uses naturally occurring protein apoferritin loaded with doxorubicin (DOX) and ADS-780 near-infrared (NIR) fluorescent dye-decorated NPs (ADNIR NPs). ADNIR NPs act as a grenade to detonate the targeted tumor site following laser irradiation (photothermal therapy, PTT) and explode into cluster warheads (apoferritin-loaded DOX nanocages, AF-DOX NCs) that further destroy the tumor cells (chemotherapy). Light was shown to disrupt the grenade-like structure of NPs to release AF-DOX NCs as well as DOX from NCs in low-pH intercellular environments. In vitro and in vivo studies showed that the structure of AF-DOX NCs was disassembled to release DOX, which then killed the cancer cells in organelles with acidic environments. In vivo studies showed that the ADNIR NP-decorated with NIR dye facilitated tracking of the accumulated NPs at the tumor site using an IVIS imaging system. Overall, targeted ADNIR NPs with dual-release mechanisms were developed for use in photothermal theranostic and chemotherapy. This modality has high potential for application in cancer treatment and clinical translation for drug delivery and imaging.
Collapse
Affiliation(s)
- Chun-Yen Lin
- Institute of Biomedical Engineering, College of Medicine and College of Engineering , National Taiwan University , No. 1, Section 1, Jen-Ai Road , Taipei 100 , Taiwan
| | - Ming-Jium Shieh
- Institute of Biomedical Engineering, College of Medicine and College of Engineering , National Taiwan University , No. 1, Section 1, Jen-Ai Road , Taipei 100 , Taiwan.,Department of Oncology , National Taiwan University Hospital and College of Medicine , #7, Chung-Shan South Road , Taipei 100 , Taiwan
| |
Collapse
|
14
|
Watson DC, Yung BC, Bergamaschi C, Chowdhury B, Bear J, Stellas D, Morales-Kastresana A, Jones JC, Felber BK, Chen X, Pavlakis GN. Scalable, cGMP-compatible purification of extracellular vesicles carrying bioactive human heterodimeric IL-15/lactadherin complexes. J Extracell Vesicles 2018; 7:1442088. [PMID: 29535850 PMCID: PMC5844027 DOI: 10.1080/20013078.2018.1442088] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 02/11/2018] [Indexed: 12/19/2022] Open
Abstract
The development of extracellular vesicles (EV) for therapeutic applications is contingent upon the establishment of reproducible, scalable, and high-throughput methods for the production and purification of clinical grade EV. Methods including ultracentrifugation (U/C), ultrafiltration, immunoprecipitation, and size-exclusion chromatography (SEC) have been employed to isolate EV, each facing limitations such as efficiency, particle purity, lengthy processing time, and/or sample volume. We developed a cGMP-compatible method for the scalable production, concentration, and isolation of EV through a strategy involving bioreactor culture, tangential flow filtration (TFF), and preparative SEC. We applied this purification method for the isolation of engineered EV carrying multiple complexes of a novel human immunostimulatory cytokine-fusion protein, heterodimeric IL-15 (hetIL-15)/lactadherin. HEK293 cells stably expressing the fusion cytokine were cultured in a hollow-fibre bioreactor. Conditioned medium was collected and EV were isolated comparing three procedures: U/C, SEC, or TFF + SEC. SEC demonstrated comparable particle recovery, size distribution, and hetIL-15 density as U/C purification. Relative to U/C, SEC preparations achieved a 100-fold reduction in ferritin concentration, a major protein-complex contaminant. Comparative proteomics suggested that SEC additionally decreased the abundance of cytoplasmic proteins not associated with EV. Combination of TFF and SEC allowed for bulk processing of large starting volumes, and resulted in bioactive EV, without significant loss in particle yield or changes in size, morphology, and hetIL-15/lactadherin density. Taken together, the combination of bioreactor culture with TFF + SEC comprises a scalable, efficient method for the production of highly purified, bioactive EV carrying hetIL-15/lactadherin, which may be useful in targeted cancer immunotherapy approaches.
Collapse
Affiliation(s)
- Dionysios C. Watson
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Bryant C. Yung
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Cristina Bergamaschi
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Bhabadeb Chowdhury
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Jenifer Bear
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Dimitris Stellas
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | | | - Jennifer C. Jones
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Barbara K. Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - George N. Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| |
Collapse
|
15
|
Xie TX, Chu FH, Yan WQ, Xu B, Chen J, Zhao R, Zhang YZ, Wang PL, Lei HM. Synthesis and biological evaluation of new peroxo-bridged diosgenin derivatives. CHINESE HERBAL MEDICINES 2018. [DOI: 10.1016/j.chmed.2017.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
16
|
First biochemical and crystallographic characterization of a fast-performing ferritin from a marine invertebrate. Biochem J 2017; 474:4193-4206. [PMID: 29127253 DOI: 10.1042/bcj20170681] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/06/2017] [Accepted: 11/08/2017] [Indexed: 01/31/2023]
Abstract
Ferritin, a multimeric cage-like enzyme, is integral to iron metabolism across all phyla through the sequestration and storage of iron through efficient ferroxidase activity. While ferritin sequences from ∼900 species have been identified, crystal structures from only 50 species have been reported, the majority from bacterial origin. We recently isolated a secreted ferritin from the marine invertebrate Chaetopterus sp. (parchment tube worm), which resides in muddy coastal seafloors. Here, we present the first ferritin from a marine invertebrate to be crystallized and its biochemical characterization. The initial ferroxidase reaction rate of recombinant Chaetopterus ferritin (ChF) is 8-fold faster than that of recombinant human heavy-chain ferritin (HuHF). To our knowledge, this protein exhibits the fastest catalytic performance ever described for a ferritin variant. In addition to the high-velocity ferroxidase activity, ChF is unique in that it is secreted by Chaetopterus in a bioluminescent mucus. Previous work has linked the availability of Fe2+ to this long-lived bioluminescence, suggesting a potential function for the secreted ferritin. Comparative biochemical analyses indicated that both ChF and HuHF showed similar behavior toward changes in pH, temperature, and salt concentration. Comparison of their crystal structures shows no significant differences in the catalytic sites. Notable differences were found in the residues that line both 3-fold and 4-fold pores, potentially leading to increased flexibility, reduced steric hindrance, or a more efficient pathway for Fe2+ transportation to the ferroxidase site. These suggested residues could contribute to the understanding of iron translocation through the ferritin shell to the ferroxidase site.
Collapse
|
17
|
Skinner OS, McAnally MO, Van Duyne RP, Schatz GC, Breuker K, Compton PD, Kelleher NL. Native Electron Capture Dissociation Maps to Iron-Binding Channels in Horse Spleen Ferritin. Anal Chem 2017; 89:10711-10716. [PMID: 28938074 PMCID: PMC5647560 DOI: 10.1021/acs.analchem.7b01581] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 09/22/2017] [Indexed: 12/01/2022]
Abstract
Native electron capture dissociation (NECD) is a process during which proteins undergo fragmentation similar to that from radical dissociation methods, but without the addition of exogenous electrons. However, after three initial reports of NECD from the cytochrome c dimer complex, no further evidence of the effect has been published. Here, we report NECD behavior from horse spleen ferritin, a ∼490 kDa protein complex ∼20-fold larger than the previously studied cytochrome c dimer. Application of front-end infrared excitation (FIRE) in conjunction with low- and high-m/z quadrupole isolation and collisionally activated dissociation (CAD) provides new insights into the NECD mechanism. Additionally, activation of the intact complex in either the electrospray droplet or the gas phase produced c-type fragment ions. Similar to the previously reported results on cytochrome c, these fragment ions form near residues known to interact with iron atoms in solution. By mapping the location of backbone cleavages associated with c-type ions onto the crystal structure, we are able to characterize two distinct iron binding channels that facilitate iron ion transport into the core of the complex. The resulting pathways are in good agreement with previously reported results for iron binding sites in mammalian ferritin.
