1
|
Dulhunty AF, Board PG, Beard NA, Casarotto MG. Physiology and Pharmacology of Ryanodine Receptor Calcium Release Channels. ADVANCES IN PHARMACOLOGY 2017; 79:287-324. [DOI: 10.1016/bs.apha.2016.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
2
|
Yuchi Z, Van Petegem F. Ryanodine receptors under the magnifying lens: Insights and limitations of cryo-electron microscopy and X-ray crystallography studies. Cell Calcium 2016; 59:209-27. [DOI: 10.1016/j.ceca.2016.04.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/08/2016] [Accepted: 04/09/2016] [Indexed: 10/21/2022]
|
3
|
Carraher C, Dalziel J, Jordan MD, Christie DL, Newcomb RD, Kralicek AV. Towards an understanding of the structural basis for insect olfaction by odorant receptors. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 66:31-41. [PMID: 26416146 DOI: 10.1016/j.ibmb.2015.09.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 09/16/2015] [Accepted: 09/16/2015] [Indexed: 06/05/2023]
Abstract
Insects have co-opted a unique family of seven transmembrane proteins for odour sensing. Odorant receptors are believed to have evolved from gustatory receptors somewhere at the base of the Hexapoda and have expanded substantially to become the dominant class of odour recognition elements within the Insecta. These odorant receptors comprise an obligate co-receptor, Orco, and one of a family of highly divergent odorant "tuning" receptors. The two subunits are thought to come together at some as-yet unknown stoichiometry to form a functional complex that is capable of both ionotropic and metabotropic signalling. While there are still no 3D structures for these proteins, site-directed mutagenesis, resonance energy transfer, and structural modelling efforts, all mainly on Drosophila odorant receptors, are beginning to inform hypotheses of their structures and how such complexes function in odour detection. Some of the loops, especially the second extracellular loop that has been suggested to form a lid over the binding pocket, and the extracellular regions of some transmembrane helices, especially the third and to a less extent the sixth and seventh, have been implicated in ligand recognition in tuning receptors. The possible interaction between Orco and tuning receptor subunits through the final intracellular loop and the adjacent transmembrane helices is thought to be important for transducing ligand binding into receptor activation. Potential phosphorylation sites and a calmodulin binding site in the second intracellular loop of Orco are also thought to be involved in regulating channel gating. A number of new methods have recently been developed to express and purify insect odorant receptor subunits in recombinant expression systems. These approaches are enabling high throughput screening of receptors for agonists and antagonists in cell-based formats, as well as producing protein for the application of biophysical methods to resolve the 3D structure of the subunits and their complexes.
Collapse
Affiliation(s)
- Colm Carraher
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Julie Dalziel
- Food Nutrition & Health Team, Food & Bio-based Products Group, AgResearch Private Bag 11008, Palmerston North 4442, New Zealand
| | - Melissa D Jordan
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - David L Christie
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Richard D Newcomb
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand; School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Andrew V Kralicek
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand.
| |
Collapse
|
4
|
Rebbeck RT, Willemse H, Groom L, Casarotto MG, Board PG, Beard NA, Dirksen RT, Dulhunty AF. Regions of ryanodine receptors that influence activation by the dihydropyridine receptor β1a subunit. Skelet Muscle 2015. [PMID: 26203350 PMCID: PMC4510890 DOI: 10.1186/s13395-015-0049-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background Although excitation-contraction (EC) coupling in skeletal muscle relies on physical activation of the skeletal ryanodine receptor (RyR1) Ca2+ release channel by dihydropyridine receptors (DHPRs), the activation pathway between the DHPR and RyR1 remains unknown. However, the pathway includes the DHPR β1a subunit which is integral to EC coupling and activates RyR1. In this manuscript, we explore the isoform specificity of β1a activation of RyRs and the β1a binding site on RyR1. Methods We used lipid bilayers to measure