1
|
Zhan Y, Grabbe F, Oberbeckmann E, Dienemann C, Cramer P. Three-step mechanism of promoter escape by RNA polymerase II. Mol Cell 2024; 84:1699-1710.e6. [PMID: 38604172 DOI: 10.1016/j.molcel.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/04/2024] [Accepted: 03/16/2024] [Indexed: 04/13/2024]
Abstract
The transition from transcription initiation to elongation is highly regulated in human cells but remains incompletely understood at the structural level. In particular, it is unclear how interactions between RNA polymerase II (RNA Pol II) and initiation factors are broken to enable promoter escape. Here, we reconstitute RNA Pol II promoter escape in vitro and determine high-resolution structures of initially transcribing complexes containing 8-, 10-, and 12-nt ordered RNAs and two elongation complexes containing 14-nt RNAs. We suggest that promoter escape occurs in three major steps. First, the growing RNA displaces the B-reader element of the initiation factor TFIIB without evicting TFIIB. Second, the rewinding of the transcription bubble coincides with the eviction of TFIIA, TFIIB, and TBP. Third, the binding of DSIF and NELF facilitates TFIIE and TFIIH dissociation, establishing the paused elongation complex. This three-step model for promoter escape fills a gap in our understanding of the initiation-elongation transition of RNA Pol II transcription.
Collapse
Affiliation(s)
- Yumeng Zhan
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Frauke Grabbe
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Elisa Oberbeckmann
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Christian Dienemann
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany.
| | - Patrick Cramer
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
2
|
Minor Kinases with Major Roles in Cytokinesis Regulation. Cells 2022; 11:cells11223639. [PMID: 36429067 PMCID: PMC9688779 DOI: 10.3390/cells11223639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Cytokinesis, the conclusive act of cell division, allows cytoplasmic organelles and chromosomes to be faithfully partitioned between two daughter cells. In animal organisms, its accurate regulation is a fundamental task for normal development and for preventing aneuploidy. Cytokinesis failures produce genetically unstable tetraploid cells and ultimately result in chromosome instability, a hallmark of cancer cells. In animal cells, the assembly and constriction of an actomyosin ring drive cleavage furrow ingression, resulting in the formation of a cytoplasmic intercellular bridge, which is severed during abscission, the final event of cytokinesis. Kinase-mediated phosphorylation is a crucial process to orchestrate the spatio-temporal regulation of the different stages of cytokinesis. Several kinases have been described in the literature, such as cyclin-dependent kinase, polo-like kinase 1, and Aurora B, regulating both furrow ingression and/or abscission. However, others exist, with well-established roles in cell-cycle progression but whose specific role in cytokinesis has been poorly investigated, leading to considering these kinases as "minor" actors in this process. Yet, they deserve additional attention, as they might disclose unexpected routes of cell division regulation. Here, we summarize the role of multifunctional kinases in cytokinesis with a special focus on those with a still scarcely defined function during cell cleavage. Moreover, we discuss their implication in cancer.
Collapse
|
3
|
Trembley JH, Kren BT, Afzal M, Scaria GA, Klein MA, Ahmed K. Protein kinase CK2 – diverse roles in cancer cell biology and therapeutic promise. Mol Cell Biochem 2022; 478:899-926. [PMID: 36114992 PMCID: PMC9483426 DOI: 10.1007/s11010-022-04558-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022]
Abstract
The association of protein kinase CK2 (formerly casein kinase II or 2) with cell growth and proliferation in cells was apparent at early stages of its investigation. A cancer-specific role for CK2 remained unclear until it was determined that CK2 was also a potent suppressor of cell death (apoptosis); the latter characteristic differentiated its function in normal versus malignant cells because dysregulation of both cell growth and cell death is a universal feature of cancer cells. Over time, it became evident that CK2 exerts its influence on a diverse range of cell functions in normal as well as in transformed cells. As such, CK2 and its substrates are localized in various compartments of the cell. The dysregulation of CK2 is documented in a wide range of malignancies; notably, by increased CK2 protein and activity levels with relatively moderate change in its RNA abundance. High levels of CK2 are associated with poor prognosis in multiple cancer types, and CK2 is a target for active research and testing for cancer therapy. Aspects of CK2 cellular roles and targeting in cancer are discussed in the present review, with focus on nuclear and mitochondrial functions and prostate, breast and head and neck malignancies.