Collapse
Affiliation(s)
- Owen S. Skinner
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael O. McAnally
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Richard P. Van Duyne
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - George C. Schatz
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Kathrin Breuker
- Institute
of Organic Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Philip D. Compton
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Neil L. Kelleher
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
18
|
Sala D, Ciambellotti S, Giachetti A, Turano P, Rosato A. Investigation of the Iron(II) Release Mechanism of Human H-Ferritin as a Function of pH. J Chem Inf Model 2017; 57:2112-2118. [DOI: 10.1021/acs.jcim.7b00306] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Davide Sala
- Magnetic
Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Silvia Ciambellotti
- Magnetic
Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Andrea Giachetti
- Consorzio Interuniversitario di Risonanze Magnetiche di Metallo Proteine, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Paola Turano
- Magnetic
Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Department
of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Antonio Rosato
- Magnetic
Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Department
of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
19
|
Diversity of Fe 2+ entry and oxidation in ferritins. Curr Opin Chem Biol 2017; 37:122-128. [DOI: 10.1016/j.cbpa.2017.02.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 01/08/2023]
|
20
|
Chemistry at the protein-mineral interface in L-ferritin assists the assembly of a functional (μ 3-oxo)Tris[(μ 2-peroxo)] triiron(III) cluster. Proc Natl Acad Sci U S A 2017; 114:2580-2585. [PMID: 28202724 DOI: 10.1073/pnas.1614302114] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
X-ray structures of homopolymeric L-ferritin obtained by freezing protein crystals at increasing exposure times to a ferrous solution showed the progressive formation of a triiron cluster on the inner cage surface of each subunit. After 60 min exposure, a fully assembled (μ3-oxo)Tris[(μ2-peroxo)(μ2-glutamato-κO:κO')](glutamato-κO)(diaquo)triiron(III) anionic cluster appears in human L-ferritin. Glu60, Glu61, and Glu64 provide the anchoring of the cluster to the protein cage. Glu57 shuttles incoming iron ions toward the cluster. We observed a similar metallocluster in horse spleen L-ferritin, indicating that it represents a common feature of mammalian L-ferritins. The structures suggest a mechanism for iron mineral formation at the protein interface. The functional significance of the observed patch of carboxylate side chains and resulting metallocluster for biomineralization emerges from the lower iron oxidation rate measured in the E60AE61AE64A variant of human L-ferritin, leading to the proposal that the observed metallocluster corresponds to the suggested, but yet unobserved, nucleation site of L-ferritin.
Collapse
|
21
|
Zheng XT, Xu HV, Tan YN. Bioinspired Design and Engineering of Functional Nanostructured Materials for Biomedical Applications. ACS SYMPOSIUM SERIES 2017. [DOI: 10.1021/bk-2017-1253.ch007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Xin Ting Zheng
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634
- Division of Chemical and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore 117543
| | - Hesheng Victor Xu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634
- Division of Chemical and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore 117543
| | - Yen Nee Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634
- Division of Chemical and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore 117543
| |
Collapse
|
22
|
Chandramouli B, Bernacchioni C, Di Maio D, Turano P, Brancato G. Electrostatic and Structural Bases of Fe2+ Translocation through Ferritin Channels. J Biol Chem 2016; 291:25617-25628. [PMID: 27756844 DOI: 10.1074/jbc.m116.748046] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/03/2016] [Indexed: 01/14/2023] Open
Abstract
Ferritin molecular cages are marvelous 24-mer supramolecular architectures that enable massive iron storage (>2000 iron atoms) within their inner cavity. This cavity is connected to the outer environment by two channels at C3 and C4 symmetry axes of the assembly. Ferritins can also be exploited as carriers for in vivo imaging and therapeutic applications, owing to their capability to effectively protect synthetic non-endogenous agents within the cage cavity and deliver them to targeted tissue cells without stimulating adverse immune responses. Recently, X-ray crystal structures of Fe2+-loaded ferritins provided important information on the pathways followed by iron ions toward the ferritin cavity and the catalytic centers within the protein. However, the specific mechanisms enabling Fe2+ uptake through wild-type and mutant ferritin channels is largely unknown. To shed light on this question, we report extensive molecular dynamics simulations, site-directed mutagenesis, and kinetic measurements that characterize the transport properties and translocation mechanism of Fe2+ through the two ferritin channels, using the wild-type bullfrog Rana catesbeiana H' protein and some of its variants as case studies. We describe the structural features that determine Fe2+ translocation with atomistic detail, and we propose a putative mechanism for Fe2+ transport through the channel at the C3 symmetry axis, which is the only iron-permeable channel in vertebrate ferritins. Our findings have important implications for understanding how ion permeation occurs, and further how it may be controlled via purposely engineered channels for novel biomedical applications based on ferritin.