single channel currents and whole cell patch clamp to measure L-type Ca2+ currents and Ca2+ transients in myotubes. Results We demonstrate that both skeletal RyR1 and cardiac RyR2 channels in phospholipid bilayers are activated by 10–100 nM of the β1a subunit. Activation of RyR2 by 10 nM β1a was less than that of RyR1, suggesting a reduced affinity of RyR2 for β1a. A reduction in activation was also observed when 10 nM β1a was added to the alternatively spliced (ASI(−)) isoform of RyR1, which lacks ASI residues (A3481-Q3485). It is notable that the equivalent region of RyR2 also lacks four of five ASI residues, suggesting that the absence of these residues may contribute to the reduced 10 nM β1a activation observed for both RyR2 and ASI(−)RyR1 compared to ASI(+)RyR1. We also investigated the influence of a polybasic motif (PBM) of RyR1 (K3495KKRRDGR3502) that is located immediately downstream from the ASI residues and has been implicated in EC coupling. We confirmed that neutralizing the basic residues in the PBM (RyR1 K-Q) results in an ~50 % reduction in Ca2+ transient amplitude following expression in RyR1-null (dyspedic) myotubes and that the PBM is also required for β1a subunit activation of RyR1 channels in lipid bilayers. These results suggest that the removal of β1a subunit interaction with the PBM in RyR1 could contribute directly to ~50 % of the Ca2+ release generated during skeletal EC coupling. Conclusions We conclude that the β1a subunit likely binds to a region that is largely conserved in RyR1 and RyR2 and that this region is influenced by the presence of the ASI residues and the PBM in RyR1. Electronic supplementary material The online version of this article (doi:10.1186/s13395-015-0049-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Robyn T Rebbeck
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN USA
| | - Hermia Willemse
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital, PO Box 334, Canberra, ACT 2601 Australia
| | - Linda Groom
- Department of Physiology and Pharmacology, University of Rochester Medical Center, Rochester, NY USA
| | - Marco G Casarotto
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital, PO Box 334, Canberra, ACT 2601 Australia
| | - Philip G Board
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital, PO Box 334, Canberra, ACT 2601 Australia
| | - Nicole A Beard
- Discipline of Biomedical Sciences, Centre for Research in Therapeutic Solutions, University of Canberra, Canberra, ACT 2601 Australia
| | - Robert T Dirksen
- Department of Physiology and Pharmacology, University of Rochester Medical Center, Rochester, NY USA
| | - Angela F Dulhunty
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital, PO Box 334, Canberra, ACT 2601 Australia
| |
Collapse
|
5
|
Li L, Mirza S, Richardson SJ, Gallant EM, Thekkedam C, Pace SM, Zorzato F, Liu D, Beard NA, Dulhunty AF. A new cytoplasmic interaction between junctin and ryanodine receptor Ca2+ release channels. J Cell Sci 2015; 128:951-63. [PMID: 25609705 PMCID: PMC4342579 DOI: 10.1242/jcs.160689] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Junctin, a non-catalytic splice variant encoded by the aspartate-β-hydroxylase (Asph) gene, is inserted into the membrane of the sarcoplasmic reticulum (SR) Ca2+ store where it modifies Ca2+ signalling in the heart and skeletal muscle through its regulation of ryanodine receptor (RyR) Ca2+ release channels. Junctin is required for normal muscle function as its knockout leads to abnormal Ca2+ signalling, muscle dysfunction and cardiac arrhythmia. However, the nature of the molecular interaction between junctin and RyRs is largely unknown and was assumed to occur only in the SR lumen. We find that there is substantial binding of RyRs to full junctin, and the junctin luminal and, unexpectedly, cytoplasmic domains. Binding of these different junctin domains had distinct effects on RyR1 and RyR2 activity: full junctin in the luminal solution increased RyR channel activity by ∼threefold, the C-terminal luminal interaction inhibited RyR channel activity by ∼50%, and the N-terminal cytoplasmic binding produced an ∼fivefold increase in RyR activity. The cytoplasmic interaction between junctin and RyR is required for luminal binding to replicate the influence of full junctin on RyR1 and RyR2 activity. The C-terminal domain of junctin binds to residues including the S1–S2 linker of RyR1 and N-terminal domain of junctin binds between RyR1 residues 1078 and 2156.