Collapse
Affiliation(s)
- Janeen H Trembley
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA.
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Betsy T Kren
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA
| | - Muhammad Afzal
- Department of Biochemistry, Riphah International University, Islamabad, Pakistan
| | - George A Scaria
- Hematology/Oncology Section, Primary Care Service Line, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA
| | - Mark A Klein
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
- Hematology/Oncology Section, Primary Care Service Line, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Khalil Ahmed
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA.
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.
- Department of Urology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
4
|
Jacobs RQ, Ingram ZM, Lucius AL, Schneider DA. Defining the divergent enzymatic properties of RNA polymerases I and II. J Biol Chem 2021; 296:100051. [PMID: 33168625 PMCID: PMC7948988 DOI: 10.1074/jbc.ra120.015904] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/26/2020] [Accepted: 11/09/2020] [Indexed: 01/22/2023] Open
Abstract
Eukaryotes express at least three nuclear DNA-dependent RNA polymerases (Pols) responsible for synthesizing all RNA required by the cell. Despite sharing structural homology, they have functionally diverged to suit their distinct cellular roles. Although the Pols have been studied extensively, direct comparison of their enzymatic properties is difficult because studies are often conducted under disparate experimental conditions and techniques. Here, we directly compare and reveal functional differences between Saccharomyces cerevisiae Pols I and II using a series of quantitative in vitro transcription assays. We find that Pol I single-nucleotide and multinucleotide addition rate constants are faster than those of Pol II. Pol I elongation complexes are less stable than Pol II elongation complexes, and Pol I is more error prone than Pol II. Collectively, these data show that the enzymatic properties of the Pols have diverged over the course of evolution, optimizing these enzymes for their unique cellular responsibilities.
Collapse
Affiliation(s)
- Ruth Q Jacobs
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Zachariah M Ingram
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Aaron L Lucius
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
5
|
Knutson BA, McNamar R, Rothblum LI. Dynamics of the RNA polymerase I TFIIF/TFIIE-like subcomplex: a mini-review. Biochem Soc Trans 2020; 48:1917-1927. [PMID: 32915199 PMCID: PMC10793690 DOI: 10.1042/bst20190848] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 01/31/2023]
Abstract
RNA polymerase I (Pol I) is the most specialized eukaryotic Pol. It is only responsible for the synthesis of pre-ribosomal RNA (rRNA), the precursor of 18S, 5.8S and 28S rRNA, the most abundant cellular RNA types. Aberrant Pol I transcription is observed in a wide variety of cancers and its down-regulation is associated with several genetic disorders. The regulation and mechanism of Pol I transcription is increasing in clarity given the numerous high-resolution Pol I structures that have helped bridge seminal genetic and biochemical findings in the field. Here, we review the multifunctional roles of an important TFIIF- and TFIIE-like subcomplex composed of the Pol I subunits A34.5 and A49 in yeast, and PAF49 and PAF53 in mammals. Recent analyses have revealed a dynamic interplay between this subcomplex at nearly every step of the Pol I transcription cycle in addition to new roles in chromatin traversal and the existence of a new helix-turn-helix (HTH) within the A49/PAF53 linker domain that expands its dynamic functions during the Pol I transcription process.
Collapse
Affiliation(s)
- Bruce A. Knutson
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
| | - Rachel McNamar
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, U.S.A
| | - Lawrence I. Rothblum
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, U.S.A
| |
Collapse
|
6
|
DeLaney E, Luse DS. Gdown1 Associates Efficiently with RNA Polymerase II after Promoter Clearance and Displaces TFIIF during Transcript Elongation. PLoS One 2016; 11:e0163649. [PMID: 27716820 PMCID: PMC5055313 DOI: 10.1371/journal.pone.0163649] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/12/2016] [Indexed: 11/18/2022] Open
Abstract
Pausing during the earliest stage of transcript elongation by RNA polymerase II (Pol II) is a nearly universal control point in metazoan gene expression. The substoichiometric Pol II subunit Gdown1 facilitates promoter proximal pausing in vitro in extract-based transcription reactions, out-competes the initiation/elongation factor TFIIF for binding to free Pol II and co-localizes with paused Pol II in vivo. However, we have shown that Gdown1 cannot functionally associate with the Pol II preinitiation complex (PIC), which contains TFIIF. In the present study, we determined at what point after initiation Gdown1 can associate with Pol II and how rapidly this competition with TFIIF occurs. We show that, as with the PIC, Gdown1 cannot functionally load into open complexes or complexes engaged in abortive synthesis of very short RNAs. Gdown1 can load into early elongation complexes (EECs) with 5–9 nt RNAs, but efficient association with EECs does not take place until the point at which the upstream segment of the long initial transcription bubble reanneals. Tests of EECs assembled on a series of promoter variants confirm that this bubble collapse transition, and not transcript length, modulates Gdown1 functional affinity. Gdown1 displaces TFIIF effectively from all complexes downstream of the collapse transition, but this displacement is surprisingly slow: complete loss of TFIIF stimulation of elongation requires 5 min of incubation with Gdown1. The relatively slow functional loading of Gdown1 in the presence of TFIIF suggests that Gdown1 works in promoter-proximal pausing by locking in the paused state after elongation is already antagonized by other factors, including DSIF, NELF and possibly the first downstream nucleosome.