Collapse
Affiliation(s)
- Balasubramanian Chandramouli
- From the Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, .,the Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa, and
| | - Caterina Bernacchioni
- the Magnetic Resonance Center (CERM) and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Danilo Di Maio
- From the Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa.,the Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa, and
| | - Paola Turano
- the Magnetic Resonance Center (CERM) and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Giuseppe Brancato
- From the Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, .,the Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa, and
| |
Collapse
|
23
|
Bernacchioni C, Pozzi C, Di Pisa F, Mangani S, Turano P. Ferroxidase Activity in Eukaryotic Ferritin is Controlled by Accessory-Iron-Binding Sites in the Catalytic Cavity. Chemistry 2016; 22:16213-16219. [DOI: 10.1002/chem.201602842] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Caterina Bernacchioni
- CERM and Department of Chemistry; University of Florence; Via Sacconi 6 Sesto Fiorentino Firenze 50019 Italy
| | - Cecilia Pozzi
- Dipartimento di Biotecnologie; Chimica e Farmacia; University of Siena; Via Aldo Moro 2 Siena 53100 Italy
| | - Flavio Di Pisa
- Dipartimento di Biotecnologie; Chimica e Farmacia; University of Siena; Via Aldo Moro 2 Siena 53100 Italy
| | - Stefano Mangani
- Dipartimento di Biotecnologie; Chimica e Farmacia; University of Siena; Via Aldo Moro 2 Siena 53100 Italy
| | - Paola Turano
- CERM and Department of Chemistry; University of Florence; Via Sacconi 6 Sesto Fiorentino Firenze 50019 Italy
| |
Collapse
|
24
|
He D, Hughes S, Vanden-Hehir S, Georgiev A, Altenbach K, Tarrant E, Mackay CL, Waldron KJ, Clarke DJ, Marles-Wright J. Structural characterization of encapsulated ferritin provides insight into iron storage in bacterial nanocompartments. eLife 2016; 5. [PMID: 27529188 PMCID: PMC5012862 DOI: 10.7554/elife.18972] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/14/2016] [Indexed: 12/17/2022] Open
Abstract
Ferritins are ubiquitous proteins that oxidise and store iron within a protein shell to protect cells from oxidative damage. We have characterized the structure and function of a new member of the ferritin superfamily that is sequestered within an encapsulin capsid. We show that this encapsulated ferritin (EncFtn) has two main alpha helices, which assemble in a metal dependent manner to form a ferroxidase center at a dimer interface. EncFtn adopts an open decameric structure that is topologically distinct from other ferritins. While EncFtn acts as a ferroxidase, it cannot mineralize iron. Conversely, the encapsulin shell associates with iron, but is not enzymatically active, and we demonstrate that EncFtn must be housed within the encapsulin for iron storage. This encapsulin nanocompartment is widely distributed in bacteria and archaea and represents a distinct class of iron storage system, where the oxidation and mineralization of iron are distributed between two proteins. DOI:http://dx.doi.org/10.7554/eLife.18972.001 Iron is essential for life as it is a key component of many different enzymes that participate in processes such as energy production and metabolism. However, iron can also be highly toxic to cells because it readily reacts with oxygen. This reaction can damage DNA, proteins and the membranes that surround cells. To balance the cell’s need for iron against its potential damaging effects, organisms have evolved iron storage proteins known as ferritins that form cage-like structures. The ferritins convert iron into a less reactive form that is mineralised and safely stored in the central cavity of the ferritin cage and is available for cells when they need it. Recently, a new family of ferritins known as encapsulated ferritins have been found in some microorganisms. These ferritins are found in bacterial genomes with a gene that codes for a protein cage called an encapsulin. Although the structure of the encapsulin cage is known to look like the shell of a virus, the structure that the encapsulated ferritin itself forms is not known. It is also not clear how encapsulin and the encapsulated ferritin work together to store iron. He et al. have now used the techniques of X-ray crystallography and mass spectrometry to determine the structure of the encapsulated ferritin found in some bacteria. The encapsulated ferritin forms a ring-shaped doughnut in which ten subunits of ferritin are arranged in a ring; this is totally different from the enclosed cages that other ferritins form. Biochemical studies revealed that the encapsulated ferritin is able to convert iron into a less reactive form, but it cannot store iron on its own since it does not form a cage. Thus, the encapsulated ferritin needs to be housed within the encapsulin cage to store iron. Further work is needed to investigate how iron moves into the encapsulin cage to reach the ferritin proteins. Some organisms have both standard ferritin cages and encapsulated ferritins; why this is the case also remains to be discovered. DOI:http://dx.doi.org/10.7554/eLife.18972.002
Collapse
Affiliation(s)
- Didi He
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Sam Hughes
- The School of Chemistry, The University of Edinburgh, Edinburgh, United Kingdom
| | - Sally Vanden-Hehir
- The School of Chemistry, The University of Edinburgh, Edinburgh, United Kingdom
| | - Atanas Georgiev
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Kirsten Altenbach
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Emma Tarrant
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcasle upon Tyne, United Kingdom
| | - C Logan Mackay
- The School of Chemistry, The University of Edinburgh, Edinburgh, United Kingdom
| | - Kevin J Waldron
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcasle upon Tyne, United Kingdom
| | - David J Clarke
- The School of Chemistry, The University of Edinburgh, Edinburgh, United Kingdom
| | - Jon Marles-Wright
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom.,School of Biology, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
25
|
Li L, Zhang L, Knez M. Comparison of two endogenous delivery agents in cancer therapy: Exosomes and ferritin. Pharmacol Res 2016; 110:1-9. [DOI: 10.1016/j.phrs.2016.05.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/07/2016] [Accepted: 05/03/2016] [Indexed: 12/21/2022]
|
26
|
Theil EC, Tosha T, Behera RK. Solving Biology's Iron Chemistry Problem with Ferritin Protein Nanocages. Acc Chem Res 2016; 49:784-91. [PMID: 27136423 DOI: 10.1021/ar500469e] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Ferritins reversibly synthesize iron-oxy(ferrihydrite) biominerals inside large, hollow protein nanocages (10-12 nm, ∼480 000 g/mol); the iron biominerals are metabolic iron concentrates for iron protein biosyntheses. Protein cages of 12- or 24-folded ferritin subunits (4-α-helix polypeptide bundles) self-assemble, experimentally. Ferritin biomineral structures differ among animals and plants or bacteria. The basic ferritin mineral structure is ferrihydrite (Fe2O3·H2O) with either low phosphate in the highly ordered animal ferritin biominerals, Fe/PO4 ∼ 8:1, or Fe/PO4 ∼ 1:1 in the more amorphous ferritin biominerals of plants and bacteria. While different ferritin environments, plant bacterial-like plastid organelles and animal cytoplasm, might explain ferritin biomineral differences, investigation is required. Currently, the physiological significance of plant-specific and animal-specific ferritin iron minerals is unknown. The iron content of ferritin in living tissues ranges from zero in "apoferritin" to as high as ∼4500 iron atoms. Ferritin biomineralization begins with the reaction of Fe(2+) with O2 at ferritin enzyme (Fe(2+)/O oxidoreductase) sites. The product of ferritin enzyme activity, diferric oxy complexes, is also the precursor of ferritin biomineral. Concentrations of Fe(3+) equivalent to 2.0 × 10(-1) M are maintained in ferritin solutions, contrasting with the Fe(3+) Ks ∼ 10(-18) M. Iron ions move into, through, and out of ferritin protein cages in structural subdomains containing conserved amino acids. Cage subdomains include (1) ion channels for Fe(2+) entry/exit, (2) enzyme (oxidoreductase) site for coupling Fe(2+) and O yielding diferric oxy biomineral precursors, and (3) ferric oxy nucleation channels, where diferric oxy products from up to three enzyme sites interact while moving toward the central, biomineral growth cavity (12 nm diameter) where ferric oxy species, now 48-mers, grow in ferric oxy biomineral. High ferritin protein cage symmetry (3-fold and 4-fold axes) and amino acid conservation coincide with function, shown by amino acid substitution effects. 3-Fold symmetry axes control Fe(2+) entry (enzyme catalysis of Fe(2+)/O2 oxidoreduction) and Fe(2+) exit (reductive ferritin mineral dissolution); 3-fold symmetry axes influence Fe(2+)exit from dissolved mineral; bacterial ferritins diverge slightly in Fe/O2 reaction mechanisms and intracage paths of iron-oxy complexes. Biosynthesis rates of ferritin protein change with Fe(2+) and O2 concentrations, dependent on DNA-binding, and heme binding protein, Bach 1. Increased cellular O2 indirectly stabilizes ferritin DNA/Bach 1 interactions. Heme, Fe-protoporphyrin IX, decreases ferritin DNA-Bach 1 binding, causing increased ferritin mRNA biosynthesis (transcription). Direct Fe(2+) binding to ferritin mRNA decreases binding of an inhibitory protein, IRP, causing increased ferritin mRNA translation (protein biosynthesis). Newly synthesized ferritin protein consumes Fe(2+) in biomineral, decreasing Fe(2)(+) and creating a regulatory feedback loop. Ferritin without iron is "apoferritin". Iron removal from ferritin, experimentally, uses biological reductants, for example, NADH + FMN, or chemical reductants, for example, thioglycolic acid, with Fe(2+) chelators; physiological mechanism(s) are murky. Clear, however, is the necessity of ferritin for terrestrial life by conferring oxidant protection (plants, animals, and bacteria), virulence (bacteria), and embryonic survival (mammals). Future studies of ferritin structure/function and Fe(2+)/O2 chemistry will lead to new ferritin uses in medicine, nutrition, and nanochemistry.