Collapse
Affiliation(s)
- Linwei Li
- John Curtin School of Medical Research, ACT 0200, Australia
| | - Shamaruh Mirza
- John Curtin School of Medical Research, ACT 0200, Australia
| | | | | | | | - Suzy M Pace
- John Curtin School of Medical Research, ACT 0200, Australia
| | | | - Dan Liu
- John Curtin School of Medical Research, ACT 0200, Australia
| | - Nicole A Beard
- John Curtin School of Medical Research, ACT 0200, Australia
| | | |
Collapse
|
6
|
Lau K, Van Petegem F. Crystal structures of wild type and disease mutant forms of the ryanodine receptor SPRY2 domain. Nat Commun 2014; 5:5397. [DOI: 10.1038/ncomms6397] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 09/26/2014] [Indexed: 12/16/2022] Open
|
7
|
Multiple actions of phi-LITX-Lw1a on ryanodine receptors reveal a functional link between scorpion DDH and ICK toxins. Proc Natl Acad Sci U S A 2013; 110:8906-11. [PMID: 23671114 DOI: 10.1073/pnas.1214062110] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We recently reported the isolation of a scorpion toxin named U1-liotoxin-Lw1a (U1-LITX-Lw1a) that adopts an unusual 3D fold termed the disulfide-directed hairpin (DDH) motif, which is the proposed evolutionary structural precursor of the three-disulfide-containing inhibitor cystine knot (ICK) motif found widely in animals and plants. Here we reveal that U1-LITX-Lw1a targets and activates the mammalian ryanodine receptor intracellular calcium release channel (RyR) with high (fM) potency and provides a functional link between DDH and ICK scorpion toxins. Moreover, U1-LITX-Lw1a, now described as ϕ-liotoxin-Lw1a (ϕ-LITX-Lw1a), has a similar mode of action on RyRs as scorpion calcines, although with significantly greater potency, inducing full channel openings at lower (fM) toxin concentrations whereas at higher pM concentrations increasing the frequency and duration of channel openings to a submaximal state. In addition, we show that the C-terminal residue of ϕ-LITX-Lw1a is crucial for the increase in full receptor openings but not for the increase in receptor subconductance opening, thereby supporting the two-binding-site hypothesis of scorpion toxins on RyRs. ϕ-LITX-Lw1a has potential both as a pharmacological tool and as a lead molecule for the treatment of human diseases that involve RyRs, such as malignant hyperthermia and polymorphic ventricular tachycardia.
Collapse
|
8
|
A novel method of predicting protein disordered regions based on sequence features. BIOMED RESEARCH INTERNATIONAL 2013; 2013:414327. [PMID: 23710446 PMCID: PMC3654632 DOI: 10.1155/2013/414327] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 03/26/2013] [Indexed: 01/27/2023]
Abstract
With a large number of disordered proteins and their important functions discovered, it is highly desired to develop effective methods to computationally predict protein disordered regions. In this study, based on Random Forest (RF), Maximum Relevancy Minimum Redundancy (mRMR), and Incremental Feature Selection (IFS), we developed a new method to predict disordered regions in proteins. The mRMR criterion was used to rank the importance of all candidate features. Finally, top 128 features were selected from the ranked feature list to build the optimal model, including 92 Position Specific Scoring Matrix (PSSM) conservation score features and 36 secondary structure features. As a result, Matthews correlation coefficient (MCC) of 0.3895 was achieved on the training set by 10-fold cross-validation. On the basis of predicting results for each query sequence by using the method, we used the scanning and modification strategy to improve the performance. The accuracy (ACC) and MCC were increased by 4% and almost 0.2%, respectively, compared with other three popular predictors: DISOPRED, DISOclust, and OnD-CRF. The selected features may shed some light on the understanding of the formation mechanism of disordered structures, providing guidelines for experimental validation.
Collapse
|
9
|
Amador FJ, Stathopulos PB, Enomoto M, Ikura M. Ryanodine receptor calcium release channels: lessons from structure-function studies. FEBS J 2013; 280:5456-70. [PMID: 23413940 DOI: 10.1111/febs.12194] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/24/2013] [Accepted: 02/04/2013] [Indexed: 11/28/2022]
Abstract
Ryanodine receptors (RyRs) are the largest known ion channels. They are Ca(2+) release channels found primarily on the sarcoplasmic reticulum of myocytes. Several hundred mutations in RyRs are associated with skeletal or cardiomyocyte disease in humans. Many of these mutations can now be mapped onto the high resolution structures of individual RyR domains and on full-length tetrameric cryo-electron microscopy structures. A closely related Ca(2+) release channel, the inositol 1,4,5-trisphospate receptor (IP3 R), shows a conserved structural architecture at the N-terminus, suggesting that both channels evolved from an ancestral unicellular RyR/IP3 R. The functional insights provided by recent structural studies for both channels will aid in the development of rationale treatments for a myriad of Ca(2+)-signaled malignancies.