Collapse
Affiliation(s)
- Elizabeth DeLaney
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Donal S. Luse
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
7
|
Luse DS. The RNA polymerase II preinitiation complex. Through what pathway is the complex assembled? Transcription 2015; 5:e27050. [PMID: 25764109 DOI: 10.4161/trns.27050] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The general transcription factors required for the assembly of the RNA polymerase II preinitiation complex at TATA-dependent promoters are well known. However, recent studies point to two quite distinct pathways for assembly of these components into functional transcription complexes. In this review, the two pathways are compared and potential implications for gene regulatory mechanisms are discussed.
Collapse
Affiliation(s)
- Donal S Luse
- a Department of Molecular Genetics; Lerner Research Institute; Cleveland Clinic; Cleveland, OH USA
| |
Collapse
|
8
|
Ccr4-Not and TFIIS Function Cooperatively To Rescue Arrested RNA Polymerase II. Mol Cell Biol 2015; 35:1915-25. [PMID: 25776559 DOI: 10.1128/mcb.00044-15] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/11/2015] [Indexed: 12/13/2022] Open
Abstract
Expression of the genome requires RNA polymerase II (RNAPII) to transcribe across many natural and unnatural barriers, and this transcription across barriers is facilitated by protein complexes called elongation factors (EFs). Genetic studies in Saccharomyces cerevisiae yeast suggest that multiple EFs collaborate to assist RNAPII in completing the transcription of genes, but the molecular mechanisms of how they cooperate to promote elongation are not well understood. The Ccr4-Not complex participates in multiple steps of mRNA metabolism and has recently been shown to be an EF. Here we describe how Ccr4-Not and TFIIS cooperate to stimulate elongation. We find that Ccr4-Not and TFIIS mutations show synthetically enhanced phenotypes, and biochemical analyses indicate that Ccr4-Not and TFIIS work synergistically to reactivate arrested RNAPII. Ccr4-Not increases the recruitment of TFIIS into elongation complexes and enhances the cleavage of the displaced transcript in backtracked RNAPII. This is mediated by an interaction between Ccr4-Not and the N terminus of TFIIS. In addition to revealing insights into how these two elongation factors cooperate to promote RNAPII elongation, our study extends the growing body of evidence suggesting that the N terminus of TFIIS acts as a docking/interacting site that allows it to synergize with other EFs to promote RNAPII transcription.
Collapse
|
9
|
Transcription factors TFIIF and TFIIS promote transcript elongation by RNA polymerase II by synergistic and independent mechanisms. Proc Natl Acad Sci U S A 2014; 111:6642-7. [PMID: 24733897 DOI: 10.1073/pnas.1405181111] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent evidence suggests that transcript elongation by RNA polymerase II (RNAPII) is regulated by mechanical cues affecting the entry into, and exit from, transcriptionally inactive states, including pausing and arrest. We present a single-molecule optical-trapping study of the interactions of RNAPII with transcription elongation factors TFIIS and TFIIF, which affect these processes. By monitoring the response of elongation complexes containing RNAPII and combinations of TFIIF and TFIIS to controlled mechanical loads, we find that both transcription factors are independently capable of restoring arrested RNAPII to productive elongation. TFIIS, in addition to its established role in promoting transcript cleavage, is found to relieve arrest by a second, cleavage-independent mechanism. TFIIF synergistically enhances some, but not all, of the activities of TFIIS. These studies also uncovered unexpected insights into the mechanisms underlying transient pauses. The direct visualization of pauses at near-base-pair resolution, together with the load dependence of the pause-entry phase, suggests that two distinct mechanisms may be at play: backtracking under forces that hinder transcription and a backtrack-independent activity under assisting loads. The measured pause lifetime distributions are inconsistent with prevailing views of backtracking as a purely diffusive process, suggesting instead that the extent of backtracking may be modulated by mechanisms intrinsic to RNAPII. Pauses triggered by inosine triphosphate misincorporation led to backtracking, even under assisting loads, and their lifetimes were reduced by TFIIS, particularly when aided by TFIIF. Overall, these experiments provide additional insights into how obstacles to transcription may be overcome by the concerted actions of multiple accessory factors.