Collapse
Affiliation(s)
- Elizabeth C. Theil
- Children’s Hospital Oakland Research Institute, Oakland, California 94609, United States
- Department of Structural
and Molecular Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7313, United States
| | - Takehiko Tosha
- Children’s Hospital Oakland Research Institute, Oakland, California 94609, United States
- Department of Structural
and Molecular Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7313, United States
| | - Rabindra K. Behera
- Children’s Hospital Oakland Research Institute, Oakland, California 94609, United States
- Department of Structural
and Molecular Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7313, United States
| |
Collapse
|
27
|
Bernacchioni C, Ghini V, Theil EC, Turano P. Modulating the permeability of ferritin channels. RSC Adv 2016. [DOI: 10.1039/c5ra25056k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Electric field gradients across the C3 and C4 ferritin channels controls the directional Fe2+fluxes towards the catalytic ferroxidase center.
Collapse
Affiliation(s)
- C. Bernacchioni
- CERM
- University of Florence
- 50019 Sesto Fiorentino
- Italy
- Department of Chemistry
| | - V. Ghini
- CERM
- University of Florence
- 50019 Sesto Fiorentino
- Italy
- Department of Chemistry
| | - E. C. Theil
- Children's Hospital Oakland Research Institute
- Oakland
- USA
- Department of Molecular and Structural Biochemistry
- North Carolina State University
| | - P. Turano
- CERM
- University of Florence
- 50019 Sesto Fiorentino
- Italy
- Department of Chemistry
| |
Collapse
|
28
|
Pozzi C, Di Pisa F, Bernacchioni C, Ciambellotti S, Turano P, Mangani S. Iron binding to human heavy-chain ferritin. ACTA ACUST UNITED AC 2015; 71:1909-20. [PMID: 26327381 DOI: 10.1107/s1399004715013073] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/07/2015] [Indexed: 11/10/2022]
Abstract
Maxi-ferritins are ubiquitous iron-storage proteins with a common cage architecture made up of 24 identical subunits of five α-helices that drive iron biomineralization through catalytic iron(II) oxidation occurring at oxidoreductase sites (OS). Structures of iron-bound human H ferritin were solved at high resolution by freezing ferritin crystals at different time intervals after exposure to a ferrous salt. Multiple binding sites were identified that define the iron path from the entry ion channels to the oxidoreductase sites. Similar data are available for another vertebrate ferritin: the M protein from Rana catesbeiana. A comparative analysis of the iron sites in the two proteins identifies new reaction intermediates and underlines clear differences in the pattern of ligands that define the additional iron sites that precede the oxidoreductase binding sites along this path. Stopped-flow kinetics assays revealed that human H ferritin has different levels of activity compared with its R. catesbeiana counterpart. The role of the different pattern of transient iron-binding sites in the OS is discussed with respect to the observed differences in activity across the species.
Collapse
Affiliation(s)
- Cecilia Pozzi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Flavio Di Pisa
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Caterina Bernacchioni
- Dipartimento di Chimica, Università di Firenze, Via Della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| | - Silvia Ciambellotti
- Dipartimento di Chimica, Università di Firenze, Via Della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| | - Paola Turano
- Dipartimento di Chimica, Università di Firenze, Via Della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| | - Stefano Mangani
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
29
|
Plath LD, Ozdemir A, Aksenov AA, Bier ME. Determination of iron content and dispersity of intact ferritin by superconducting tunnel junction cryodetection mass spectrometry. Anal Chem 2015; 87:8985-93. [PMID: 26266697 DOI: 10.1021/acs.analchem.5b02180] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Ferritin is a common iron storage protein complex found in both eukaryotic and prokaryotic organisms. Although horse spleen holoferritin (HS-HoloFt) has been widely studied, this is the first report of mass spectrometry (MS) analysis of the intact form, likely because of its high molecular weight ∼850 kDa and broad iron-core mass distribution. The 24-subunit ferritin heteropolymer protein shell consists of light (L) and heavy (H) subunits and a ferrihydrite-like iron core. The H/L heterogeneity ratio of the horse spleen apoferritin (HS-ApoFt) shell was found to be ∼1:10 by liquid chromatography-electrospray ionization mass spectrometry. Superconducting tunneling junction (STJ) cryodetection matrix-assisted laser desorption ionization time-of-flight MS was utilized to determine the masses of intact HS-ApoFt, HS-HoloFt, and the HS-HoloFt dimer to be ∼505 kDa, ∼835 kDa, and ∼1.63 MDa, respectively. The structural integrity of HS-HoloFt and the proposed mineral adducts found for both purified L and H subunits suggest a robust biomacromolecular complex that is internally stabilized by the iron-based core. However, cross-linking experiments of HS-HoloFt with glutaraldehyde, unexpectedly, showed the complete release of the iron-based core in a one-step process revealing a cross-linked HS-ApoFt with a narrow fwhm peak width of 31.4 kTh compared to 295 kTh for HS-HoloFt. The MS analysis of HS-HoloFt revealed a semiquantitative description of the iron content and core dispersity of 3400 ± 1600 (2σ) iron atoms. Commercially prepared HS-ApoFt was estimated to still contain an average of 240 iron atoms. These iron abundance and dispersity results suggest the use of STJ cryodetection MS for the clinical analysis of iron deficient/overload diseases.