Collapse
Affiliation(s)
- Fernando J Amador
- Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, Canada
| | | | | | | |
Collapse
|
10
|
Szpyt J, Lorenzon N, Perez CF, Norris E, Allen PD, Beam KG, Samsó M. Three-dimensional localization of the α and β subunits and of the II-III loop in the skeletal muscle L-type Ca2+ channel. J Biol Chem 2012; 287:43853-61. [PMID: 23118233 DOI: 10.1074/jbc.m112.419283] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The L-type Ca(2+) channel (dihydropyridine receptor (DHPR) in skeletal muscle acts as the voltage sensor for excitation-contraction coupling. To better resolve the spatial organization of the DHPR subunits (α(1s) or Ca(V)1.1, α(2), β(1a), δ1, and γ), we created transgenic mice expressing a recombinant β(1a) subunit with YFP and a biotin acceptor domain attached to its N- and C- termini, respectively. DHPR complexes were purified from skeletal muscle, negatively stained, imaged by electron microscopy, and subjected to single-particle image analysis. The resulting 19.1-Å resolution, three-dimensional reconstruction shows a main body of 17 × 11 × 8 nm with five corners along its perimeter. Two protrusions emerge from either face of the main body: the larger one attributed to the α(2)-δ1 subunit that forms a flexible hook-shaped feature and a smaller protrusion on the opposite side that corresponds to the II-III loop of Ca(V)1.1 as revealed by antibody labeling. Novel features discernible in the electron density accommodate the atomic coordinates of a voltage-gated sodium channel and of the β subunit in a single docking possibility that defines the α1-β interaction. The β subunit appears more closely associated to the membrane than expected, which may better account for both its role in localizing the α(1s) subunit to the membrane and its suggested role in excitation-contraction coupling.
Collapse
Affiliation(s)
- John Szpyt
- Department of Anesthesia, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Ryanodine receptors (RyRs) are huge ion channels that are responsible for the release of Ca(2+) from the sarco/endoplasmic reticulum. RyRs form homotetramers with a mushroom-like shape, consisting of a large cytoplasmic head and transmembrane stalk. Ca(2+) is a major physiological ligand that triggers opening of RyRs, but a plethora of modulatory proteins and small molecules in the cytoplasm and sarco/endoplasmic reticulum lumen have been recognized. Over 300 mutations in RyRs are associated with severe skeletal muscle disorders or triggered cardiac arrhythmias. With the advent of high-resolution structures of individual domains, many of these can be mapped onto the three-dimensional structure.
Collapse
Affiliation(s)
- Filip Van Petegem
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver V6T 1Z3, Canada.
| |
Collapse
|
12
|
Takano K, Liu D, Tarpey P, Gallant E, Lam A, Witham S, Alexov E, Chaubey A, Stevenson RE, Schwartz CE, Board PG, Dulhunty AF. An X-linked channelopathy with cardiomegaly due to a CLIC2 mutation enhancing ryanodine receptor channel activity. Hum Mol Genet 2012; 21:4497-507. [PMID: 22814392 DOI: 10.1093/hmg/dds292] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chloride intracellular channel 2 (CLIC2) protein is a member of the glutathione transferase class of proteins. Its' only known function is the regulation of ryanodine receptor (RyR) intracellular Ca(2+) release channels. These RyR proteins play a major role in the regulation of Ca(2+) signaling in many cells. Utilizing exome capture and deep sequencing of genes on the X-chromosome, we have identified a mutation in CLIC2 (c.303C>G, p.H101Q) which is associated with X-linked intellectual disability (ID), atrial fibrillation, cardiomegaly, congestive heart failure (CHF), some somatic features and seizures. Functional studies of the H101Q variant indicated that it stimulated rather than inhibited the action of RyR channels, with channels remaining open for longer times and potentially amplifying Ca(2+) signals dependent on RyR channel activity. The overly active RyRs in cardiac and skeletal muscle cells and neuronal cells would result in abnormal cardiac function and trigger post-synaptic pathways and neurotransmitter release. The presence of both cardiomegaly and CHF in the two affected males and atrial fibrillation in one are consistent with abnormal RyR2 channel function. Since the dysfunction of RyR2 channels in the brain via 'leaky mutations' can result in mild developmental delay and seizures, our data also suggest a vital role for the CLIC2 protein in maintaining normal cognitive function via its interaction with RyRs in the brain. Therefore, our patients appear to suffer from a new channelopathy comprised of ID, seizures and cardiac problems because of enhanced Ca(2+) release through RyRs in neuronal cells and cardiac muscle cells.
Collapse
Affiliation(s)
- Kyoko Takano
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|