Collapse
|
10
|
Mullen Davis MA, Guo J, Price DH, Luse DS. Functional interactions of the RNA polymerase II-interacting proteins Gdown1 and TFIIF. J Biol Chem 2014; 289:11143-11152. [PMID: 24596085 DOI: 10.1074/jbc.m113.544395] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Gdown1, the substoichiometric 13th subunit of RNA polymerase II (pol II), has an important role in pausing during the initial stage of transcript elongation. However, Gdown1 quantitatively displaces the essential initiation factor TFIIF from free pol II and elongating pol II. Thus, it is not clear how or even if pol II can initiate in the presence of Gdown1. Using an in vitro transcription system with purified factors and pol II lacking Gdown1, we found that although Gdown1 is strongly inhibitory to transcription when prebound to pol II, a fraction of complexes do remain active. Surprisingly, when Gdown1 is added to complete preinitiation complexes (PICs), it does not inhibit initiation or functionally associate with the PICs. Gdown1 does associate with pol II during the early stage of transcript elongation but this association is competitive with TFIIF. By phosphorylating TFIIF, PICs can be assembled that do not retain TFIIF. Gdown1 also fails to functionally associate with these TFIIF-less PICs, but once polymerase enters transcript elongation, complexes lacking TFIIF quantitatively bind Gdown1. Our results provide a partial resolution of the paradox of the competition between Gdown1 and TFIIF for association with pol II. Although Gdown1 completely displaces TFIIF from free pol II and elongation complexes, Gdown1 does not functionally associate with the PIC. Gdown1 can enter the transcription complex immediately after initiation. Modification of TFIIF provides one pathway through which efficient Gdown1 loading can occur early in elongation, allowing downstream pausing to be regulated.
Collapse
Affiliation(s)
- Melissa A Mullen Davis
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195 and
| | | | - David H Price
- Department of Biochemistry and; Molecular and Cellular Biology Program, University of Iowa, Iowa City, Iowa 52242
| | - Donal S Luse
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195 and.
| |
Collapse
|
11
|
Affiliation(s)
- Jiannan Guo
- Biochemistry Department, University of Iowa , Iowa City, Iowa 52242, United States
| | | |
Collapse
|
12
|
Jeronimo C, Bataille AR, Robert F. The Writers, Readers, and Functions of the RNA Polymerase II C-Terminal Domain Code. Chem Rev 2013; 113:8491-522. [DOI: 10.1021/cr4001397] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Célia Jeronimo
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
| | - Alain R. Bataille
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
| | - François Robert
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
- Département
de Médecine,
Faculté de Médecine, Université de Montréal, Montréal, Québec,
Canada H3T 1J4
| |
Collapse
|
13
|
Zhou J, Schweikhard V, Block SM. Single-molecule studies of RNAPII elongation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:29-38. [PMID: 22982192 DOI: 10.1016/j.bbagrm.2012.08.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 08/27/2012] [Accepted: 08/29/2012] [Indexed: 01/22/2023]
Abstract
Elongation, the transcriptional phase in which RNA polymerase (RNAP) moves processively along a DNA template, occurs via a fundamental enzymatic mechanism that is thought to be universally conserved among multi-subunit polymerases in all kingdoms of life. Beyond this basic mechanism, a multitude of processes are integrated into transcript elongation, among them fidelity control, gene regulatory interactions involving elongation factors, RNA splicing or processing factors, and regulatory mechanisms associated with chromatin structure. Many kinetic and molecular details of the mechanism of the nucleotide addition cycle and its regulation, however, remain elusive and generate continued interest and even controversy. Recently, single-molecule approaches have emerged as powerful tools for the study of transcription in eukaryotic organisms. Here, we review recent progress and discuss some of the unresolved questions and ongoing debates, while anticipating future developments in the field. This article is part of a Special Issue entitled: RNA Polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
14
|
Luse DS. Rethinking the role of TFIIF in transcript initiation by RNA polymerase II. Transcription 2012; 3:156-9. [PMID: 22771986 DOI: 10.4161/trns.20725] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
TFIIF is considered to be a general transcription factor, based on the fact that it is essential for assembly of RNA polymerase II preinitiation complexes on fully double-stranded templates in vitro. Existing models assign various tasks to TFIIF during preinitiation complex formation and transcript initiation. Recent results do not support all aspects of those models but they do emphasize the significance of the interaction of TFIIF and TFIIB. Other recent findings raise the possibility that a fraction of RNA polymerase II transcription complex assembly proceeds through a pathway that is independent of TFIIF.