Collapse
Affiliation(s)
- Logan D Plath
- Center for Molecular Analysis, Department of Chemistry, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Abdil Ozdemir
- Center for Molecular Analysis, Department of Chemistry, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Alexander A Aksenov
- Center for Molecular Analysis, Department of Chemistry, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Mark E Bier
- Center for Molecular Analysis, Department of Chemistry, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
30
|
Behera RK, Torres R, Tosha T, Bradley JM, Goulding CW, Theil EC. Fe(2+) substrate transport through ferritin protein cage ion channels influences enzyme activity and biomineralization. J Biol Inorg Chem 2015. [PMID: 26202907 DOI: 10.1007/s00775-015-1279-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ferritins, complex protein nanocages, form internal iron-oxy minerals (Fe2O3·H2O), by moving cytoplasmic Fe(2+) through intracage ion channels to cage-embedded enzyme (2Fe(2+)/O2 oxidoreductase) sites where ferritin biomineralization is initiated. The products of ferritin enzyme activity are diferric oxy complexes that are mineral precursors. Conserved, carboxylate amino acid side chains of D127 from each of three cage subunits project into ferritin ion channels near the interior ion channel exits and, thus, could direct Fe(2+) movement to the internal enzyme sites. Ferritin D127E was designed and analyzed to probe properties of ion channel size and carboxylate crowding near the internal ion channel opening. Glu side chains are chemically equivalent to, but longer by one -CH2 than Asp, side chains. Ferritin D127E assembled into normal protein cages, but diferric peroxo formation (enzyme activity) was not observed, when measured at 650 nm (DFP λ max). The caged biomineral formation, measured at 350 nm in the middle of the broad, nonspecific Fe(3+)-O absorption band, was slower. Structural differences (protein X-ray crystallography), between ion channels in wild type and ferritin D127E, which correlate with the inhibition of ferritin D127E enzyme activity include: (1) narrower interior ion channel openings/pores; (2) increased numbers of ion channel protein-metal binding sites, and (3) a change in ion channel electrostatics due to carboxylate crowding. The contributions of ion channel size and structure to ferritin activity reflect metal ion transport in ion channels are precisely regulated both in ferritin protein nanocages and membranes of living cells.
Collapse
Affiliation(s)
- Rabindra K Behera
- Children's Hospital Oakland Research Institute (CHORI), 5700 Martin Luther King Jr. Way, Oakland, CA, 94609, USA
| | | | | | | | | | | |
Collapse
|
31
|
Pozzi C, Di Pisa F, Lalli D, Rosa C, Theil E, Turano P, Mangani S. Time-lapse anomalous X-ray diffraction shows how Fe(2+) substrate ions move through ferritin protein nanocages to oxidoreductase sites. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:941-53. [PMID: 25849404 PMCID: PMC4388269 DOI: 10.1107/s1399004715002333] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 02/03/2015] [Indexed: 11/10/2022]
Abstract
Ferritin superfamily protein cages reversibly synthesize internal biominerals, Fe2O3·H2O. Fe(2+) and O2 (or H2O2) substrates bind at oxidoreductase sites in the cage, initiating biomineral synthesis to concentrate iron and prevent potentially toxic reactions products from Fe(2+)and O2 or H2O2 chemistry. By freezing ferritin crystals of Rana catesbeiana ferritin M (RcMf) at different time intervals after exposure to a ferrous salt, a series of high-resolution anomalous X-ray diffraction data sets were obtained that led to crystal structures that allowed the direct observation of ferrous ions entering, moving along and binding at enzyme sites in the protein cages. The ensemble of crystal structures from both aerobic and anaerobic conditions provides snapshots of the iron substrate bound at different cage locations that vary with time. The observed differential occupation of the two iron sites in the enzyme oxidoreductase centre (with Glu23 and Glu58, and with Glu58, His61 and Glu103 as ligands, respectively) and other iron-binding sites (with Glu53, His54, Glu57, Glu136 and Asp140 as ligands) reflects the approach of the Fe(2+) substrate and its progression before the enzymatic cycle 2Fe(2+) + O2 → Fe(3+)-O-O-Fe(3+) → Fe(3+)-O(H)-Fe(3+) and turnover. The crystal structures also revealed different Fe(2+) coordination compounds bound to the ion channels located at the threefold and fourfold symmetry axes of the cage.
Collapse
Affiliation(s)
- Cecilia Pozzi
- Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Flavio Di Pisa
- Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Daniela Lalli
- Dipartimento di Chimica and CERM, University of Florence, Via Della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| | - Camilla Rosa
- Dipartimento di Chimica and CERM, University of Florence, Via Della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| | - Elizabeth Theil
- Children’s Hospital, Oakland Research Institute, 5700 Martin Luther King Jr Way, Oakland, CA 94609, USA
| | - Paola Turano
- Dipartimento di Chimica and CERM, University of Florence, Via Della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| | - Stefano Mangani
- Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
32
|
Piccioli M, Turano P. Transient iron coordination sites in proteins: Exploiting the dual nature of paramagnetic NMR. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2014.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Bernacchioni C, Ghini V, Pozzi C, Di Pisa F, Theil EC, Turano P. Loop electrostatics modulates the intersubunit interactions in ferritin. ACS Chem Biol 2014; 9:2517-25. [PMID: 25148224 DOI: 10.1021/cb500431r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Functional ferritins are 24-mer nanocages that self-assemble with extended contacts between pairs of 4-helix bundle subunits coupled in an antiparallel fashion along the C2 axes. The largest intersubunit interaction surface in the ferritin nanocage involves helices, but contacts also occur between groups of three residues midway in the long, solvent-exposed L-loops of facing subunits. The anchor points between intersubunit L-loop pairs are the salt bridges between the symmetry-related, conserved residues Asp80 and Lys82. The resulting quaternary structure of the cage is highly soluble and thermostable. Substitution of negatively charged Asp80 with a positively charged Lys in homopolymeric M ferritin introduces electrostatic repulsions that inhibit the oligomerization of the ferritin subunits. D80K ferritin was present in inclusion bodies under standard overexpressing conditions in E. coli, contrasting with the wild type protein. Small amounts of fully functional D80K nanocages formed when expression was slowed. The more positively charged surface results in a different solubility profile and D80K crystallized in a crystal form with a low density packing. The 3D structure of D80K variant is the same as wild type except for the side chain orientations of Lys80 and facing Lys82. When three contiguous Lys groups are introduced in D80KI81K ferritin variant the nanocage assembly is further inhibited leading to lower solubility and reduced thermal stability. Here, we demonstrate that the electrostatic pairing at the center of the L-loops has a specific kinetic role in the self-assembly of ferritin nanocages.
Collapse
Affiliation(s)
- Caterina Bernacchioni
- Magnetic
Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Veronica Ghini
- Magnetic
Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Cecilia Pozzi
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Flavio Di Pisa
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Elizabeth C. Theil
- CHORI (Children’s
Hospital Oakland Research Institute), 5700 Martin Luther King, Jr. Way, Oakland, California 94609, United States
- Department
of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 29695-7622, United States
| | - Paola Turano
- Magnetic
Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
- Department
of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
34
|
Moving Fe2+ from ferritin ion channels to catalytic OH centers depends on conserved protein cage carboxylates. Proc Natl Acad Sci U S A 2014; 111:7925-30. [PMID: 24843174 DOI: 10.1073/pnas.1318417111] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Ferritin biominerals are protein-caged metabolic iron concentrates used for iron-protein cofactors and oxidant protection (Fe(2+) and O2 sequestration). Fe(2+) passage through ion channels in the protein cages, like membrane ion channels, required for ferritin biomineral synthesis, is followed by Fe(2+) substrate movement to ferritin enzyme (Fox) sites. Fe(2+) and O2 substrates are coupled via a diferric peroxo (DFP) intermediate, λmax 650 nm, which decays to [Fe(3+)-O-Fe(3+)] precursors of caged ferritin biominerals. Structural studies show multiple conformations for conserved, carboxylate residues E136 and E57, which are between ferritin ion channel exits and enzymatic sites, suggesting functional connections. Here we show that E136 and E57 are required for ferritin enzyme activity and thus are functional links between ferritin ion channels and enzymatic sites. DFP formation (Kcat and kcat/Km), DFP decay, and protein-caged hydrated ferric oxide accumulation decreased in ferritin E57A and E136A; saturation required higher Fe(2+) concentrations. Divalent cations (both ion channel and intracage binding) selectively inhibit ferritin enzyme activity (block Fe(2+) access), Mn(2+) << Co(2+) < Cu(2+) < Zn(2+), reflecting metal ion-protein binding stabilities. Fe(2+)-Cys126 binding in ferritin ion channels, observed as Cu(2+)-S-Cys126 charge-transfer bands in ferritin E130D UV-vis spectra and resistance to Cu(2+) inhibition in ferritin C126S, was unpredicted. Identifying E57 and E136 links in Fe(2+) movement from ferritin ion channels to ferritin enzyme sites completes a bucket brigade that moves external Fe(2+) into ferritin enzymatic sites. The results clarify Fe(2+) transport within ferritin and model molecular links between membrane ion channels and cytoplasmic destinations.
Collapse
|
35
|
Bradley JM, Moore GR, Le Brun NE. Mechanisms of iron mineralization in ferritins: one size does not fit all. J Biol Inorg Chem 2014; 19:775-85. [PMID: 24748222 DOI: 10.1007/s00775-014-1136-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/07/2014] [Indexed: 12/23/2022]
Abstract
Significant progress has been made in recent years toward understanding the processes by which an iron mineral is deposited within members of the ferritin family of 24mer iron storage proteins, enabled by high-resolution structures together with spectroscopic and kinetic studies. These suggest common characteristics that are shared between ferritins, namely, a highly symmetric arrangement of subunits that provides a protein coat around a central cavity in which the mineral is formed, channels through the coat that facilitate ingress and egress of ions, and catalytic sites, called ferroxidase centers, that drive Fe(2+) oxidation. They also reveal significant variations in both structure and mechanism amongst ferritins. Here, we describe three general types of structurally distinct ferroxidase center and the mechanisms of mineralization that they are associated with. The highlighted variation leads us to conclude that there is no universal mechanism by which ferritins function, but instead there exists several distinct mechanisms of ferritin iron mineralization.
Collapse
Affiliation(s)
- Justin M Bradley
- School of Chemistry, Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | | | | |
Collapse
|
36
|
Laghaei R, Kowallis W, Evans DG, Coalson RD. Calculation of Iron Transport through Human H-chain Ferritin. J Phys Chem A 2014; 118:7442-53. [DOI: 10.1021/jp500198u] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Rozita Laghaei
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - William Kowallis
- Department
of Chemistry, Carlow University, Pittsburgh, Pennsylvania 15213, United States
| | - Deborah G. Evans
- The
Nanoscience and Microsystems Program and the Department of Chemistry
and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | - Rob D. Coalson
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
37
|
Theil EC, Turano P, Ghini V, Allegrozzi M, Bernacchioni C. Coordinating subdomains of ferritin protein cages with catalysis and biomineralization viewed from the C4 cage axes. J Biol Inorg Chem 2014; 19:615-22. [PMID: 24504941 DOI: 10.1007/s00775-014-1103-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 12/30/2013] [Indexed: 02/03/2023]
Abstract
Integrated ferritin protein cage function is the reversible synthesis of protein-caged, solid Fe2O3·H2O minerals from Fe(2+) for metabolic iron concentrates and oxidant protection; biomineral order differs in different ferritin proteins. The conserved 432 geometric symmetry of ferritin protein cages parallels the subunit dimer, trimer, and tetramer interfaces, and coincides with function at several cage axes. Multiple subdomains distributed in the self-assembling ferritin nanocages have functional relationships to cage symmetry such as Fe(2+) transport though ion channels (threefold symmetry), biomineral nucleation/order (fourfold symmetry), and mineral dissolution (threefold symmetry) studied in ferritin variants. On the basis of the effects of natural or synthetic subunit dimer cross-links, cage subunit dimers (twofold symmetry) influence iron oxidation and mineral dissolution. 2Fe(2+)/O2 catalysis in ferritin occurs in single subunits, but with cooperativity (n = 3) that is possibly related to the structure/function of the ion channels, which are constructed from segments of three subunits. Here, we study 2Fe(2+) + O2 protein catalysis (diferric peroxo formation) and dissolution of ferritin Fe2O3·H2O biominerals in variants with altered subunit interfaces for trimers (ion channels), E130I, and external dimer surfaces (E88A) as controls, and altered tetramer subunit interfaces (L165I and H169F). The results extend observations on the functional importance of structure at ferritin protein twofold and threefold cage axes to show function at ferritin fourfold cage axes. Here, conserved amino acids facilitate dissolution of ferritin-protein-caged iron biominerals. Biological and nanotechnological uses of ferritin protein cage fourfold symmetry and solid-state mineral properties remain largely unexplored.
Collapse
Affiliation(s)
- Elizabeth C Theil
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr Way, Oakland, CA, 94609, USA,
| | | | | | | | | |
Collapse
|
38
|
Sana B, Johnson E, Le Magueres P, Criswell A, Cascio D, Lim S. The role of nonconserved residues of Archaeoglobus fulgidus ferritin on its unique structure and biophysical properties. J Biol Chem 2013; 288:32663-32672. [PMID: 24030827 PMCID: PMC3820901 DOI: 10.1074/jbc.m113.491191] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/31/2013] [Indexed: 11/06/2022] Open
Abstract
Archaeoglobus fulgidus ferritin (AfFtn) is the only tetracosameric ferritin known to form a tetrahedral cage, a structure that remains unique in structural biology. As a result of the tetrahedral (2-3) symmetry, four openings (∼45 Å in diameter) are formed in the cage. This open tetrahedral assembly contradicts the paradigm of a typical ferritin cage: a closed assembly having octahedral (4-3-2) symmetry. To investigate the molecular mechanism affecting this atypical assembly, amino acid residues Lys-150 and Arg-151 were replaced by alanine. The data presented here shed light on the role that these residues play in shaping the unique structural features and biophysical properties of the AfFtn. The x-ray crystal structure of the K150A/R151A mutant, solved at 2.1 Å resolution, indicates that replacement of these key residues flips a "symmetry switch." The engineered molecule no longer assembles with tetrahedral symmetry but forms a typical closed octahedral ferritin cage. Small angle x-ray scattering reveals that the overall shape and size of AfFtn and AfFtn-AA in solution are consistent with those observed in their respective crystal structures. Iron binding and release kinetics of the AfFtn and AfFtn-AA were investigated to assess the contribution of cage openings to the kinetics of iron oxidation, mineralization, or reductive iron release. Identical iron binding kinetics for AfFtn and AfFtn-AA suggest that Fe(2+) ions do not utilize the triangular pores for access to the catalytic site. In contrast, relatively slow reductive iron release was observed for the closed AfFtn-AA, demonstrating involvement of the large pores in the pathway for iron release.