Collapse
|
15
|
Čabart P, Luse DS. Inactivated RNA polymerase II open complexes can be reactivated with TFIIE. J Biol Chem 2011; 287:961-7. [PMID: 22119917 DOI: 10.1074/jbc.m111.297572] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcript initiation by RNA polymerase II (pol II) requires a helicase within TFIIH to generate the unpaired template strand. However, pol II preinitiation complexes (PICs) lose the ability to synthesize RNA very rapidly upon exposure to ATP alone in the absence of other NTPs. This inactivation is not caused by the TFIIH kinase activity, the loss of transcription factors or pol II from the PIC, or the collapse of the initially formed transcription bubble. TFIIE is necessary for PIC formation, but TFIIE is not retained as a stable component in PICs prepared by our protocol. Nevertheless, activity can be at least partially restored to ATP-treated PICs by the readdition of TFIIE. PICs formed on premelted (bubble) templates require TFIIH for effective transcript elongation to +20. Incubation of bubble template PICs with ATP caused reduced yields of 20-mers, but this effect was partially reversed by the addition of TFIIE. Our results suggest that once the open complex is formed, TFIIH decays into an inactive configuration in the absence of nucleotides for transcription. Although TFIIE does not play a role in transcript initiation itself, inactivation resulting from ATP preincubation can be reversed by a remodeling process mediated by TFIIE. Finally, we have also uncovered a major role for TFIIF in the earliest stages of transcript elongation that is unique to bubble templates.
Collapse
Affiliation(s)
- Pavel Čabart
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
16
|
Transcription factor TFIIF is not required for initiation by RNA polymerase II, but it is essential to stabilize transcription factor TFIIB in early elongation complexes. Proc Natl Acad Sci U S A 2011; 108:15786-91. [PMID: 21896726 DOI: 10.1073/pnas.1104591108] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Transcription factors TFIIB and TFIIF are both required for RNA polymerase II preinitiation complex (PIC) assembly, but their roles at and downstream of initiation are not clear. We now show that TFIIF phosphorylated by casein kinase 2 remains competent to support PIC assembly but is not stably retained in the PIC. PICs completely lacking TFIIF are not defective in initiation or subsequent promoter clearance, demonstrating that TFIIF is not required for initiation or clearance. Lack of TFIIF in the PIC reduces transcription levels at some promoters, coincident with reduced retention of TFIIB. TFIIB is normally associated with the early elongation complex and is only destabilized at +12 to +13. However, if TFIIF is not retained in the PIC, TFIIB can be lost immediately after initiation. TFIIF therefore has an important role in stabilizing TFIIB within the PIC and after transcription initiates.
Collapse
|
17
|
Hartzog GA, Kaplan CD. Competing for the clamp: promoting RNA polymerase processivity and managing the transition from initiation to elongation. Mol Cell 2011; 43:161-3. [PMID: 21777806 DOI: 10.1016/j.molcel.2011.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transcription elongation factor NusG/Spt5 spans the central cleft of RNA polymerase and functionally competes with transcription initiation factors. This work highlights the RNA polymerase clamp as a target for regulation and points to dynamic interactions between initiation and elongation machineries.
Collapse
Affiliation(s)
- Grant A Hartzog
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA.
| | | |
Collapse
|