Collapse
Affiliation(s)
- Barindra Sana
- From the School of Chemical & Biomedical Engineering, Division of Bioengineering, Nanyang Technological University, Singapore 637457
| | - Eric Johnson
- the Howard Hughes Medical Institute, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | | | | | - Duilio Cascio
- UCLA-Department of Energy, Institute for Genomics and Proteomics, Los Angeles, California 90095-1570.
| | - Sierin Lim
- From the School of Chemical & Biomedical Engineering, Division of Bioengineering, Nanyang Technological University, Singapore 637457,.
| |
Collapse
|
39
|
Abstract
At the center of iron and oxidant metabolism is the ferritin superfamily: protein cages with Fe(2+) ion channels and two catalytic Fe/O redox centers that initiate the formation of caged Fe2O3·H2O. Ferritin nanominerals, initiated within the protein cage, grow inside the cage cavity (5 or 8 nm in diameter). Ferritins contribute to normal iron flow, maintenance of iron concentrates for iron cofactor syntheses, sequestration of iron from invading pathogens, oxidant protection, oxidative stress recovery, and, in diseases where iron accumulates excessively, iron chelation strategies. In eukaryotic ferritins, biomineral order/crystallinity is influenced by nucleation channels between active sites and the mineral growth cavity. Animal ferritin cages contain, uniquely, mixtures of catalytically active (H) and inactive (L) polypeptide subunits with varied rates of Fe(2+)/O2 catalysis and mineral crystallinity. The relatively low mineral order in liver ferritin, for example, coincides with a high percentage of L subunits and, thus, a low percentage of catalytic sites and nucleation channels. Low mineral order facilitates rapid iron turnover and the physiological role of liver ferritin as a general iron source for other tissues. Here, current concepts of ferritin structure/function/genetic regulation are discussed and related to possible therapeutic targets such as mini-ferritin/Dps protein active sites (selective pathogen inhibition in infection), nanocage pores (iron chelation in therapeutic hypertransfusion), mRNA noncoding, IRE riboregulator (normalizing the ferritin iron content after therapeutic hypertransfusion), and protein nanovessels to deliver medicinal or sensor cargo.
Collapse
Affiliation(s)
- Elizabeth C Theil
- Children's Hospital Oakland Research Institute (CHORI) , 5700 Martin Luther King Jr. Way, Oakland, California 94609, United States , and Department of Molecular and Structural Biochemistry, North Carolina State University , Raleigh, North Carolina 2765-7622, United States
| |
Collapse
|
40
|
Iron binding at specific sites within the octameric HbpS protects streptomycetes from iron-mediated oxidative stress. PLoS One 2013; 8:e71579. [PMID: 24013686 PMCID: PMC3754957 DOI: 10.1371/journal.pone.0071579] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/08/2013] [Indexed: 12/26/2022] Open
Abstract
The soil bacterium Streptomyces reticuli secretes the octameric protein HbpS that acts as a sensory component of the redox-signalling pathway HbpS-SenS-SenR. This system modulates a genetic response on iron- and haem-mediated oxidative stress. Moreover, HbpS alone provides this bacterium with a defence mechanism to the presence of high concentrations of iron ions and haem. While the protection against haem has been related to its haem-binding and haem-degrading activity, the interaction with iron has not been studied in detail. In this work, we biochemically analyzed the iron-binding activity of a set of generated HbpS mutant proteins and present evidence showing the involvement of one internal and two exposed D/EXXE motifs in binding of high quantities of ferrous iron, with the internal E78XXE81 displaying the tightest binding. We additionally show that HbpS is able to oxidize ferrous to ferric iron ions. Based on the crystal structure of both the wild-type and the mutant HbpS-D78XXD81, we conclude that the local arrangement of the side chains from the glutamates in E78XXE81 within the octameric assembly is a pre-requisite for interaction with iron. The data obtained led us to propose that the exposed and the internal motif build a highly specific route that is involved in the transport of high quantities of iron ions into the core of the HbpS octamer. Furthermore, physiological studies using Streptomyces transformants secreting either wild-type or HbpS mutant proteins and different redox-cycling compounds led us to conclude that the iron-sequestering activity of HbpS protects these soil bacteria from the hazardous side effects of peroxide- and iron-based oxidative stress.
Collapse
|
41
|
Harris TV, Morokuma K. QM/MM Structural and Spectroscopic Analysis of the Di-iron(II) and Di-iron(III) Ferroxidase Site in M Ferritin. Inorg Chem 2013; 52:8551-63. [DOI: 10.1021/ic4006168] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Travis V. Harris
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| | - Keiji Morokuma
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| |
Collapse
|
42
|
Abstract
Ferritins, highly symmetrical protein nanocages, are reactors for Fe2+ and dioxygen or hydrogen peroxide that are found in all kingdoms of life and in many different cells of multicellular organisms. They synthesize iron concentrates required for cells to make cofactors of iron proteins (heme, FeS, mono and diiron). The caged ferritin biominerals, Fe2O3•H2O are also antioxidants, acting as sinks for iron and oxidants scavenged from damaged proteins; genetic regulation of ferritin biosynthesis is sensitive to both iron and oxidants. Here, the emphasis here is ferritin oxidoreductase chemistry, ferritin ion channels for Fe 2+ transit into and out of the protein cage and Fe 3+ O mineral nucleation, and uses of ferritin cages in nanocatalysis and nanomaterial synthesis. The Fe2+ and O ferritin protein reactors, likely critical in the transition from anaerobic to aerobic life on earth, play central, contemporary roles that balance iron and oxygen chemistry in biology and have emerging roles in nanotechnology.
Collapse
Affiliation(s)
- Elizabeth C. Theil
- Children’s Hospital Oakland Research Institute, University of California, Berkeley
- Department of Nutritional Science and Toxicology, University of California, Berkeley
| | | | | |
Collapse
|
43
|
Tosha T, Behera RK, Theil EC. Ferritin ion channel disorder inhibits Fe(II)/O2 reactivity at distant sites. Inorg Chem 2012; 51:11406-11. [PMID: 23092300 PMCID: PMC3508004 DOI: 10.1021/ic3010135] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ferritins, a complex, mineralized, protein nanocage family essential for life, provide iron concentrates and oxidant protection. Protein-based ion channels and Fe(II)/O(2) catalysis initiate conversion of thousands of Fe atoms to caged, ferritin Fe(2)O(3)·H(2)O minerals. The ion channels consist of six helical segments, contributed by 3 of 12 or 24 polypeptide subunits, around the 3-fold cage axes. The channel structure guides entering Fe(II) ions toward multiple, catalytic, diiron sites buried inside ferritin protein helices, ~20 Å away from channel internal exits. The catalytic product, Fe(III)-O(H)-Fe(III), is a mineral precursor; mineral nucleation begins inside the protein cage with mineral growth in the central protein cavity (5-8 nm diameter). Amino acid substitutions that changed ionic or hydrophobic channel interactions R72D, D122R, and L134P increased ion channel structural disorder (protein crystallographic analyses) and increased Fe(II) exit [chelated Fe(II) after ferric mineral reduction/dissolution]. Since substitutions of some channel carboxylate residues diminished ferritin catalysis with no effect on Fe(II) exit, such as E130A and D127A, we investigated catalysis in ferritins with altered Fe(II) exit, R72D, D122R and L134P. The results indicate that simply changing the ionic properties of the channels, as in the R72D variant, need not change the forward catalytic rate. However, both D122R and L134P, which had dramatic effects on ferritin catalysis, also caused larger effects on channel structure and order, contrasting with R72D. All three amino acid substitutions, however, decreased the stability of the catalytic intermediate, diferric peroxo, even though overall ferritin cage structure is very stable, resisting 80 °C and 6 M urea. The localized structural changes in ferritin subdomains that affect ferritin function over long distances illustrate new properties of the protein cage in natural ferritin function and for applied ferritin uses.
Collapse
Affiliation(s)
- Takehiko Tosha
- Children’s Hospital Oakland Research Institute, University of California, Berkeley
| | - Rabindra K. Behera
- Children’s Hospital Oakland Research Institute, University of California, Berkeley
| | - Elizabeth C. Theil
- Children’s Hospital Oakland Research Institute, University of California, Berkeley
- Department of Nutritional Science and Toxicology, University of California, Berkeley
| |
Collapse
|
44
|
Veelders M, Essen LO. Complex gadolinium-oxo clusters formed along concave protein surfaces. Chembiochem 2012; 13:2187-90. [PMID: 22936626 DOI: 10.1002/cbic.201200441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Indexed: 11/10/2022]
Abstract
Protein-bound contrast: The unusual observation of a heptanuclear gadolinium-oxo cluster on the surface of the cell-adhesion protein Flo5A establishes the basis for directed incorporation of poly-lanthanide clusters into biomolecules. The observed gadolinium cluster might serve as a paradigm for the design of protein-based MRI contrast agents.
Collapse
Affiliation(s)
- Maik Veelders
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35043 Marburg, Germany
| | | |
Collapse
|
45
|
Masuda T, Morimoto SI, Mikami B, Toyohara H. The extension peptide of plant ferritin from sea lettuce contributes to shell stability and surface hydrophobicity. Protein Sci 2012; 21:786-96. [PMID: 22419613 DOI: 10.1002/pro.2061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 03/09/2012] [Indexed: 01/22/2023]
Abstract
Plant ferritins have some unique structural and functional features. Most of these features can be related to the plant-specific "extension peptide" (EP), which exists in the N-terminus of the mature region of a plant ferritin. Recent crystallographic analysis of a plant ferritin revealed the structure of the EP, however, two points remain unclear: (i) whether the structures of well-conserved EP of plant ferritins are common in all plants, and (ii) whether the EP truly contributes to the shell stability of the plant ferritin oligomer. To clarify these matters, we have cloned a green-plant-type ferritin cDNA from a green alga, Ulva pertusa, and investigated its crystal structure. Ulva pertusa ferritin (UpFER) has a plant-ferritin-specific extension peptide composed of 28 amino acid residues. In the crystal structure of UpFER, the EP lay on and interacted with the neighboring threefold symmetry-related subunit. The amino acid residues involved in the interaction were very highly conserved among plant ferritins. The EPs masked the hydrophobic pockets on the ferritin shell surface by lying on them, and this made the ferritin oligomer more hydrophilic. Furthermore, differential scanning calorimetric analysis of the native and its EP-deletion mutant suggested that the EP contributed to the thermal stability of the plant ferritin shell. Thus, the shell stability and surface hydrophobicity of plant ferritin were controlled by the presence or absence of the plant-ferritin-specific EP. This regulation can account for those processes such as shell stability, degradation, and association of plant ferritin, which are significantly related to iron utilization in plants.
Collapse
Affiliation(s)
- Taro Masuda
- Laboratory of Food Quality Design and Development, Division of Agronomy and Horticultural Science, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan.
| | | | | | | |
Collapse
|
46
|
Bu W, Liu R, Cheung-Lau JC, Dmochowski IJ, Loll PJ, Eckenhoff RG. Ferritin couples iron and fatty acid metabolism. FASEB J 2012; 26:2394-400. [PMID: 22362897 DOI: 10.1096/fj.11-198853] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A physiological relationship between iron, oxidative injury, and fatty acid metabolism exists, but transduction mechanisms are unclear. We propose that the iron storage protein ferritin contains fatty acid binding sites whose occupancy modulates iron uptake and release. Using isothermal microcalorimetry, we found that arachidonic acid binds ferritin specifically and with 60 μM affinity. Arachidonate binding by ferritin enhanced iron mineralization, decreased iron release, and protected the fatty acid from oxidation. Cocrystals of arachidonic acid and horse spleen apoferritin diffracted to 2.18 Å and revealed specific binding to the 2-fold intersubunit pocket. This pocket shields most of the fatty acid and its double bonds from solvent but allows the arachidonate tail to project well into the ferrihydrite mineralization site on the ferritin L-subunit, a structural feature that we implicate in the effects on mineralization by demonstrating that the much shorter saturated fatty acid, caprylate, has no significant effects on mineralization. These combined effects of arachidonate binding by ferritin are expected to lower both intracellular free iron and free arachidonate, thereby providing a previously unrecognized mechanism for limiting lipid peroxidation, free radical damage, and proinflammatory cascades during times of cellular stress.
Collapse
Affiliation(s)
- Weiming Bu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
47
|
Tosha T, Behera RK, Ng HL, Bhattasali O, Alber T, Theil EC. Ferritin protein nanocage ion channels: gating by N-terminal extensions. J Biol Chem 2012; 287:13016-25. [PMID: 22362775 DOI: 10.1074/jbc.m111.332734] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ferritin protein nanocages, self-assembled from four-α-helix bundle subunits, use Fe(2+) and oxygen to synthesize encapsulated, ferric oxide minerals. Ferritin minerals are iron concentrates stored for cell growth. Ferritins are also antioxidants, scavenging Fenton chemistry reactants. Channels for iron entry and exit consist of helical hairpin segments surrounding the 3-fold symmetry axes of the ferritin nanocages. We now report structural differences caused by amino acid substitutions in the Fe(2+) ion entry and exit channels and at the cytoplasmic pores, from high resolution (1.3-1.8 Å) protein crystal structures of the eukaryotic model ferritin, frog M. Mutations that eliminate conserved ionic or hydrophobic interactions between Arg-72 and Asp-122 and between Leu-110 and Leu-134 increase flexibility in the ion channels, cytoplasmic pores, and/or the N-terminal extensions of the helix bundles. Decreased ion binding in the channels and changes in ordered water are also observed. Protein structural changes coincide with increased Fe(2+) exit from dissolved, ferric minerals inside ferritin protein cages; Fe(2+) exit from ferritin cages depends on a complex, surface-limited process to reduce and dissolve the ferric mineral. High concentrations of bovine serum albumin or lysozyme (protein crowders) to mimic the cytoplasm restored Fe(2+) exit in the variants to wild type. The data suggest that fluctuations in pore structure control gating. The newly identified role of the ferritin subunit N-terminal extensions in gating Fe(2+) exit from the cytoplasmic pores strengthens the structural and functional analogies between ferritin ion channels in the water-soluble protein assembly and membrane protein ion channels gated by cytoplasmic N-terminal peptides.
Collapse
Affiliation(s)
- Takehiko Tosha
- Children's Hospital Oakland Research Institute, Oakland, California 94609, USA
| | | | | | | | | | | |
Collapse
|